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Using first-principles calculations, we identify magic wavelengths λmagic for the 2s-2p and 2s-3p transitions
in lithium. The ns and np atomic levels have the same ac Stark shifts at the corresponding magic wavelength,
which facilitates state-insensitive optical cooling and trapping. Tune-out wavelengths for which the ground-state
frequency-dependent polarizability vanishes are also calculated. Differences of these wavelengths between 6Li
and 7Li are reported. Our approach uses high-precision, relativistic all-order methods in which all single, double,
and partial triple excitations of the Dirac-Fock wave functions are included to all orders of perturbation theory.
Recommended values are provided for a large number of Li electric-dipole matrix elements. Static polarizabilities
for the 2s, 2p, 3s, 3p, and 3d levels are compared with other theory and experiment where available. Uncertainties
of all recommended values are estimated. The magic wavelengths for the uv 2s-3p transition are of particular
interest for the production of a quantum gas of lithium [Duarte et al., Phys. Rev. A 84, 061406(R) (2011)].
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I. INTRODUCTION

The alkali-metal atoms, with one electron outside a closed
shell core, have an oscillator strength sum �f = 1 to be
distributed among all optical transitions from the ground state
at energies below the threshold for core excitation [1]. Most
of this oscillator strength is concentrated in the lowest, ns-np,
resonance transitions, where n = 2 for Li, 3 for Na, etc. The
higher resonance transitions, ns-n′p with n′ > n, are thus
usually much weaker than their counterparts in non–alkali-
metal atoms, and their natural linewidths are narrower. In some
cases this is accompanied by anomalous intensity ratios of the
fine-structure doublet lines, a phenomenon first explained by
Fermi [2].

Recent experiments in 6Li [3] and 40K [4] have shown
the advantages of laser cooling with higher resonance lines
for reducing the temperature and increasing the phase space
density of optically trapped alkali-metal atoms. The narrow
linewidths of these transitions reduce the Doppler cooling limit
compared to that of the lowest resonance line. Two direct tests
were made using similar schemes: laser cooling of the gas
in a magneto-optical trap (MOT) using the usual ns → np3/2

D2 transition (the wavelengths of which are 671 nm for 6Li
and 767 nm for 40K), followed by transfer of the gas into a
MOT operating at the ns → (n + 1)p3/2 uv line (respectively
323 nm and 405 nm). In both cases, temperature reductions
by a factor of about 5 and phase-space density increases by at
least a factor of 10 were observed.

In this paper we discuss aspects of this cooling scheme as
applied to lithium. In order to be able to continue to laser cool
on the uv transition when a dipole optical trap is turned off, the
ac Stark shifts of the 2s and 3p3/2 levels due to trap light have to
be nearly the same, resulting in a sufficiently small differential
ac Stark shift on the cooling transition to allow for efficient
and uniform cooling [3]. The ac Stark shifts of these states
are generally different and may be of different signs, leading
to heating. The same problem, i.e., different Stark shifts of

two states, affects optical frequency standards based on atoms
trapped in optical lattices, because it can introduce a significant
dependence of the measured frequency of the clock transition
upon the lattice wavelength. The idea of using a trapping laser
tuned to a “magic” wavelength, λmagic, at which the ac Stark
shift of the clock transition vanishes, was first proposed in
Refs. [5,6]. The use of the magic wavelengths is also important
in order to trap and control neutral atoms inside high-Q cavities
in the strong coupling regime with minimum decoherence for
quantum computation and communication schemes [7].

The goal of the present work is to provide the list of precise
magic wavelengths for Li uv 2s-3pj transitions in convenient
wavelength regions. We also provide a list of available
magic wavelength for the 2s-2pj transitions, calculate dc and
ac polarizabilities for several low-lying states, and provide
recommended values for a number of relevant electric-dipole
transitions. We present results for both 6Li and 7Li to illustrate
the possibilities for differential light shifts between the two
isotopes.

The magic wavelengths for a specific transition are located
by calculating the ac polarizabilities of the lower and upper
states and finding their crossing points. Magic wavelengths
for lowest np-ns transitions in alkali-metal atoms from Na
to Cs have been previously calculated in Ref. [8], using a
relativistic linearized coupled-cluster method. The data in
Ref. [8] provided a wide range of magic wavelengths for
alkali-metal atoms. A bichromatic scheme for state-insensitive
optical trapping of Rb atom was explored in Ref. [9]. In the
case of Rb, the magic wavelengths associated with monochro-
matic trapping were sparse and relatively inconvenient. The
bichromatic approach yielded a number of promising magic
wavelength pairs.

