Relativistic many-body calculation of energies, lifetimes, polarizabilities, and hyperpolarizabilities in Li -like Be^{+}

U. I. Safronova ${ }^{1,2}$ and M. S. Safronova ${ }^{3,4}$
${ }^{1}$ Physics Department, University of Nevada, Reno, Nevada 89557, USA
${ }^{2}$ Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
${ }^{3}$ Department of Physics and Astronomy, 217 Sharp Laboratory, University of Delaware, Newark, Delaware 19716, USA
${ }^{4}$ Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland, 20899-8410, USA

(Received 13 January 2013; published 7 March 2013)

Abstract

Excitation energies of the $n s, n p, n d$, and $n f(n \leqslant 9)$ states in Li-like Be^{+}are evaluated within the framework of relativistic many-body theory. First-, second-, third-, and all-order Coulomb energies and first- and second-order Breit corrections to the energies are calculated. Two alternative treatments of the Breit interaction are investigated. In the first approach, we omit Breit contributions to the Dirac-Fock potential and evaluate Coulomb and BreitCoulomb corrections through second order perturbatively. In the second approach, we include both Coulomb and Breit contributions on the same footing via the Breit-Dirac-Fock potential and then treat the residual Breit and Coulomb interactions perturbatively. The results obtained from the two approaches are compared and discussed. All-order calculations of reduced matrix elements, oscillator strengths, transition rates, and lifetimes are given for levels up to $n=9$. Electric-dipole ($2 s-n p$), electric-quadrupole ($2 s-n d$), and electric-octupole ($2 s-n f$) matrix elements are evaluated in order to obtain the corresponding ground-state multipole polarizabilities using the sum-over-states approach. Recommended values are provided for a large number of electric-dipole matrix elements. Scalar and tensor polarizabilities for the $n s, n p_{1 / 2}, n p_{3 / 2}, n d_{3 / 2}$, and $n d_{5 / 2}$ states with $n \leqslant 9$ are also calculated. The scalar hyperpolarizability for the ground $2 s$ state is evaluated and compared with the result of a nonrelativistic calculation.

DOI: 10.1103/PhysRevA.87.032502

I. INTRODUCTION

In the present paper, we report a systematic $a b$ initio relativistic study of Be^{+}properties, including calculations of excitation energies, oscillator strengths, transition rates, lifetimes, polarizabilities, and hyperpolarizability in Li-like beryllium. The calculations are carried out using a highprecision relativistic all-order method which includes all single, double (SD), and partial triple excitations (SDpT) of the Dirac-Fock wave functions [1]. In 2012, all-order calculations of neutral Li oscillator strengths, lifetimes, and polarizabilities [2] were found in excellent agreement with benchmark highprecision results obtained with Hylleraas basis functions [3-7]. Recently, oscillator strengths, polarizabilities, and hyperpolarizabilities in Li-like beryllium evaluated using Hylleraas basis functions were presented by Tang et al. [8,9]. We compare our values with these calculations and present a large number of recommended data for other states. These calculations provide recommended values critically evaluated for their accuracy for a number of Be^{+}atomic properties useful for a variety of applications.

We start with a review of relevant theoretical and experimental studies. The most accurate calculations of the oscillator strengths, lifetimes, and polarizabilities in neutral lithium were obtained using Hylleraas basis functions [3-7,10-21]. A review of Li polarizabilities was recently given in [22].

Early theoretical calculations and measurements of energies, wavelengths, oscillator strengths, transition rates, polarizabilities, and lifetimes in Be^{+}were presented in Refs. [14,23-62]. The recently published comprehensive critical National Institute of Standards and Technology (NIST)

PACS number(s): 31.15.ac, 31.15.ag, 31.15.ap, 31.15.bw
compilation by Fuhr and Wiese [63] included the energies, wavelengths, and transition rates for allowed and forbidden transitions of Be^{+}. The recommended values of the line strengths, oscillator strengths, and transition rates in Ref. [63] were based on accurate theoretical calculations presented by Yan et al. [14], Godefroid et al. [23], Froese Fischer et al. [27], Qu et al. [25,26], Chung [34], and Peach et al. [40].

The Hylleraas-type variational method was used in Ref. [14] to calculate the energies of the lithium $2 s$ and $2 p$ isoelectronic sequences up to $Z=20$. The oscillator strengths for the $2 s \rightarrow 2 p$ transitions were evaluated for Z up to 20 including finite-nuclear-mass effects; the corresponding lifetimes were also determined [14]. The multiconfiguration Hartree-Fock method was used in [23] to calculate wave functions in the infinite-nuclear-mass limit for the $1 s^{2} n s^{2} S$ ($n=2-4$) , $1 s^{2} n p^{2} P$ ($n=2$ and 3), and $1 s^{2} 3 d^{2} D$ terms of lithiumlike ions $(3 \leqslant Z \leqslant 8)$. The line strengths and transition rates were evaluated for the $2 s-2 p, 2 s-3 p, 3 s-3 p$, $2 p-3 s, 2 p-4 s, 3 p-4 s, 2 p-3 d$, and $3 p-3 d$ transitions [23]. Multiconfiguration Breit-Pauli energy levels, lifetimes, and transition data were presented by Froese Fischer et al. [27] for the lithium sequence in the range $Z \leqslant 8$. All J levels of the six lowest ${ }^{2} L$ terms, namely, those with configuration labels $2 s, 2 p, 3 s, 3 p, 3 d$, and $4 s$, were included. The nonrelativistic dipole length, velocity, and acceleration absorption oscillator strengths for the $2 s-n p(3 \leqslant Z \leqslant 9)$ transitions of the lithium isoelectronic sequence up to $Z=10$ were calculated by using the energies and the multiconfiguration wave functions obtained from a full-core-plus-correlation (FCPC) method [25]. The authors emphasized that in most cases, the f values from the length and velocity formulas were in agreement
up to the fourth or fifth digit [25]. The same method was used in Refs. [24,26] to evaluate oscillator strengths for the $2 p-n d$ ($3 \leqslant n \leqslant 9$) and $3 d-n d(4 \leqslant n \leqslant 9)$ transitions of the lithium isoelectronic sequence up to $Z=10$. Theoretical wavelengths, oscillator strengths, line strengths, and transition probabilities for the $E 1, M 1$, and $E 2$ transitions among states in the Li isoelectronic sequence were evaluated by Cheng et al. [43]. The multiconfiguration Dirac-Fock technique was used to calculate necessary energy levels and wave functions. In addition to relativistic effects arising from the Dirac Hamiltonian and the Breit operator, the authors included the Lamb shift of the $1 s, 2 s$, and $2 p_{1 / 2}$ electrons [43].

The oscillator strengths of all allowed transitions between the singly excited states of Be^{+}with principal quantum numbers up to $n=11$ were calculated within the Coulomb approximation with a Hartree-Slater core (CAHS) approach [37]. The results were subsequently combined to obtain the radiative lifetimes of the excited states. Tabulated results were given by Theodosiou [37] for the $n s, n p, n d, n f$, and $n g$ states up to $n=12$. The lifetimes of the $2 p_{1 / 2}$ and $2 p_{3 / 2}$ levels in the lithium isoelectronic sequence were computed by Theodosiou et al. [38] using the semiempirical Coulomb approximation with a Hartree-Slater core. Isoelectronic trends of line-strength data in the Li isoelectronic sequence were presented by Träbert and Curtis [64]. Those authors proposed that the decays of the $2 p_{1 / 2}$ and $2 p_{3 / 2}$ levels of Li-like ions can be used as simple-atom test beds for lifetime measurements and for the development of accurate calculations of the transition rates. The experimental data were summarized and filtered in order to obtain consistent data sets and isoelectronic trends that can be compared with theoretical predictions. The graphical presentation of line-strength data enables direct comparison and evaluation of the merit of data along extended isoelectronic sequences [64].

The energy levels of the $n s, n p_{1 / 2}, n p_{3 / 2}(n=2$ and 3$)$, $3 d_{3 / 2}$, and $3 d_{5 / 2}$ levels of Li-like ions with $Z=2-16$ were calculated by Safronova [52] using the perturbation theory method (MZ code). The Z-expansion method allowed a description of the correlation part of the energy in the first, second, and higher orders of perturbation theory. Relativistic effects were taken into account by the Breit-Pauli operator [52]. Relativistic all-order calculations of energies and matrix elements for Li and Be^{+}were presented by Blundell et al. [39]. Valence removal energies, hyperfine constants, and $E 1$ transition amplitudes were calculated for the $2 s, 2 p_{1 / 2}, 2 p_{3 / 2}$, and $3 s$ states of Li and Be^{+}. This calculation was a significant improvement over the earlier second- and third-order manybody perturbation theory (MBPT) calculations, and included an infinite subset of MBPT terms evaluated using all-order methods [39]. The nonrelativistic energies of the lithiumlike $n s$, $n d$ ($n=3,4$, and 5), and $n f(n=4$ and 5) states for $Z=3-10$ were calculated by Wang et al. [35,36] using a full-core-plus-correlation method with multiconfigurationinteraction wave functions. Relativistic and mass-polarization effects were treated as first-order perturbation corrections. The quantum-electrodynamic (QED) correction to the energy was included using an effective nuclear charge [35,36].