We have also carried out calculations of the dc polariz-
abilities of the 2s, 2pj , 3s, 3pj , and 3dj states to compare
with available experimental and high-precision theoretical
values. We refer the reader to a recent review [10] for
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extensive comparison of various results for Li polarizabilities.
Here, we provide comparison of our results with the most
recent calculations carried out using Hylleraas basis functions
[11–15] since this approach is expected to produce the
most accurate recommended values. Comparison with the
recent coupled-cluster calculation of [16] and configuration
interaction calculations with core polarization (CICP) [13] is
also included.

We also provide values for the tune-out wavelengths, λzero,
for which the ground-state frequency-dependent polarizability
of Li atoms vanishes. At these wavelengths, an atom experi-
ences no dipole force and thus is unaffected by the presence
of an optical lattice. These wavelengths were first discussed
by LeBlanc and Thywissen [17], and have recently been
calculated for alkali-metal atoms from Li to Cs in Ref. [18].
Our present work provides accurate predictions of the tune-out
wavelengths λzero for both 6Li and 7Li and explores the
differences between the first tune-out wavelengths for these
isotopes in detail.

We start with discussions of the calculation of electric-
dipole matric elements, static and dynamic polarizabilities
as well as their uncertainties in Sec. II. The static values
are compared with other theory and experiment in Sec. III.
The magic wavelengths are discussed in Sec. IV. Li tune-out
wavelengths are discussed in Sec. V.

II. METHOD

The background to our approach to calculation of atomic
polarizabilities was discussed in Refs. [8,18,19]. Here, we
summarize points salient to the present work. The frequency-
dependent scalar polarizability, α(ω), of an alkali-metal atom
in its ground state v may be separated into a contribution
from the core electrons, αcore, a core modification due to the
valence electron, αvc, and a contribution from the valence
electron, αv(ω). The core polarizability depends weakly on
ω for the frequencies treated here, since core electrons have
excitation energies in the far-ultraviolet region of the spectrum.
Therefore, we approximate the core polarizability by its dc
value as calculated in the random-phase approximation (RPA).
The accuracy of the RPA approach has been discussed in
Ref. [10]. The core polarizability is corrected for Pauli block-
ing of core-valence excitations by introducing an extra term
αvc. For consistency, this is also calculated in RPA. The valence
contribution to frequency-dependent scalar α0 and tensor α2

polarizabilities is evaluated as the sum over intermediate k

states allowed by the electric-dipole transition rules [10]

αv
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where C is given by

C =
(

5jv(2jv − 1)

6(jv + 1)(2jv + 1)(2jv + 3)

)1/2

and 〈k‖d‖v〉 are the reduced electric-dipole matrix elements.
In these equations, ω is assumed to be at least several
linewidths off resonance from the corresponding transitions.
Linear polarization is assumed in all calculation.

Unless stated otherwise, we use the conventional system of
atomic units, a.u., in which e,me, 4πε0 and the reduced Planck
constant h̄ have the numerical value 1. Polarizability in a.u. has
the dimension of volume, and its numerical values presented
here are expressed in units of a3

0 , where a0 ≈ 0.052 918 nm
is the Bohr radius. The atomic units for α can be converted
to SI units via α/h [Hz/(V/m)2] = 2.488 32×10−8α [a.u.],
where the conversion coefficient is 4πε0a

3
0/h and the Planck

constant h is factored out.
We use the linearized version of the coupled cluster

approach (also referred to as the all-order method), which sums
infinite sets of many-body perturbation theory terms, for k with
principal quantum number n � 26. The 2s-np, 2p-nl, 3s-nl,
3p-nl, and 3d-nl transitions with n � 26 are calculated using
this approach. Detailed description of the all-order method is
given in Refs. [20,21].

We use experimental values of energy levels up to n =
12 taken from Refs. [22–24] and theoretical all-order energy
levels for n = 13−26. The remaining contributions with n >

26 are calculated in the Dirac-Fock (DF) approximation. We
use a complete set of DF wave functions on a nonlinear grid
generated using B splines constrained to a spherical cavity. A
cavity radius of 220 a0 is chosen to accommodate all valence
orbitals with n < 13 so we can use experimental energies for
these states. The basis set consists of 70 splines of order 11 for
each value of the relativistic angular quantum number κ .