The dipole polarizabilities of the lithiumlike ground states, $2 s$, were calculated by Wang and Chung [33] using full-core-plus-correlation wave functions. The nonrelativistic
polarizabilities were obtained by using a variation-perturbation method. Based on the relativistic and QED corrections to the energy, the dipole polarizabilities were corrected using an oscillator strength formula [33]. The same approximation was used by Chen and Wang [65] to evaluate the quadrupole and octupole polarizabilities for the ground states of lithiumlike systems from $Z=3$ to 20 . The polarizabilities and hyperpolarizabilities of the Be^{+}ion in the $2 s$ and $2 p$ states were determined by Tang et al. [8]. Calculations were performed using two independent methods: variationally determined wave functions using Hylleraas basis set expansions and single-electron calculations utilizing a frozen-core Hamiltonian. The dynamic dipole polarizabilities for Li atoms and Be^{+}ions in the $2 s$ and $2 p$ states were calculated using the variational method with a Hylleraas basis in [9]. Corrections due to relativistic effects were also estimated. Analytic representations of the polarizabilities for frequency ranges encompassing the $n=3$ excitations were presented in Ref. [9].

In the present paper, we investigate all of the above properties of the ground and excited states of Li-like Be^{+}using the relativistic all-order method described in [1]. In particular, we evaluate excitation energies of $n s, n p, n d$, and $n f$ states with $n \leqslant 10$, reduced matrix elements, oscillator strengths, transition rates, and lifetimes for levels with $n \leqslant 9$, groundstate $E 1, E 2$, and $E 3$ static polarizabilities, and scalar and tensor polarizabilities for the $n p_{1 / 2}, n p_{3 / 2}(n=2-9), n d_{3 / 2}$, and $n d_{5 / 2} \quad(n=3-9)$ states. The scalar hyperpolarizability for the ground $2 s_{1 / 2}$ state is evaluated and compared with results of nonrelativistic calculations. We use a complete set of DF wave functions on a nonlinear grid generated using B splines [66] constrained to a spherical cavity. A cavity radius of $220 a_{0}$ is chosen to accommodate all valence orbitals with $n<13$ so we can use experimental energies for these states. The basis set consists of 70 splines of order 11 for each value of the relativistic angular quantum number κ.

II. ALL-ORDER MBPT CALCULATIONS OF ENERGIES

The energies of $n l_{j}$ states are evaluated for $n \leqslant 10$ and $l \leqslant 3$ using the single-double all-order method discussed in Ref. [67], in which all single and double excitations of DiracFock wave functions are iterated to all orders. The results of our energy calculations are summarized in Table I. Columns 2-8 of Table I give the lowest-order DF energies $E^{(\mathrm{DF})}$, the all-order SD energies in the column labeled $E^{(\mathrm{SD})}$, and the part of the third-order energies missing from $E^{(\mathrm{SD})}$ in the column labeled $E_{\text {extra }}^{(3)}$. The first-order and second-order Breit corrections $B^{(1)}$ and $B^{(2)}$ and an estimated Lamb shift contribution E_{LS} are listed in columns 5-7. The sum of these contributions, $E_{\mathrm{tot}}^{(\mathrm{SD})}$, listed in the eighth column of Table I, is the final all-order result. The Lamb shift correction for $n s$ states is estimated by scaling the $2 s$ Lamb shift (the $X_{\alpha}=2 / 3$ case) given by Sapirstein and Cheng [68] with $1 / n^{3}$. The $2 s$ Lamb shift from [68] is consistent with values found in Refs. [69,70]. For states with $l>0$, the Lamb shift is estimated to be smaller than $0.01 \mathrm{~cm}^{-1}$ using scaled Coulomb values and can be omitted at the present level of precision.

TABLE I. Energy calculated with Dirac-Fock (DF) and Breit-Dirac-Fock (BDF) potentials. Zeroth-order (DF) and (BDF), single-double Coulomb energies $E^{(\mathrm{SD})}, E^{(\mathrm{BSD})}$, $E_{\text {extra }}^{(3)}$, first-order $B^{(1)}$ and second-order Breit-Coulomb ($B^{(2)}$ and $\left.B B^{(2)}\right)$ corrections, and Lamb shift E_{LS} corrections in ${ }^{9} \mathrm{Be}^{+}$are listed. The total energies $\left(E_{\mathrm{tot}}^{(\mathrm{SD})}=E^{(\mathrm{DF})}+E^{(\mathrm{SD})}+E_{\mathrm{extra}}^{(3)}+B^{(1)}+B^{(2)}+E_{\mathrm{LS}}\right.$ and $E_{\mathrm{tot}}^{(\mathrm{BSD})}=E^{(\mathrm{BDF})}+E^{(\mathrm{BSD})}+E_{\mathrm{extra}}^{(3)}+$ $B B^{(2)}+E_{\mathrm{LS}}$) are compared with experimental energies $E_{\mathrm{NIST}}[73], \delta E=E_{\mathrm{tot}}-E_{\mathrm{NIST}}$. Units: cm^{-1}. The value of the infinite-mass Rydberg constant used to convert numerical data from a.u. to cm^{-1} is $\mathrm{Ry}=10973.7316$.

$n l j$	$E^{(\mathrm{DF})}$	$E^{(\mathrm{SD})}$	$E_{\text {extra }}^{(3)}$	$B^{(}$	$B^{(2)}$	$E_{\text {LS }}$	$E_{\text {tot }}^{(\mathrm{SD})}$	$E^{(\mathrm{BDF})}$	$E^{(\mathrm{BSD})}$	$B B^{(2)}$	$E_{\text {to }}^{\text {(}}$	$E_{\text {NIST }}$	$\delta E^{(S D)}$	$\delta E^{(\mathrm{BSD})}$
$2 s_{1 / 2}$	-146210.3	-690.27	2.45	5.64	-1.77	1.10	-146893.2	-146205.1	-690.32	-1.33	-146893.2	-146882.9	-10.3	-10.4
$2 p_{1 / 2}$	-114005.4	-959.58	4.06	5.99	-1.30	0.00	-114956.2	-114000.3	-959.52	-0.44	-114956.2	-114954.1	-2.1	-2.1
$2 p_{3 / 2}$	-113996.5	-958.77	4.05	2.88	-1.19	0.00	-114949.5	-113994.5	-958.84	-0.34	-114949.6	-114947.5	-2.0	-2.1
$3 s_{1 / 2}$	-58495.1	-161.28	0.35	1.43	-0.47	0.22	-58654.9	-58493.8	-161.30	-0.35	-58654.9	-58650.9	-3.9	-3.9
$3 p_{1 / 2}$	-50133.8	-257.80	0.98	1.87	-0.42	0.00	-50389.2	-50132.2	-257.79	-0.16	-50389.2	-50387.5	-1.7	-1.7
$3 p_{3 / 2}$	-50131.1	-257.57	0.97	0.88	-0.38	0.00	-50387.2	-50130.5	-257.59	-0.13	-50387.3	-50385.6	-1.7	-1.7
$3 d_{3 / 2}$	-48788.5	-42.99	0.41	0.02	0.00	0.00	-48831.1	-48788.5	-43.00	0.01	-48831.1	-48828.3	-2.8	-2.8
$3 d_{5 / 2}$	-48788.0	-42.99	0.41	0.00	0.00	0.00	-48830.5	-48788.0	-43.00	0.01	-48830.9	-48827.8	-2.8	-3.2
$4 s_{1 / 2}$	-31358.9	-62.14	0.11	0.57	-0.19	0.09	-31420.4	-31358.4	-62.14	-0.14	-31420.4	-31418.4	-2.0	-2.0
$4 p_{1 / 2}$	-28019.4	-105.13	0.39	0.79	-0.18	0.00	-28123.5	-28018.7	-105.13	-0.07	-28123.5	-28122.3	-1.2	-1.2
$4 p_{3 / 2}$	-28018.3	-105.04	0.39	0.37	-0.16	0.00	-28122.7	-28018.0	-105.05	-0.06	-28122.7	-28121.5	-1.2	-1.2
$4 d_{3 / 2}$	-27443.8	-19.68	0.18	0.00	0.00	0.00	-27463.3	-27443.8	-19.68	0.00	-27463.3	-27461.7	-1.6	-1.6
$4 d_{5 / 2}$	-27443.5	-19.68	0.18	0.00	0.00	0.00	-27463.0	-27443.5	-19.68	0.00	-27463.2	-27461.4	-1.6	-1.8
$4 f_{5 / 2}$	-27434.6	-3.38	0.04	0.00	0.00	0.00	-27437.9	-27434.6	-3.38	0.00	-27438.0	-27436.3	-1.7	-1.7
$4 f_{7 / 2}$	-27434.5	-3.37	0.04	0.00	0.00	0.00	-27437.8	-27434.5	-3.38	0.00	-27437.8	-27436.1	-1.7	-1.7
$5 s_{1 / 2}$	-19518.9	-30.31	0.05	0.29	-0.09	0.04	-19548.9	-19518.7	-30.31	-0.07	-1954	-19547.7	-1.2	-1.2
$5 p_{1 / 2}$	-17859.6	-52.94	0.19	0.40	-0.09	0.00	-17912.0	-17859.2	-52.94	-0.04	-17912.0	-17911.2	-0.8	-0.8
$5 p_{3 / 2}$	-17859.0	-52.89	0.19	0.2	-0.08	0.0	-17911.6	-17858.9	-52.	-0.03	-1791	-17910.8	-0.8	-0.8
$5 d_{3 / 2}$	-17563.4	-10.44	0.09	0.00	0.00	0.00	-17573.8	-17563.4	-10.44	0.00	-17573.8	-17572.7	-1.0	-1.0
$5 d_{5 / 2}$	-17563.3	-10.43	0.09	0.00	0.00	0.00	-17573.6	-17563.3	-10.44	0.00	-17573.7	-17572.6	-1.0	-1.1
$5 f_{5 / 2}$	-17558.1	-1.93	0.02	0.00	0.00	0.00	-17560.1	-17558.1	-1.93	0.00	-17560.1	-17559.0	-1.0	-1.1
$5 f_{7 / 2}$	-17558.1	-1.93	0.02	0.00	0.00	0.00	-17560.0	-17558.1	-1.93	0.00	-17560.0	-17558.9	-1.0	-1.1
$6 s_{1 / 2}$	-13310.4	-17.02	0.03	0.15	-0.05	0.02	-13327.3	-13310.3	-17.02	-0.04	-13327.3	-13326.4	-0.8	-0.8
$6 p_{1 / 2}$	-12368.1	-30.34	0.11	0.24	-0.05	0.00	-12398.2	-12367.9	-30.34	-0.02	-12398.	-12397.5	-0.7	-0.7
$6 p_{3 / 2}$	-12367.8	-30.31	0.11	0.11	-0.05	0.00	-12397.9	-12367.7	-30.32	-0.02	-12397.9	-12397.3	-0.7	-0.7
$6 d_{3 / 2}$	-12196.4	-6.15	0.06	0.00	0.00	0.00	-12202.5	-12196.4	-6.15	0.00	-12202.	-12201.7	-0.8	-0.8
$6 d_{5 / 2}$	-12196.3	-6.15	0.06	0.00	0.00	0.00	-12202.4	-12196.3	-6.15	0.00	-12202	-12201.7	-0.7	-0.8
$6 f_{5 / 2}$	-12193.2	-1.18	0.01	0.00	0.00	0.00	-12194.3	-12193.2	-1.18	0.00	-12194	-12193.7	-0.7	-0.7
$6 f_{7 / 2}$	-12193.1	-1.18	0.01	0.00	0.00	0.00	-12194.3	-12193	-1.18	0.00	-1219	-12193.6	-0.6	-0.7
$7 s_{1 / 2}$	-9654.3	-10.49	0.02	0.09	-0.03	0.02	-9664.7	-9654.2	-10.49	-0.02	-9664.	-9664.1	-0.6	-0.6
$7 p_{1 / 2}$	-9068.6	-18.99	0.07	0.15	-0.03	0.0	-9087.4	-9068.	-18.99	-0.01	-9087	-9086.9	-0.5	-0.5
$7 p_{3 / 2}$	-9068.4	-18.97	0.07	0.07	-0.03	0.00	-9087.2	-9068.3	-18.97	-0.01	-9087	-9086.7	-0.5	-0.5
$7 d_{3 / 2}$	-8960.3	-3.92	0.04	0.00	0.00	0.00	-8964.2	-8960.3	-3.92	0.00	-8964.2	-8963.7	-0.5	-0.5
$7 d_{5 / 2}$	-8960.3	-3.92	0.00	0.00	0.00	0.00	-8964.2	-8960.3	-3.92	0.00	-8964	-8963.7	-0.5	-0.5
$7 f_{5 / 2}$	-8958.2	-0.77	0.01	0.00	0.00	0.00	-8959.0	-8958.2	-0.77	0.00	-8959	-8958.5	-0.4	-0.4
$7 f_{7 / 2}$	-8958.2	-0.76	0.01	0.00	0.00	0.00	-8959.0	-8958.2	-0.77	0.00	-8959	-8958.5	-0.4	-0.4
$8 s_{1 / 2}$	-7321.3	-6.92	0.01	0.07	-0.02	0.00	-7328.2	-7321.2	-6.92	-0.02	-7328.2	-7327.7	-0.5	-0.5
$8 p_{1 / 2}$	-6932.6	-12.66	0.05	0.09	-0.02	0.00	-6945.2	-6932.5	-12.66	-0.01	-6945.2	-6944.8	-0.4	-0.4
$8 p_{3 / 2}$	-6932.5	-12.65	0.05	0.04	-0.02	0.00	-6945.1	-6932.5	-12.65	-0.01	-6945.	-6944.7	-0.4	-0.4
$8 d_{3 / 2}$	-6860.1	-2.64	0.02	0.00	0.00	0.00	-6862.7	-6860.1	-2.6	0.00	-6862.7	-6862.3	-0.4	-0.4
$8 d_{5 / 2}$	-6860.1	-2.64	0.00	0.00	0.00	0.00	-6862.7	-6860.1	-2.64	0.00	-6862.7	-6862.3	-0.4	-0.4
$8 f_{5 / 2}$	-6858.6	-0.52	0.01	0.00	0.00	0.00	-6859.2	-6858.6	-0.52	0.00	-6859.2	-6858.7	-0.4	-0.4
$8 f_{7 / 2}$	-6858.6	-0.52	0.01	0.00	0.00	0.00	-6859.1	-6858.6	-0.52	0.00	-6859.	-6858.7	-0.4	-0.4
$9 s_{1 / 2}$	-5742.2	-4.81	0.01	0.04	-0.02	0.00	-5746.9	-5742.1	-4.81	-0.01	-5746.9	-5746.6	-0.4	-0.4
$9 p_{1 / 2}$	-5471.2	-8.87	0.03	0.07	-0.02	0.00	-5479.9	-5471.1	-8.87	-0.01	-5479.9	-5479.6	-0.3	-0.3
$9 p_{3 / 2}$	-5471.1	-8.86	0.03	0.02	-0.02	0.00	-5479.9	-5471.0	-8.86	-0.01	-5479.9	-5479.5	-0.3	-0.3
$9 d_{3 / 2}$	-5420.2	-1.86	0.00	0.00	0.00	0.00	-5422.1	-5420.2	-1.86	0.00	-5422.	-5421.7	-0.3	-0.3
$9 d_{5 / 2}$	-5420.2	-1.86	0.00	0.00	0.00	0.00	-5422.0	-5420.2	-1.86	0.00	-5422.0	-5421.7	-0.3	-0.3
$9 f_{5 / 2}$	-5419.2	-0.37	0.00	0.00	0.00	0.00	-5419.5	-5419.2	-0.37	0.00	-5419.5	-5419.2	-0.3	-0.3
$9 f_{7 / 2}$	-5419.2	-0.37	0.00	0.00	0.00	0.00	-5419.5	-5419.2	-0.37	0.00	-5419.5	-5419.2	-0.3	-0.3
$10 s_{1 / 2}$	-4623.9	-3.48	0.00	0.02	-0.02	0.00	-4627.3	-4623.8	-3.48	-0.01	-4627.3	-4627.0	-0.3	-0.3
$10 p_{1 / 2}$	-4427.4	-6.49	0.02	0.04	-0.02	0.00	-4433.9	-4427.4	-6.49	-0.01	-4433.9	-4433.6	-0.3	-0.3
$10 p_{3 / 2}$	-4427.4	-6.46	0.02	0.02	-0.02	0.00	-4433.8	-4427.4	-6.46	-0.01	-4433.8	-4433.5	-0.3	-0.3
$10 f_{5 / 2}$	-4389.5	-0.27	0.00	0.00	0.00	0.00	-4389.8	-4389.5	-0.27	0.00	-4389.8	-4389.5	-0.3	-0.3
$10 f_{7 / 2}$	-4389.5	-0.27	0.00	0.00	0.00	0.00	-4389.8	-4389.5	-0.27	0.00	-4389.8	-4389.5	-0.3	-0.3

As expected, the largest correlation contribution to the valence energy comes from the second-order term $E^{(2)}$. Therefore, we calculate this term with higher numerical accuracy. The second-order energy includes partial waves up to $l_{\text {max }}=8$ and is extrapolated to account for contributions from higher partial waves (see, for example, Refs. [71,72]). As an example of the convergence of $E^{(2)}$ with the number of partial waves l, consider the $2 s$ state. Calculations of $E^{(2)}$ with $l_{\max }=6$ and 8 yield $E^{(2)}(2 s)=-637.021$ and $-638.021 \mathrm{~cm}^{-1}$, respectively. Extrapolation of these calculations yields -638.814 and $-638.873 \mathrm{~cm}^{-1}$, respectively. Thus, in this particular case, we have a numerical uncertainty in $E^{(2)}(2 s)$ of $0.059 \mathrm{~cm}^{-1}$. It should be noted that the $1.85 \mathrm{~cm}^{-1}$ contribution from partial waves with $l>8$ for the $2 s$ state is the largest among all states considered in Table I; a smaller ($1.00 \mathrm{~cm}^{-1}$) contribution is obtained for two other $n=2$ states and much smaller contributions ($0.01-0.32 \mathrm{~cm}^{-1}$) were found for the $n=3$ states.

Owing to the numerical complexity, we restrict $l \leqslant l_{\max }=6$ in all third-order and all-order calculations. As noted above, the second-order contribution dominates; therefore, we can use the extrapolated values of $E^{(2)}$ described above to account for the contributions of the higher partial waves. Since the asymptotic l dependences of the second- and third-order energies are similar (both fall off as l^{-4}), we use the secondorder remainder as a guide to estimate the remainder in the third-order contribution. The term $E_{\text {extra }}^{(3)}$ in Table I, which accounts for that part of the third-order MBPT energy missing from the SD expression for the energy, is smaller than the total third-order contribution $E^{(3)}$ by an order of magnitude for the states considered here.