The evaluation of the uncertainty of the matrix elements
in this approach was described in detail in Ref. [21]. Four
all-order calculations were carried out. Two of these were ab
initio all-order calculations with and without the inclusion of
the partial triple excitations. Two other calculations included
semiempirical estimate of high-order correlation corrections
starting from both ab initio runs. The spread of these four
values for each transition defines the estimated uncertainty
in the final results. Since high-order corrections are small
for some Li transitions, in particular for the excited states,
the uncertainty estimate for the lower transition was used
for the other transitions. For example, the 2p-3s uncertainty
was used for the other 2p-ns transitions with n > 3. This
procedure ensures that all uncertainty estimates are larger
than the expected numerical accuracy of the calculations.
The uncertainties for the small 2s-npj and 3s-n1pj matrix
elements with n > 2 and n1 > 3 were estimated as 10% of the
total correlation correction. For these transitions, the procedure
used to estimate high-order corrections does not estimate all
dominant contributions. Placing the uncertainty estimate at
10% of the correlation correction for these transitions ensures
that all missing correlation effects do not exceed this rough
uncertainty estimate. The matrix element calculations have
been carried out for a fixed nucleus using a Fermi distribution
for a nuclear charge. These matrix elements are used in
all polarizability calculations in the present work. We have
estimated that the 6Li-7Li isotope shift correction to the matrix
elements is well below our estimated uncertainties.

The absolute values of the reduced electric-dipole Li
matrix elements used in our subsequent calculations and their
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TABLE I. Absolute values of the reduced electric-dipole matrix
elements in Li and their uncertainties. Units: a.u.

Transition Value Transition Value

2s-2p1/2 3.3169(6)
2s-3p1/2 0.183(3) 3s-3p1/2 8.467(2)
2s-4p1/2 0.160(1) 3s-4p1/2 0.0320(6)
2s-5p1/2 0.1198(9) 3s-5p1/2 0.1544(2)
2s-6p1/2 0.0925(7) 3s-6p1/2 0.138(1)
2s-7p1/2 0.0737(5) 3s-7p1/2 0.1136(6)
2s-2p3/2 4.6909(8)
2s-3p3/2 0.259(4) 3s-3p3/2 11.975(2)
2s-4p3/2 0.226(2) 3s-4p3/2 0.045(1)
2s-5p3/2 0.169(1) 3s-5p3/2 0.2184(5)
2s-6p3/2 0.131(1) 3s-6p3/2 0.195(2)
2s-7p3/2 0.1042(7) 3s-7p3/2 0.1607(9)
2p1/2-3s 2.4326(5)
2p1/2-4s 0.6482(1) 3p1/2-4s 5.997(1)
2p1/2-5s 0.3485(1) 3p1/2-5s 1.5216(5)
2p1/2-6s 0.2311 3p1/2-6s 0.8023(2)
2p1/2-7s 0.1695 3p1/2-7s 0.5284(2)

2p1/2-3d3/2 5.0665(10) 3p1/2-3d3/2 11.701(2)
2p1/2-4d3/2 1.9291(4) 3p1/2-4d3/2 7.765(3)
2p1/2-5d3/2 1.1214(4) 3p1/2-5d3/2 3.235(1)
2p1/2-6d3/2 0.7682(2) 3p1/2-6d3/2 1.9394(8)
2p1/2-7d3/2 0.5736(1) 3p1/2-7d3/2 1.3511(5)
2p3/2-3s 3.4403(7)
2p3/2-4s 0.9167(2) 3p3/2-4s 8.481(3)
2p3/2-5s 0.4929(1) 3p3/2-5s 2.1518(6)
2p3/2-6s 0.3268(1) 3p3/2-6s 1.1347(3)
2p3/2-7s 0.2397 3p3/2-7s 0.7472(2)