Recommended energies from the NIST database [73] are given in the column labeled $E_{\text {NIST }}$. Differences between our all-order calculations and experimental data, $\delta E^{(\mathrm{SD})}=$ $E_{\mathrm{tot}}^{(\mathrm{SD})}-E_{\mathrm{NIST}}$, are given in the $\delta E^{(\mathrm{SD})}$ column of Table I.

The first-order and second-order Breit corrections $B^{(1)}$ and $B^{(2)}$ given in columns 5 and 6 of Table I are obtained with the Dirac-Fock potential where the Breit interaction was omitted. We evaluate Coulomb and Breit-Coulomb corrections through second order perturbatively in such approach. In the second more accurate approach, we include both Coulomb and Breit contributions to the Breit-Dirac-Fock potential and then treat the residual Breit and Coulomb interactions perturbatively. In this approximation the first-order Breit correction $B^{(1)}$ is equal to zero. The value of the second-order Breit corrections $B B^{(2)}$ given in column 11 of Table I is smaller than the value of $B^{(2)}$ (column 6) because the random-phase-approximation (RPA) diagram was removed from the $B^{(2)}$ correction (see Sec. III of Ref. [74] for details). This RPA contribution is explicitly included by the use of the BDF potential. We find that the difference between the all-order contributions calculated with DF and BDF potentials is very small, less than 0.01%. We did not recalculate the extra third-order correction since its contribution is small. The largest difference between the two approximations is in the Breit correction as well as in the DF and $\operatorname{BDF}\left(E^{(\mathrm{DF})}\right.$ and $\left.E^{(\mathrm{BDF})}\right)$ energies.

The three terms $E^{(\mathrm{BDF})}, E^{(\mathrm{BSD})}$, and $B B^{(2)}$ evaluated using the Breit-Dirac-Fock potential are displayed in columns 8, 9 , and 10 of Table I. The final all-order result $E_{\mathrm{tot}}^{(\mathrm{BSD})}$ given in
column 11 of of Table I is obtained as a sum of the $E^{(\mathrm{BDF})}$, $E^{(\mathrm{BSD})}, B B^{(2)}, E_{\text {extra }}^{(3)}$, and E_{LS} terms. The differences between our the all-order calculations and experimental data, $\delta E^{(\mathrm{BSD})}=$ $E_{\text {tot }}^{(\mathrm{BSD})}-E_{\text {NIST }}$, are given in the $\delta E^{(\mathrm{SD})}$ column of Table I. We find that the higher-order Breit corrections that are included using the BDF potential are negligible for Be^{+}, since the results given in two last columns are almost identical.

III. ELECTRIC-DIPOLE MATRIX ELEMENTS, OSCILLATOR STRENGTHS, TRANSITION RATES, AND LIFETIMES IN Li-LIKE Be ${ }^{+}$

A. Electric-dipole matrix elements

In Table II, we list our recommended values for $190 E 1$ $n s-n^{\prime} p, n p-n^{\prime} d$, and $n f-n^{\prime} d$ transitions. The absolute values in atomic units $\left(a_{0} e\right)$ are given in all cases. We refer to these values as the recommended matrix elements. We note that we have calculated $489 E 1$ matrix elements that included all dipole transitions between the $n s, n p_{j}, n d_{j}$, and $n f_{j}$, states with $n \leqslant 10$ for our calculation of the polarizabilities and hyperpolarizability. We list only the matrix elements that give significant contributions to the atomic properties calculated in the other sections. To evaluate the uncertainties of these values, we carried out several calculations by different methods of increasing accuracy: lowest-order DF, secondorder relativistic many-body perturbation theory (RMBPT), third-order RMBPT, and all-order methods. The many-body perturbation theory calculations are carried out following the method described in Ref. [75]. The third-order RMBPT includes random-phase-approximation terms iterated to all orders, Brueckner orbital (BO) corrections, the structural radiation, and normalization terms (see [75] for definitions of these terms). Comparisons of the values obtained in different approximations allow us to evaluate the sizes of the second-, third-, and higher-order correlation corrections.

The evaluation of the uncertainty of the matrix elements in this approach was described in detail in [76-78]. Four all-order calculations were carried out. Two of these were $a b$ initio all-order calculations with (SDpT) and without (SD) the inclusion of the partial triple excitations. We have developed some general criteria to establish the final values for all transitions and evaluate uncertainties owing to the need to analyze a very large number of transitions. The scaling procedure and evaluation of the uncertainties are described in detail in [76-78]. We note that it is a rather complicated procedure that involves complete recalculation of the matrix elements with new values of the valence excitation coefficients. The scaling factors depend on the correlation energy given by the particular calculation and are different for the SD and SDpT calculations; therefore these values have to be scaled separately. The results were listed in Refs. [76-78] with the subscript "sc." To limit the size of the table, we displayed here only the final results $Z^{(\text {final })}$ with uncertainties.

The values of the uncertainties in Li -like Be^{+}are smaller than the values of the uncertainties in Ca^{2+} [76], K-like Sc^{2+} [78], Rb -like Sr^{+}[79], and neutral Rb [77], as expected. The relative uncertainties of the final values are to be $0.01 \%-$ 0.001%. We note that some other contributions (such as Breit and QED corrections) may start to contribute at this level.

TABLE II. Recommended values of the reduced electric-dipole matrix elements in $\mathrm{Li}-\mathrm{like} \mathrm{Be}^{+}$in atomic units. Final recommended values and their uncertainties are given in the $Z^{\text {final }}$ column.

Transition	$Z^{\text {final }}$								
$2 s-2 p_{1 / 2}$	1.8506(2)	$3 s-2 p_{1 / 2}$	0.8675(1)	$4 s-2 p_{1 / 2}$	0.2838(0)	$5 s-2 p_{1 / 2}$	0.1597(0)	$6 s-2 p_{1 / 2}$	0.1079(0)
$2 s-2 p_{3 / 2}$	2.6172(3)	$3 s-2 p_{3 / 2}$	1.2271(3)	$4 s-2 p_{3 / 2}$	0.4013(1)	$5 s-2 p_{3 / 2}$	0.2258(1)	$6 s-2 p_{3 / 2}$	0.1526(0)
$2 s-3 p_{1 / 2}$	0.4347(0)	$3 s-3 p_{1 / 2}$	4.6951(3)	$4 s-3 p_{1 / 2}$	2.1611(3)	$5 s-3 p_{1 / 2}$	0.6810(1)	$6 s-3 p_{1 / 2}$	0.3774(0)
$2 s-3 p_{3 / 2}$	0.6145(1)	$3 s-3 p_{3 / 2}$	6.6400(4)	$4 s-3 p_{3 / 2}$	3.0568(7)	$5 s-3 p_{3 / 2}$	0.9632(1)	$6 s-3 p_{3 / 2}$	0.5338(1)
$2 s-4 p_{1 / 2}$	0.2403(0)	$3 s-4 p_{1 / 2}$	0.7008(0)	$4 s-4 p_{1 / 2}$	8.6922(6)	$5 s-4 p_{1 / 2}$	3.9845(4)	$6 s-4 p_{1 / 2}$	1.2201(1)
$2 s-4 p_{3 / 2}$	0.3397(0)	$3 s-4 p_{3 / 2}$	0.9907(3)	$4 s-4 p_{3 / 2}$	12.2927(8)	$5 s-4 p_{3 / 2}$	5.636(1)	$6 s-4 p_{3 / 2}$	1.7257(2)
$2 s-5 p_{1 / 2}$	0.1590(1)	$3 s-5 p_{1 / 2}$	0.3941 (0)	$4 s-5 p_{1 / 2}$	1.0130 (1)	$5 s-5 p_{1 / 2}$	13.8507(9)	$6 s-5 p_{1 / 2}$	6.3388(7)
$2 s-5 p_{3 / 2}$	0.2249(0)	$3 s-5 p_{3 / 2}$	0.5572(0)	$4 s-5 p_{3 / 2}$	$1.4319(5)$	$5 s-5 p_{3 / 2}$	19.588(1)	$6 s-5 p_{3 / 2}$	8.966(2)
$2 s-6 p_{1 / 2}$	0.1159(1)	$3 s-6 p_{1 / 2}$	0.2641 (1)	$4 s-6 p_{1 / 2}$	0.5688(2)	$5 s-6 p_{1 / 2}$	1.3737(3)	$6 s-6 p_{1 / 2}$	20.172(1)
$2 s-6 p_{3 / 2}$	0.1639(1)	$3 s-6 p_{3 / 2}$	0.3734(1)	$4 s-6 p_{3 / 2}$	0.8042(1)	$5 s-6 p_{3 / 2}$	1.9416(2)	$6 s-6 p_{3 / 2}$	28.527(2)
$2 s-7 p_{1 / 2}$	0.0897 (1)	$3 s-7 p_{1 / 2}$	$0.1948(1)$	$4 s-7 p_{1 / 2}$	0.3813(2)	$5 s-7 p_{1 / 2}$	0.7669(3)	$6 s-7 p_{1 / 2}$	1.7844(3)
$2 s-7 p_{3 / 2}$	0.1268(1)	$3 s-7 p_{3 / 2}$	0.2754(1)	$4 s-7 p_{3 / 2}$	0.5391 (1)	$5 s-7 p_{3 / 2}$	1.0842(1)	$6 s-7 p_{3 / 2}$	2.5221(4)
$2 s-8 p_{1 / 2}$	0.0722(1)	$3 s-8 p_{1 / 2}$	0.1522(1)	$4 s-8 p_{1 / 2}$	0.2818(2)	$5 s-8 p_{1 / 2}$	0.5120(4)	$6 s-8 p_{1 / 2}$	0.9892(6)
$2 s-8 p_{3 / 2}$	0.1020(1)	$3 s-8 p_{3 / 2}$	$0.2152(1)$	$4 s-8 p_{3 / 2}$	0.3985(2)	$5 s-8 p_{3 / 2}$	0.7239(3)	$6 s-8 p_{3 / 2}$	1.3985 (3)
$2 s-9 p_{1 / 2}$	0.0598(1)	$3 s-9 p_{1 / 2}$	0.1236(2)	$4 s-9 p_{1 / 2}$	0.2209(4)	$5 s-9 p_{1 / 2}$	0.3777 (7)	$6 s-9 p_{1 / 2}$	0.657(1)
$2 s-9 p_{3 / 2}$	0.0845(1)	$3 s-9 p_{3 / 2}$	0.1748(1)	$4 s-9 p_{3 / 2}$	0.3124(2)	$5 s-9 p_{3 / 2}$	0.5344(4)	$6 s-9 p_{3 / 2}$	0.9290 (5)
$2 p_{1 / 2}-3 d_{3 / 2}$	2.5084(0)	$2 p_{1 / 2}-4 d_{3 / 2}$	0.9608(1)	$2 p_{1 / 2}-5 d_{3 / 2}$	0.5596	$2 p_{1 / 2}-6 d_{3 / 2}$	0.3837	$2 p_{1 / 2}-7 d_{3 / 2}$	0.2867
$2 p_{3 / 2}-3 d_{3 / 2}$	1.1219(1)	$2 p_{3 / 2}-4 d_{3 / 2}$	0.4297(1)	$2 p_{3 / 2}-5 d_{3 / 2}$	0.2503	$2 p_{3 / 2}-6 d_{3 / 2}$	0.1716	$2 p_{3 / 2}-7 d_{3 / 2}$	0.1282
$2 p_{3 / 2}-3 d_{5 / 2}$	3.3657(2)	$2 p_{3 / 2}-4 d_{5 / 2}$	1.2892(2)	$2 p_{3 / 2}-5 d_{5 / 2}$	0.7508	$2 p_{3 / 2}-6 d_{5 / 2}$	0.5148	$2 p_{3 / 2}-7 d_{5 / 2}$	0.3846
$3 p_{1 / 2}-3 d_{3 / 2}$	5.8534(7)	$3 p_{1 / 2}-4 d_{3 / 2}$	3.8426(3)	$3 p_{1 / 2}-5 d_{3 / 2}$	1.6090(1)	$3 p_{1 / 2}-6 d_{3 / 2}$	0.9661 (0)	$3 p_{1 / 2}-7 d_{3 / 2}$	0.6736(0)
$3 p_{3 / 2}-3 d_{3 / 2}$	2.6177(3)	$3 p_{3 / 2}-4 d_{3 / 2}$	1.7187(3)	$3 p_{3 / 2}-5 d_{3 / 2}$	$0.7196(1)$	$3 p_{3 / 2}-6 d_{3 / 2}$	0.4321(0)	$3 p_{3 / 2}-7 d_{3 / 2}$	0.3012(0)
$3 p_{3 / 2}-3 d_{5 / 2}$	7.853(1)	$3 p_{3 / 2}-4 d_{5 / 2}$	5.1560(8)	$3 p_{3 / 2}-5 d_{5 / 2}$	2.1588(2)	$3 p_{3 / 2}-6 d_{5 / 2}$	1.2962(0)	$3 p_{3 / 2}-7 d_{5 / 2}$	0.9038(0)
$4 p_{1 / 2}-3 d_{3 / 2}$	0.9972(0)	$4 p_{1 / 2}-4 d_{3 / 2}$	12.0562(8)	$4 p_{1 / 2}-5 d_{3 / 2}$	5.4853(5)	$4 p_{1 / 2}-6 d_{3 / 2}$	2.3276(2)	$4 p_{1 / 2}-7 d_{3 / 2}$	1.4058(1)
$4 p_{3 / 2}-3 d_{3 / 2}$	0.4458(1)	$4 p_{3 / 2}-4 d_{3 / 2}$	5.3917(4)	$4 p_{3 / 2}-5 d_{3 / 2}$	$2.4536(5)$	$4 p_{3 / 2}-6 d_{3 / 2}$	1.0410(2)	$4 p_{3 / 2}-7 d_{3 / 2}$	0.6288(1)
$4 p_{3 / 2}-3 d_{5 / 2}$	1.3375(2)	$4 p_{3 / 2}-4 d_{5 / 2}$	16.175(1)	$4 p_{3 / 2}-5 d_{5 / 2}$	7.360(1)	$4 p_{3 / 2}-6 d_{5 / 2}$	3.1231(4)	$4 p_{3 / 2}-7 d_{5 / 2}$	1.8863(2)
$5 p_{1 / 2}-3 d_{3 / 2}$	0.3563(0)	$5 p_{1 / 2}-4 d_{3 / 2}$	2.2833(1)	$5 p_{1 / 2}-5 d_{3 / 2}$	19.905(1)	$5 p_{1 / 2}-6 d_{3 / 2}$	7.430(1)	$5 p_{1 / 2}-7 d_{3 / 2}$	3.1418(4)
$5 p_{3 / 2}-3 d_{3 / 2}$	0.1593(0)	$5 p_{3 / 2}-4 d_{3 / 2}$	1.0208(2)	$5 p_{3 / 2}-5 d_{3 / 2}$	8.9016(6)	$5 p_{3 / 2}-6 d_{3 / 2}$	3.3237 (9)	$5 p_{3 / 2}-7 d_{3 / 2}$	1.4052(2)
$5 p_{3 / 2}-3 d_{5 / 2}$	0.4779(0)	$5 p_{3 / 2}-4 d_{5 / 2}$	$3.0628(5)$	$5 p_{3 / 2}-5 d_{5 / 2}$	26.705(2)	$5 p_{3 / 2}-6 d_{5 / 2}$	9.971(2)	$5 p_{3 / 2}-7 d_{5 / 2}$	4.2158(6)
$6 p_{1 / 2}-3 d_{3 / 2}$	0.2013(1)	$6 p_{1 / 2}-4 d_{3 / 2}$	0.8078(2)	$6 p_{1 / 2}-5 d_{3 / 2}$	4.0169(4)	$6 p_{1 / 2}-6 d_{3 / 2}$	29.455(2)	$6 p_{1 / 2}-7 d_{3 / 2}$	9.6778(2)
$6 p_{3 / 2}-3 d_{3 / 2}$	0.0900(0)	$6 p_{3 / 2}-4 d_{3 / 2}$	0.3612(0)	$6 p_{3 / 2}-5 d_{3 / 2}$	1.7959(1)	$6 p_{3 / 2}-6 d_{3 / 2}$	13.1728(9)	$6 p_{3 / 2}-7 d_{3 / 2}$	4.3290 (6)
$6 p_{3 / 2}-3 d_{5 / 2}$	0.2701(1)	$6 p_{3 / 2}-4 d_{5 / 2}$	1.0837(1)	$6 p_{3 / 2}-5 d_{5 / 2}$	5.3883(1)	$6 p_{3 / 2}-6 d_{5 / 2}$	39.518(2)	$6 p_{3 / 2}-7 d_{5 / 2}$	12.9870(8)
$4 f_{7 / 2}-3 d_{5 / 2}$	9.4461(4)	$4 f_{5 / 2}-3 d_{5 / 2}$	2.1122(1)	$4 f_{5 / 2}-3 d_{3 / 2}$	7.9031(4)	$5 f_{7 / 2}-3 d_{5 / 2}$	3.0718	$6 f_{7 / 2}-3 d_{5 / 2}$	1.6663(6)
$4 f_{7 / 2}-4 d_{5 / 2}$	14.707(1)	$4 f_{5 / 2}-4 d_{5 / 2}$	3.2885(3)	$4 f_{5 / 2}-4 d_{3 / 2}$	12.304(1)	$5 f_{7 / 2}-4 d_{5 / 2}$	12.9685(1)	$6 f_{7 / 2}-4 d_{5 / 2}$	4.7877(3)
$4 f_{7 / 2}-5 d_{5 / 2}$	1.5595(0)	$4 f_{5 / 2}-5 d_{5 / 2}$	0.3487(0)	$4 f_{5 / 2}-5 d_{3 / 2}$	1.3048(0)	$5 f_{7 / 2}-5 d_{5 / 2}$	27.790(2)	$6 f_{7 / 2}-5 d_{5 / 2}$	17.1194(1)
$4 f_{7 / 2}-6 d_{5 / 2}$	0.5297(1)	$4 f_{5 / 2}-6 d_{5 / 2}$	0.1184(0)	$4 f_{5 / 2}-6 d_{3 / 2}$	0.4432(1)	$5 f_{7 / 2}-6 d_{5 / 2}$	3.4248(1)	$6 f_{7 / 2}-6 d_{5 / 2}$	43.316(3)
$4 f_{7 / 2}-7 d_{5 / 2}$	0.2873(1)	$4 f_{5 / 2}-7 d_{5 / 2}$	0.0642(0)	$4 f_{5 / 2}-7 d_{3 / 2}$	0.2403(1)	$5 f_{7 / 2}-7 d_{5 / 2}$	1.1788(1)	$6 f_{7 / 2}-7 d_{5 / 2}$	5.8748(4)
$4 f_{7 / 2}-8 d_{5 / 2}$	0.1888(1)	$4 f_{5 / 2}-8 d_{5 / 2}$	0.0422(0)	$4 f_{5 / 2}-8 d_{3 / 2}$	0.1580(1)	$5 f_{7 / 2}-8 d_{5 / 2}$	0.6406(2)	$6 f_{7 / 2}-8 d_{5 / 2}$	2.0345(5)
$4 f_{7 / 2}-9 d_{5 / 2}$	0.1375(1)	$4 f_{5 / 2}-9 d_{5 / 2}$	0.0307(0)	$4 f_{5 / 2}-9 d_{3 / 2}$	0.1151(1)	$5 f_{7 / 2}-9 d_{5 / 2}$	0.4209(2)	$6 f_{7 / 2}-9 d_{5 / 2}$	1.1060(5)

The present uncertainties represent our best estimate of the uncertainty of the Coulomb correlation corrections. Our final results and their uncertainties given in Table II are used to calculate the recommended values of the transition rates, oscillator strengths, and lifetimes as well as to evaluate the uncertainties of these results.