2p3/2-3d3/2 2.2658(5) 3p3/2-3d3/2 5.233(1)
2p3/2-4d3/2 0.8627(2) 3p3/2-4d3/2 3.473(1)
2p3/2-5d3/2 0.5015(2) 3p3/2-5d3/2 1.4469(6)
2p3/2-6d3/2 0.3435(1) 3p3/2-6d3/2 0.8673(3)
2p3/2-7d3/2 0.2565(1) 3p3/2-7d3/2 0.6042(2)
2p3/2-3d5/2 6.7975(14) 3p3/2-3d5/2 15.699(3)
2p3/2-4d5/2 2.5882(5) 3p3/2-4d5/2 10.418(4)
2p3/2-5d5/2 1.5045(6) 3p3/2-5d5/2 4.341(2)
2p3/2-6d5/2 1.0306(2) 3p3/2-6d5/2 2.602(1)
2p3/2-7d5/2 0.7696(2) 3p3/2-7d5/2 1.8126(7)
3d3/2-4p1/2 1.960(1) 3d3/2-4p3/2 0.8764(7)
3d3/2-5p1/2 0.7029(4) 3d3/2-5p3/2 0.3143(2)
3d3/2-6p1/2 0.3984(8) 3d3/2-6p3/2 0.1782(4)
3d3/2-7p1/2 0.2692(4) 3d3/2-7p3/2 0.1204(2)
3d5/2-4p3/2 2.629(2) 3d3/2-4f5/2 15.82(3)
3d5/2-5p3/2 0.9430(7) 3d3/2-5f5/2 5.141(5)
3d5/2-6p3/2 0.5345(11) 3d5/2-4f5/2 4.227(8)
3d5/2-7p3/2 0.3612(6) 3d5/2-5f5/2 1.374(1)
3d5/2-4f7/2 18.90(3) 3d5/2-5f7/2 6.145(6)

uncertainties are listed in a.u. in Table I. We note that we list
only the most important subset of the matrix elements. We
have calculated a total of 474 matrix elements for this work.

III. LI POLARIZABILITIES

We start with a brief overview of the recent calculations
of Li polarizabilities. The highest accuracy attained in ab
initio atomic structure calculations is achieved by the use of
basis functions which explicitly include the interelectronic

coordinate. Difficulties with performing the accompanying
multicenter integrals have effectively precluded the use of such
basis functions for systems with more than three electrons.
Correlated basis calculations are possible for lithium since it
only has three electrons. Consequently it has been possible to
calculate Li polarizabilities to very high precision [11–14]. The
most accurate calculation of polarizability of lithium ground
state α0(2s) = 164.1125(5) a.u. was carried out in Ref. [14].
This calculation included relativistic and quantum electrody-
namics corrections. The small uncertainty comes from the
approximate treatment of quantum electrodynamics correc-
tions. This theoretical result can be considered as a benchmark
for more general atomic structure methods and may serve as a
reference value for the relative measurement of polarizabilities
of the other alkali-metal atoms [14,25]. The uncertainty in the
experimental value of the polarizability 164.2(11) a.u. [26]
is substantially higher. The most stringent experimental test
of Li polarizability calculations is presently the Stark shift
measurement of the 2s-2p1/2 transition by Hunter et al. [27],
which gave a polarizability difference of −37.15(2) a.u. Our
coupled-cluster result −37.19(7) a.u. is in excellent agreement
with the experimental polarizability difference.

The electric dipole polarizabilities and hyperpolarizabilities
for the lithium isotopes 6Li and 7Li in the 2s, 2p, and
3d excited states were calculated nonrelativistically using
the variational method with a Hylleraas basis [11]. The
calculated 3d polarizabilities were found to be in significant
disagreement with 2003 measurements [29]. In order resolve
this discrepancy, we have calculated 3dj static scalar and tensor
polarizabilities. Our results are in excellent agreement with the
Hylleraas calculations of Ref. [11] suggesting a problem with
measurements reported in Ref. [29]. The dc and ac dipole
polarizabilities for Li atoms in the 2s and 2p states were
calculated using the same variational method with a Hylleraas
basis in [12]. Corrections due to relativistic effects were also
estimated to provide recommended values.

Since the Hylleraas basis set calculations can not be carried
out for larger systems at the present time, Li provides an
excellent benchmark test of our coupled-cluster approach, and
our procedures to estimate the uncertainties. Our approach
is intrinsically relativistic unlike nonrelativistic Hylleraas
calculations that require subsequent estimates of the relativistic
corrections. We note that the coupled-cluster method used
in this work is not expected to provide accuracy that is
competitive with what is ultimately possible to achieve with
Hylleraas basis for dc polarizability results. The accuracy
of the coupled-cluster method was recently discussed in
Ref. [30]. However, the coupled-cluster approach is applicable
to more complicated systems, so comparison with Hylleraas
calculations in Li provides stringent tests of the methodology
as well as of numerical accuracy. Moreover, comparison
with Hylleraas benchmarks provides additional confidence
in our estimates of the uncertainties in the values of magic
wavelengths. Comparison of our results with the most recent
correlated basis set calculations [11–15] is given in Table II.
All data are given for 7Li since the differences between 6Li
and 7Li values are smaller than our uncertainties. Our results
are in excellent agreement with all Hylleraas values.