B. Transition rates, oscillator strengths, and line strengths

We combine recommended NIST energies [73] and our final values of the matrix elements listed in Table II to calculate transition rates A_{r} and oscillator strengths f. The transition rates are calculated using

$$
\begin{equation*}
A_{a b}=\frac{2.02613 \times 10^{18}}{\lambda^{3}} \frac{S}{2 j_{a}+1} \mathrm{~s}^{-1} \tag{1}
\end{equation*}
$$

where the wavelength λ is in \AA and the line strength $S=\left(Z^{(\text {final })}\right)^{2}$ is in atomic units.

Most of the previous results presented for the transition rates, oscillator strengths, and line strengths in Be^{+}were obtained in nonrelativistic approximations [14,18,24-27,29,37,38,48,49,53,54,57,62]. A fraction of those results were used in a recently published compilation [63]. In order to compare our results with recommended NIST values of the transition rates, oscillator strengths, and line strengths for Be^{+}, we average over j and j^{\prime} our $A_{r}\left(n l j, n^{\prime} l^{\prime} j^{\prime}\right)$, $f\left(n l j, n^{\prime} l^{\prime} j^{\prime}\right)$, and $S\left(n l j, n^{\prime} l^{\prime} j^{\prime}\right)$ results obtained in a relativistic approximation. We obtain 190 averaged transitions instead of 489 transitions with fixed j. The transition rates, oscillator strengths, and line strengths averaged over j are listed in Table III. In this table, we display the same transitions that were listed in the NIST compilation [63]. The relative

TABLE III. Transition rates $A_{r}\left(\mathrm{~s}^{-1}\right)$, oscillator strengths (f), and line strengths S (a.u.) for transitions in Be^{+}calculated using our recommended values of reduced electric-dipole matrix elements $Z^{(\text {final })}$ and their uncertainties. Our relativistic values are averaged over j. The relative uncertainties in the values of transition rates, oscillator strengths, and line strengths are the same. They are listed in the column labeled "Unc." in percentages. Numbers in brackets represent powers of 10 . Wavelengths $\lambda(\AA)$ are from NIST data [63].

Transitions	$\begin{gathered} \lambda \\ (\AA) \end{gathered}$	$\begin{gathered} A_{r} \\ \left(\mathrm{~s}^{-1}\right) \end{gathered}$	f	$\begin{gathered} S \\ \text { (a.u.) } \end{gathered}$	Unc. (\%)	Transitions	$\begin{gathered} \lambda \\ (\AA) \end{gathered}$	$\begin{gathered} A_{r} \\ \left(\mathrm{~s}^{-1}\right) \end{gathered}$	f	$\begin{gathered} S \\ (\text { a.u. }) \end{gathered}$	Unc. (\%)
$2^{2} S-2{ }^{2} P$	3131.5	1.130[8]	4.983[-1]	1.027[1]	0.015	$2{ }^{2} P-7{ }^{2} D$	943.52	5.947[7]	$1.323[-2]$	$2.465[-1]$	0.036
$2{ }^{2} S-3{ }^{2} P$	1036.3	1.719[8]	8.305[-2]	5.666[-1]	0.027	$2{ }^{2} P-8{ }^{2} D$	925.18	3.915[7]	8.372[-3]	1.530[-1]	0.045
$2{ }^{2} S-4^{2} P$	842.03	9.793[7]	$3.123[-2]$	$1.731[-1]$	0.015	$2^{2} P-9^{2} D$	913.01	$2.716[7]$	5.656[-3]	$1.020[-1]$	0.058
$2{ }^{2} S-5^{2} P$	775.36	5.497[7]	1.486[-2]	7.586[-2]	0.033	$3{ }^{2} P-3{ }^{2} D$	64177	7.879[4]	8.109[-2]	1.028[2]	0.014
$2{ }^{2} S-6{ }^{2} P$	743.57	3.310[7]	8.229[-3]	4.029[-2]	0.078	$3{ }^{2} P-4^{2} D$	4362.1	1.082[8]	5.141[-1]	4.430[1]	0.025
$2{ }^{2} S-7{ }^{2} P$	725.71	2.131[7]	5.049[-3]	2.413[-2]	0.093	$3{ }^{2} P-5^{2} D$	3047.5	5.560[7]	$1.290[-1]$	7.767[0]	0.013
$2{ }^{2} S-8{ }^{2} P$	714.60	$1.445[7]$	$3.319[-3]$	1.561[-2]	0.126	$3{ }^{2} P-6{ }^{2} D$	2618.9	3.159[7]	5.414[-2]	2.800[0]	0.007
$2{ }^{2} S-9^{2} P$	707.20	$1.023[7]$	$2.301[-3]$	1.072[-2]	0.184	$3{ }^{2} P-7{ }^{2} D$	2414.1	1.960[7]	$2.855[-2]$	1.361 [0]	0.007
$3{ }^{2} S-3{ }^{2} P$	12096	1.261[7]	8.301[-1]	6.613[1]	0.015	$3{ }^{2} P-8{ }^{2} D$	2297.6	1.300[7]	1.714[-2]	7.779[-1]	0.007
$3{ }^{2} S-4{ }^{2} P$	3275.6	1.415[7]	6.828[-2]	1.473[0]	0.040	$4{ }^{2} P-4{ }^{2} D$	151450	2.544[4]	1.458[-1]	4.361[2]	0.014
$3{ }^{2} S-5^{2} P$	2454.6	$1.064[7]$	2.882[-2]	4.658[-1]	0.009	$4{ }^{2} P-5^{2} D$	9479.4	2.148[7]	$4.822[-1]$	9.029[1]	0.025
$4{ }^{2} S-4{ }^{2} P$	30326	2.742[6]	$1.135[0]$	2.266[2]	0.015	$4{ }^{2} P-6{ }^{2} D$	6281.4	1.329[7]	$1.310[-1]$	1.626[1]	0.014
$4{ }^{2} S-5^{2} P$	7403.3	2.561[6]	6.312[-2]	3.076[0]	0.041	$4{ }^{2} P-7{ }^{2} D$	5219.7	8.448[6]	5.752[-2]	5.929[0]	0.014
$5{ }^{2} S-5^{2} P$	61090	8.523[5]	1.431[0]	5.755[2]	0.015	$4{ }^{2} P-8{ }^{2} D$	4703.8	5.659[6]	3.128[-2]	2.907[0]	0.014
$2{ }^{2} P-3{ }^{2} S$	1776.2	4.082[8]	6.437[-2]	2.259[0]	0.027	$5^{2} P-5^{2} D$	295600	9.323[3]	$2.036[-1]$	1.189[3]	0.014
$2{ }^{2} P-4{ }^{2} S$	1197.2	1.427[8]	$1.022[-2]$	$2.415[-1]$	0.027	$5^{2} P-6{ }^{2} D$	17511	6.247[6]	$4.788[-1]$	1.657[2]	0.028
$2{ }^{2} P-5{ }^{2} S$	1048.2	6.729[7]	3.694[-3]	7.649[-2]	0.042	$5^{2} P-7{ }^{2} D$	11174	4.299[6]	1.342[-1]	2.962[1]	0.014
$2{ }^{2} P-6{ }^{2} S$	984.03	3.714[7]	$1.797[-3]$	$3.493[-2]$	0.042	$5^{2} P-8{ }^{2} D$	9050.8	2.940[6]	6.018[-2]	1.076[1]	0.025
$2^{2} P-7{ }^{2} S$	949.80	2.270[7]	$1.023[-3]$	1.919[-2]	0.045	$3{ }^{2} D-4^{2} P$	4829.5	8.941[6]	1.875[-2]	2.982[0]	0.024
$3{ }^{2} P-4{ }^{2} S$	5272.1	9.690[7]	$1.346[-1]$	1.401[1]	0.027	$3^{2} D-5^{2} P$	3234.5	3.800[6]	$3.575[-3]$	3.807[-1]	0.009
$3{ }^{2} P-5^{2} S$	3242.7	4.135[7]	$2.172[-2]$	1.392[0]	0.015	$4^{2} D-5^{2} P$	10468	4.600[6]	$4.535[-2]$	1.564[1]	0.024
$3{ }^{2} P-6{ }^{2} S$	2698.3	2.204[7]	8.018[-3]	4.273[-1]	0.027	$3^{2} D-4^{2} F$	4674.7	2.212[8]	1.015 [0]	1.562[2]	0.007
$3{ }^{2} P-7{ }^{2} S$	2455.7	$1.322[7]$	$3.985[-3]$	1.933[-1]	0.027	$3^{2} D-5^{2} F$	3198.1	7.307[7]	1.568[-1]	1.651[1]	0.020
$4{ }^{2} P-5^{2} S$	11660	3.042[7]	$2.068[-1]$	4.764[1]	0.027	$3^{2} D-6^{2} F$	2729.7	3.457[7]	5.408[-2]	4.860[0]	0.056
$4{ }^{2} P-6{ }^{2} S$	6758.9	1.466[7]	$3.345[-2]$	4.467[0]	0.015	$3{ }^{2} D-7^{2} F$	2508.2	1.946[7]	$2.569[-2]$	2.121 [0]	0.056
$4{ }^{2} P-7{ }^{2} S$	5417.8	8.482[6]	$1.244[-2]$	1.331[0]	0.015	$3{ }^{2} D-8^{2} F$	2382.7	1.216[7]	$1.449[-2]$	1.137[0]	0.070
$5^{2} P-6{ }^{2} S$	21807	1.177[7]	$2.798[-1]$	1.206[2]	0.027	$3{ }^{2} D-9^{2} F$	2303.7	8.156[6]	9.084[-3]	6.889[-1]	0.084
$5^{2} P-7{ }^{2} S$	12122	6.151[6]	$4.520[-2]$	1.082[1]	0.015	$4{ }^{2} F-5^{2} D$	10138	8.275[5]	9.109[-3]	4.257[0]	0.007
$2{ }^{2} P-3{ }^{2} D$	1512.4	1.106[9]	$6.320[-1]$	1.888[1]	0.013	$5^{2} F-6^{2} D$	18666	6.394[5]	2.386[-2]	2.053[1]	0.017
$2{ }^{2} P-4{ }^{2} D$	1143.0	3.759[8]	1.227[-1]	2.770[0]	0.018	$6^{2} F-7^{2} D$	30960	4.123[5]	4.232[-2]	6.040[1]	0.020
$2{ }^{2} P-5^{2} D$	1026.9	1.758[8]	4.631[-2]	$9.395[-1]$	0.038	$7{ }^{2} F-8{ }^{2} D$	47704	2.599[5]	6.334[-2]	1.393[2]	0.047
$2{ }^{2} P-6{ }^{2} D$	973.25	9.707[7]	2.298[-2]	4.416[-1]	0.031	$8{ }^{2} F-9^{2} D$	69588	1.663 [5]	8.626[-2]	2.767[2]	0.010

uncertainties in the values of the transition rates, oscillator strengths, and line strengths are the same, since all of these properties have the same dependence on the $E 1$ matrix elements. The uncertainties in percent are given in the column "Unc." of Table III. The values of the relative uncertainties are less than 0.1% for all transitions displayed in Table III. Wavelengths listed in Table III for reference are taken from Table VII of the NIST compilation [63].

We do not incorporate the recommended values of transition rates, oscillator strengths, and line strengths from [63] in Table III to save space. Comparison of those results with our results given in Table III shows excellent agreement. The difference is about $0.01 \%-0.1 \%$ for half of the transitions displayed in Table III. The difference is larger than 2% for the three transitions ($2 s-7 p, 2 s-9 p$, and $3 d-9 f$) which have the smallest values of the line strengths.

The oscillator strengths for transitions in Be^{+}calculated using Hylleraas basis functions [8] are compared with our results in Table IV. Our results for the oscillator strengths
are calculated using the recommended values of the reduced electric-dipole matrix elements $Z^{\text {(final) }}$ and their uncertainties given in Table II. Our relativistic values $f\left(n l j, n^{\prime} l^{\prime} j^{\prime}\right)$ are averaged over j and j^{\prime} to make a comparison with the results from Ref. [8]. The smallest difference is 0.0002% for the $3 d-4 f$ transition, while the largest difference (0.14%) is for the $2 s-3 p$ transition. Differences below 0.01% are observed for the $2 p-3 d$ and $2 p-4 d$ transitions. The differences are about $0.03 \%-0.07 \%$ for the $2 s-2 p, 2 p-3 s, 3 s-3 p, 3 p-3 d$, and $3 p-4 s$ transitions. These differences are in part explained by relativistic effects omitted in Ref. [8].

C. Lifetimes in Be^{+}

We calculated lifetimes of the $n s(n=3-10), n p_{j}(n=$ $2-10), n d_{j}(n=3-9)$, and $n f_{j}(n=4-9)$ states in Be^{+}using out final values of the transition rates listed in Table III. The uncertainties in the lifetime values are obtained from the uncertainties in the transition rates listed in Table III. We list

TABLE IV. Oscillator strengths (f) for transitions in Be^{+}calculated using our recommended values of reduced electric-dipole matrix elements $Z^{(\text {final })}$ and their uncertainties. Our relativistic values $f\left(n l j, n^{\prime} l^{\prime} j^{\prime}\right)$ are averaged over j and j^{\prime}. Oscillator strengths calculated using Hylleraas basis functions [8,14], FCPC [25], and MCHF [23] methods are compared with our results.

Transitions	Present	[8]	Theory
$2{ }^{2} S-2{ }^{2} P$	0.49830(7)	$0.49806736(6)$	$0.498067381(25)$ [14]
$2{ }^{2} S-3{ }^{2} P$	0.08305(2)	$0.08316525(18)$	0.08136 [25]
$3{ }^{2} S-3{ }^{2} P$	0.8301(1)	$0.8297696(15)$	
$2{ }^{2} P-3{ }^{2} S$	0.06437(2)	$0.06434157(29)$	
$2{ }^{2} P-4{ }^{2} S$	0.010216(3)	0.01021583(30)	
$3{ }^{2} P-4{ }^{2} S$	0.13457(4)	$0.1345245(13)$	
$2{ }^{2} P-3{ }^{2} D$	0.63195(8)	$0.6319828(11)$	0.63199 [23]
$3{ }^{2} P-3^{2} D$	0.08109(1)	$0.08103350(17)$	
$3{ }^{2} D-4{ }^{2} F$	1.0146(1)	1.01460194(11)	

the lifetimes of the 52 levels in Table V. We also evaluate the lowest-order DF lifetimes to estimate the size of the correlation effects. The differences between the lowest-order values and our final lifetimes are $3 \%-5 \%$.

The present values displayed in Table V are compared with beam-foil experimental measurements by Andersen et al. [58], Bromander [57], and Hontzeas et al. [56]. The accuracy of the measurements was about $5 \%-10 \%$.

Our lifetime values are also compared with theoretical lifetimes obtained by multiconfiguration Breit-Pauli (BP) approach by Froese Fischer et al. [27]. In the multiconfiguration Hartree-Fock (MCHF) method, the radial functions were used to construct the configuration state functions (CSFs). Once the radial functions were determined, a configuration-interaction calculation can be performed over the set of configuration states, where the interaction matrix was evaluated with

TABLE V. Comparison of the Be^{+}lifetimes (in ns) with other theoritcal and experimental results. Uncertainties are given in parentheses. References are given in square brackets.

Level	Present	Theory	Ref.	Expt.	Level	Present	Theory [37]
$2 p_{1 / 2}$	8.850(2)	8.853	[27]	8.1(4) [58]	$7 s_{1 / 2}$	17.918(4)	18.02
$2 p_{3 / 2}$	8.850(2)	8.847	[27]		$7 p_{1 / 2}$	29.78(3)	29.19
$3 s_{1 / 2}$	2.451(1)	2.450	[27]	3.3(3) [58]	$7 p_{3 / 2}$	29.78(2)	
$3 p_{1 / 2}$	5.417(1)	5.418	[27]		$7 d_{3 / 2}$	10.522(1)	10.61
$3 p_{3 / 2}$	5.417(2)	5.416	[27]	6.7(8) [56]	$7 d_{5 / 2}$	10.518(4)	
$3 d_{3 / 2}$	0.904(1)	0.904	[27]		$7 f_{5 / 2}$	23.60(1)	23.49
$3 d_{5 / 2}$	0.901(1)	0.905	[27]	0.92 (6) [57]	$7 f_{7 / 2}$	23.60(1)	
$4 s_{1 / 2}$	4.174(1)	4.131	[27]	4.4(3) [58]	$8 s_{1 / 2}$	26.17(1)	26.22
$4 p_{1 / 2}$	8.072(3)	8.030	[37]	8.5(9) [56]	$8 p_{1 / 2}$	42.47(5)	41.57
$4 p_{3 / 2}$	8.086(1)				$8 p_{3 / 2}$	42.66(4)	
$4 d_{3 / 2}$	2.067(1)	2.081	[37]	2.3(2) [58]	$8 d_{3 / 2}$	15.58(1)	15.71
$4 d_{5 / 2}$	2.066(1)				$8 d_{5 / 2}$	15.58(1)	
$4 f_{5 / 2}$	4.531(1)	4.522	[37]	4.9(2) [57]	$8 f_{5 / 2}$	35.01(1)	34.77
$4 f_{7 / 2}$	4.525(1)				$8 f_{7 / 2}$	35.03(1)	
$5 s_{1 / 2}$	7.194(2)	7.213	[37]		$9 s_{1 / 2}$	36.78(2)	36.81
$5 p_{1 / 2}$	12.935(6)	12.76	[37]		$9 p_{1 / 2}$	58.86(14)	57.25
$5 p_{3 / 2}$	12.918(4)				$9 p_{3 / 2}$	58.86(7)	
$5 d_{3 / 2}$	3.950(1)	3.971	[37]	3.5(4) [56]	$9 d_{3 / 2}$	22.05(1)	22.22
$5 d_{5 / 2}$	3.938(2)				$9 d_{5 / 2}$	22.01(1)	
$5 f_{5 / 2}$	8.739(2)	8.739	[37]	9.0 (8) [56]	$9 f_{5 / 2}$	49.71(2)	49.18
$5 f_{7 / 2}$	8.734(1)				$9 f_{7 / 2}$	49.73(2)	
$6 s_{1 / 2}$	11.673(2)	11.70	[37]		$10 s_{1 / 2}$	49.89(7)	50.02
$6 p_{1 / 2}$	20.04(2)	19.71	[37]		$10 p_{1 / 2}$	78.9(7)	76.66
$6 p_{3 / 2}$	20.05(1)				$10 p_{3 / 2}$	78.6(2)	
$6 d_{3 / 2}$	6.701(2)	6.754	[37]	7.3(8) [56]			
$6 d_{5 / 2}$	6.700(2)						
$6 f_{5 / 2}$	14.959(6)	14.93	[37]				
$6 f_{7 / 2}$	14.948(6)						