Li electric-dipole and quadrupole polarizabilities, and
van der Waals coefficients were calculated using relativistic
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TABLE II. Comparison of the present values of static scalar
α0 and tensor α2

7Li polarizabilities with other calculations and
experiment. The final entry is the difference of the 2p1/2 and 2s po-
larizabilities for which there is a precise experimental determination
using dc Stark shift measurement. Units: a3

0 .

State Ref. α0 α2

2s Present 164.16(5)
Hylleraas [12] 164.11(3)
Hylleraas [14,15] 164.1125(5)
CCSD(T) [16] 164.23
Expt. [26] 164.2(11)

2p1/2 Present 126.97(5)
CCSD(T) [16] 127.15

2p3/2 Present 126.98(5) 1.610(26)
CCSD(T) [16] 127.09 1.597

2p Hylleraas [12] 126.970(4) 1.612(4)
CICP [28] 126.95

3s Present 4130(1)
Hylleraas [13] 4131.3
CICP [13] 4135
CCSD(T) [16] 4116

3p1/2 Present 28 255(11)
CCSD(T) [16] 28 170

3p3/2 Present 28 261(10) −2170(2)
CCSD(T) [16] 28 170 −2160

3p Hylleraas [13] 28 250 −2168.3
CICP [13] 28 450 −2188

3d3/2 Present −14 925(8) 11 405(6)
CCSD(T) [16] −14 820 11 460

3d5/2 Present −14 928(9) 16 297(7)
CCSD(T) [16] −14 930 16 290

3d Hylleraas [11] −14 928.2 16 297.7
CICP [28] −15 044 16 414
Expt. [29] −15 130(40) 16 430(60)

2p1/2-2s Present −37.19(7)
CCSD(T) [16] −37.09
Expt. [27] −37.15(2)

coupled-cluster method with single, double, and partial triple
excitations, CCSD(T), in Ref. [31]. However, a mismatch of
phases between the numerical and analytical orbitals caused
significant errors in the reported values. The later revision
of this work [16], where this problem was corrected, still
yielded results that are in substantially poorer agreement
with Hylleraas data than the values in the present work. The
importance of using very accurate basis sets for coupled-
cluster calculations of polarizabilities was discussed in a
number of publications, including review [10]. In our work,
a very large basis set with 70 orbitals for each partial wave
was used resulting in a very high numerical accuracy. Table II
includes the comparison with the revised CCSD(T) calculation
of Ref. [16], and configuration interaction calculations with
core polarization (CICP) [13].

IV. MAGIC WAVELENGTHS

We define the magic wavelength λmagic as the wavelength
for which the ac polarizabilities of two states involved in the

FIG. 1. (Color online) The frequency-dependent polarizabilities
of the Li 2s and 2p1/2 states. The magic wavelengths are marked with
arrows. The positions of the resonances are indicated by vertical lines
with small arrows on top of the graph.

atomic transition are the same, leading to a vanishing ac Stark
shift of that transition. For the ns-np transitions, a magic
wavelength is represented by the point at which two curves,
αns(λ) and αnp(λ), intersect as a function of the wavelength λ.

The total polarizability of the np3/2 state depends upon its
mj quantum number. Therefore, the magic wavelengths need
to be determined separately for the cases with mj = ±1/2
and mj = ±3/2 for the ns-np3/2 transitions, owing to the
presence of the tensor contribution to the total polarizability
of the np3/2 state. The total polarizability for the np3/2

states is given by α = α0 − α2 for mj = ±1/2 and α =
α0 + α2 for the mj = ±3/2 case. The uncertainties in the
values of magic wavelengths are found as the maximum
differences between the central value and the crossings of
the αns ± δαns and αnp ± δαnp curves, where the δα are the
uncertainties in the corresponding ns and np polarizability
values. All calculations are carried out for linear polarization.
The frequency-dependent polarizabilities of the Li ground
and 2p1/2 states for λ = 500−900 nm are plotted in Fig. 1.
The positions of the resonances are indicated by vertical lines
with small arrows on top of the graph. There are only three
resonances (2p-3d, 2s-2p, and 2p-3s) in this wavelength
region, resulting in only two magic wavelengths above 500 nm
for the 2s-2p1/2 transition. These occur at 549.41(6) and
872.56(9) nm. The magic wavelengths are marked with arrows
on all graphs. The respective values of the polarizabilities
are also given for all magic wavelengths illustrated in this
work. There are no other magic wavelengths for λ > 900 nm
since there are no more resonance contributions to both 2s

and 2p1/2 polarizabilities in this region. Both polarizabilities
slowly decrease for λ > 900 nm to approach their static value
in the ω −→ 0 limit.

The frequency-dependent polarizabilities of the Li ground
and 2p3/2 states for λ = 500−900 nm are plotted in Fig. 2.
The same designations are used in all figures. The magic
wavelengths for the 2s-2p3/2|mj | = 1/2 transition are similar
to the ones for the 2s-2p1/2 transition. In the |mj | = 3/2 case,
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FIG. 2. (Color online) The frequency-dependent polarizabilities
of the Li 2s and 2p3/2 states. The magic wavelengths are marked with
arrows. The positions of the resonances are indicated by vertical lines
with small arrows on top of the graph.

there is no magic wavelength above 550 nm since there is no
contribution from the 2s-2p resonance.

The magic wavelengths for the 2s-3p1/2 and 2s-3p3/2

transitions for λ = 950−1200 nm are illustrated in Fig. 3 and
Fig. 4. All resonances indicated on top of the figures refer
to the 3p-nl transitions, i.e., the arrow labeled 7s indicates
the position of the 3p-7s resonance. A number of the magic
wavelengths are available for the 2s-3p uv transitions owing
to a large number of resonance contributions to the 3p

polarizabilities in this region. The 3s-nl resonances with n > 7
will yield other magic wavelengths to the left of the plotted
region, while the 3s-nl resonances with n < 6 will yield other
magic wavelengths to the right of the plotted region.

We have also calculated the ac polarizability of the 3s

state for λ = 950−1200 nm. We find that 3s polarizability
is negative and large (≈ −1000 a.u.) in this entire wavelength
region with the exception of the very narrow wavelength

FIG. 3. (Color online) The frequency-dependent polarizabilities
of the Li 2s and 3p1/2 states. The magic wavelengths are marked with
arrows. The positions of the resonances are indicated by vertical lines
with small arrows on top of the graph.

FIG. 4. (Color online) The frequency-dependent polarizabilities
of the Li 2s and 3p3/2 states. The magic wavelengths are marked with
arrows. The positions of the resonances are indicated by vertical lines
with small arrows on top of the graph.

interval between 1079.48 and 1079.50 nm (due to 3s-4pj

resonances near 1079.49 nm).
Table III presents the magic wavelengths for the 2s-

2pj transitions in the 400−950 nm region, and the magic

TABLE III. Magic wavelengths for the 2s-npj transitions in 6Li
and 7Li. The 400−950 nm and 950−1300 nm wavelength ranges
were considered for the 2s-2pj and 2s-3pj transitions, respectively.
The corresponding polarizabilities are given in a.u.

Transition 6Li λmagic
7Li λmagic α

2s-2p1/2 401.247(7) 401.245(7) −87.07(4)
425.801(3) 425.798(3) −106.32(4)
434.84(1) 434.84(1) −114.46(5)
494.738(3) 494.735(3) −190.40(6)
549.41(6) 549.42(6) −327.1(3)
872.56(9) 872.57(9) 398.7(2)

2s-2p3/2 402.149(2) 402.146(2) −87.71(3)
|mj | = 1/2 425.142(2) 425.139(2) −105.75(3)

436.827(4) 436.825(4) −116.33(3)
493.351(1) 493.348(1) −188.04(5)
557.15(2) 557.16(2) −357.26(7)
930.3(2) 930.3(2) 339.9(2)

2s-2p3/2 431.46(2) 431.45(2) −111.33(5)
|mj | = 3/2 537.61(7) 537.61(7) −288.0(3)
2s-3p1/2 976.779(8) 976.777(8) 309.03(9)

997.298(2 997.295(2) 298.25(8)
1069.83(2) 1069.82(2) 269.30(8)
1107.793(5) 1107.783(5) 258.12(7)
1287.25(6) 1287.24(6) 224.66(7)

2s-3p3/2 977.265(7) 977.264(7) 308.75(9)
|mj | = 1/2 998.826(3) 998.823(3) 297.50(8)

1070.73(2) 1070.72(2) 269.01(8)
1112.111(9) 1112.102(8) 256.97(7)
1288.15(4) 1288.15(4) 224.55(7)

2s-3p3/2 976.240(7) 976.239(7) 309.33(9)
|mj | = 3/2 1068.76(2) 1068.74(2) 269.65(8)

1285.88(6) 1285.87(6) 224.84(7)
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TABLE IV. Tune-out wavelengths λzero for 6Li and 7Li. The
resonant wavelengths λres for relevant transitions are also listed. The
wavelengths (in vacuum) are given in nm.

Atom Resonance λres λzero

6Li 2s-2p1/2 670.992 478
670.987 445(1)

2s-2p3/2 670.977 380
324.19(2)

2s-3p1/2 323.3622
2s-3p3/2 323.361 168

274.920(10)
2s-4p1/2 274.2035

7Li 2s-2p1/2 670.976 658
670.971 625(2)

2s-2p3/2 670.961 561
324.19(2)

2s-3p1/2 323.3572
2s-3p3/2 323.3562

274.916(10)
2s-4p1/2 274.1998

wavelengths for the 2s-3pj transitions in the 950−1300 nm
region. We have carried out separate calculations for 6Li and
7Li by using the experimental energies for each isotope from
Refs. [22,23]. The same theoretical matrix elements were used
for both isotopes, since the isotopic dependence of the matrix
elements is much less than out uncertainty. We find that the
differences between 6Li and 7Li magic wavelengths are very
small and smaller than our estimated uncertainties for almost
all of the cases. We list both sets of data for the illustration
of the IS differences. The polarizabilities at the magic
wavelengths for 6Li and 7Li are the same within the listed
uncertainties, so only one set of polarizability data is listed.

While our calculations are not sensitive enough to signif-
icantly differentiate between magic wavelengths for 6Li and
7Li, our values of the first tune-out wavelength are significantly
different for the two isotopes [18]. Therefore, we consider Li
tune-out wavelengths in more detail in the next section.

V. LI TUNE-OUT WAVELENGTHS

A tune-out wavelength λzero for a given state is one for
which the ac polarizability of that state vanishes. In practice,
we calculate α0(ω) for a range of frequencies in the vicinity
of relevant resonances and look for changes in sign of the
polarizability within a given range. In the vicinity of the sign
change, we vary the frequency until the residual polarizability
is smaller than our uncertainty.

In previous work [18], we presented the tune-out wave-
lengths for the ground state of Li. Here, we have calculated the
matrix elements to somewhat higher precision and have carried
out more extensive study of their uncertainties. Therefore,
we reevaluate the tune-out wavelengths for Li in the present

FIG. 5. (Color online) The frequency-dependent polarizabilities
of the ground state of 6Li and 7Li. The tune-out wavelengths are
marked with arrows.

work. We have carried out separate calculations for 6Li and
7Li by using the experimental energies for each isotope from
Refs. [22,23] but the same matrix elements. The results are
given in Table IV. Only the values of the first tune-out
wavelengths are significantly affected by the IS. We illustrate
this case separately in Fig. 5. The isotope shift of the 2s-2p line
is slightly larger than its fine structure. Therefore, the tune-out
wavelength for one isotope corresponds to a very deep trap for
the other. We note that the first tune-out wavelength is very
close to the D1, D2 resonances which would be a source of
strong light scattering in an experiment. Applications of the
tune-out wavelengths to sympathetic cooling and precision
measurement were discussed in Ref. [18].

VI. CONCLUSION

We have calculated the ground ns state and np state ac
polarizabilities in Li using the relativistic linearized coupled-
cluster method and evaluated the uncertainties of these values.
The static polarizability values were found to be in excellent
agreement with experiment and high-precision theoretical
calculations with correlated basis functions. We have used
our calculations to identify the magic wavelengths for the
2s-2p and 2s-3p transitions relevant to the use of ultraviolet
resonance lines for laser cooling of ultracold gases with high
phase-space densities.
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