respect to the BP Hamiltonian. Efficient programs based on a combination of second quantization in coupled tensorial form and a generalized graphical technique were used for performing angular integrations for the evaluation of matrix elements [27]. Numerical values of the lifetimes evaluated in [27] for eight levels are listed in the column "Theory" of Table V. We find excellent agreement (about 0.03% difference) between our results and results from [27]. The disagreement is larger $(1 \%-3 \%)$ between our lifetime values and the theoretical results given by Theodosiou [37]. The lifetimes in [37] were calculated using the Coulomb approximation with a HartreeSlater core approach. Since those results are nonrelativistic lifetime values, we placed in the column "Theory" of Table V only one number for the $n l j$ level with the smaller value of j. The contribution of relativistic effects leads to the $0.05 \%-0.2 \%$ difference between the $n l j$ lifetime values with different j for fixed $n l$ states.

IV. STATIC MULTIPOLE POLARIZABILITIES OF THE $2 s$ STATE

The static multipole polarizability $\alpha^{E k}$ of Li -like Be^{+}in its ground state can be separated into two terms; a dominant first term from intermediate valence-excited states, and a smaller second term from intermediate core-excited states. The latter term is smaller than the former by several orders of magnitude and is evaluated here in the random-phase approximation [80]. The dominant valence contribution is calculated using the sum-over-states approach,

$$
\begin{equation*}
\alpha_{v}^{E k}=\frac{1}{2 k+1} \sum_{n} \frac{\left|\left\langle n l_{j}\left\|r^{k} C_{k q}\right\| 2 s\right\rangle\right|^{2}}{E_{n l j}-E_{2 s}} \tag{2}
\end{equation*}
$$

where $C_{k q}(\hat{r})$ is a normalized spherical harmonic and where $n l_{j}$ is $n p_{j}, n d_{j}$, and $n f_{j}$ for $k=1,2$, and 3, respectively [81]. The reduced matrix elements in the dominant contributions to the above sum are evaluated using our final values of the dipole matrix elements and NIST energies [73]. The uncertainties in the polarizability contributions are obtained from the uncertainties in the matrix elements. The final values for the quadrupole and octupole matrix elements and their uncertainties are determined using the procedure that was described above for the dipole matrix elements.

We use the recommended energies from [73] and our final matrix elements to evaluate terms in the sum with $n \leqslant 10$, and we use theoretical SD energies and wave functions to evaluate terms with $10 \leqslant n \leqslant 26$. The remaining contributions to $\alpha^{E k}$ from orbitals with $27 \leqslant n \leqslant 70$ are evaluated in the RPA since the contributions from these terms are smaller than 0.01% in all cases. These terms are grouped together as "Tail." In the case of $\alpha^{E 3}$, we find that the contribution (1.5\%) from the $(27-30) n f_{j}$ part of the sum over j is substantial, and we use theoretical SD energies and wave functions to evaluate terms with $10 \leqslant n \leqslant 30$.

We evaluate core contributions in the random-phase approximation [80] for $E 1, E 2$, and $E 3$ polarizabilities. Our result for the core $E 1$ polarizability is the same as the one in [80]. The core polarizabilities are small in comparison with the valence ones and their uncertainties are negligible.

The contributions to dipole, quadrupole, and octupole polarizabilities of the $2 s$ ground state are presented in Table VI. The first two terms in the sum over states for $\alpha^{E 1}$ contribute

TABLE VI. Contributions to multipole polarizabilities of the $2 s$ state of Li -like Be^{+}in a_{0}^{3}. Uncertainties are given in parentheses.

Contr.	$\alpha^{E 1}$
$2 p_{1 / 2}$	$7.847(2)$
$2 p_{3 / 2}$	$15.692(3)$
$(3-26) p_{j}$	0.889
Tail	0.003
Core	0.052
Total	$24.483(4)$
Ref. [9]	$24.489(4)$
Ref. [8]	$24.4966(1)$
Contr.	$\alpha^{E 2}$
$3 d_{3 / 2}$	$18.374(4)$
$4 d_{3 / 2}$	$1.744(1)$
$(5-26) d_{3 / 2}$	1.362
$3 d_{5 / 2}$	$27.561(6)$
$4 d_{5 / 2}$	$2.616(1)$
$(5-26) d_{5 / 2}$	2.044
Tail	0.025
Core	0.015
Total	$53.741(7)$
Ref. $[8]$	$53.7659(2)$
Contr.	$\alpha^{E 3}$
$4 f_{5 / 2}$	$80.963(16)$
$5 f_{5 / 2}$	$29.633(6)$
$6 f_{5 / 2}$	$13.872(3)$
$(7-19) f_{5 / 2}$	$25.899(3)$
$(20-26) f_{5 / 2}$	45.578
$(27-30) f_{5 / 2}$	3.483
$4 f_{7 / 2}$	$107.952(22)$
$5 f_{7 / 2}$	$39.512(8)$
$6 f_{5 / 2}$	$18.497(4)$
$(7-19) f_{5 / 2}$	$36.612(4)$
$(20-26) f_{5 / 2}$	59.691
$(27-30) f_{5 / 2}$	3.651
Tail	0.010
Core	0.011
Total	$465.36(3)$
Ref. $[8]$	$465.7621(1)$

${ }^{\text {a }}$ Includes estimate of relativistic effects.
96.4% of the total. The remaining 3.6% of $\alpha^{E 1}$ comes from the $(3-26) n p_{j}$ states. The first four terms in the sum over states for $\alpha^{E 2}$ contribute 93.7% of the totals. The remaining 6.3% of the $\alpha^{E 2}$ contribution is from the (5-26)nd d_{j} states. However, the first six terms in the sum over states for $\alpha^{E 3}$ contribute only 62.4% of the totals. The remaining 37.6% of the $\alpha^{E 3}$ contribution was divided into three parts: $(7-19) n f_{j}(13.4 \%)$, $(20-26) n f_{j}(22.6 \%)$, and (27-30) $n f_{j}(1.5 \%)$.

The final results for the multipole polarizabilities of the Li -like Be^{+}ground state are compared in Table VI with highprecision calculations given by Tang et al. [8]. The calculations were performed using variationally determined wave functions with Hylleraas basis set expansions. The authors emphasized that the values reported were the results of calculations close to convergence [8]. We found excellent agreement between our final results and the results obtained using the Hylleraas basis set: the difference is $0.055 \%, 0.046 \%$, and 0.086% for the $\alpha^{E 1}, \alpha^{E 2}$, and $\alpha^{E 3}$ polarizabilities, respectively.

V. SCALAR AND TENSOR EXCITED-STATE POLARIZABILITIES

The valence scalar $\alpha_{0}(v)$ and tensor $\alpha_{2}(v)$ polarizabilities of an excited state v of Li-like Be^{+}are given by

$$
\begin{gather*}
\alpha_{0}(v)=\frac{2}{3\left(2 j_{v}+1\right)} \sum_{n l j} \frac{\left.|\langle v|| r C_{1}| | n l j\right\rangle\left.\right|^{2}}{E_{n l j}-E_{v}}, \tag{3}\\
\alpha_{2}(v)=(-1)^{j_{v}} \sqrt{\frac{40 j_{v}\left(2 j_{v}-1\right)}{3\left(j_{v}+1\right)\left(2 j_{v}+1\right)\left(2 j_{v}+3\right)}} \\
\quad \times \sum_{n l j}(-1)^{j}\left\{\begin{array}{lll}
j_{v} & 1 & j \\
1 & j_{v} & 2
\end{array}\right\} \frac{\left.|\langle v|| r C_{1} \| n l j\right\rangle\left.\right|^{2}}{E_{n l j}-E_{v}} . \tag{4}
\end{gather*}
$$

The excited-state polarizability calculations are carried out in the same way as the calculations of the multipole polarizabilities discussed in the previous section. We summarize our results for the scalar α_{0} and tensor α_{2} polarizabilities of Be^{+}in Table VII. In this table, we list our final values for the polarizabilities of the $n s, n p_{1 / 2}, n p_{3 / 2}, n d_{3 / 2}$, and $n d_{5 / 2}$ states with $n<10$. The uncertainties of all values are given. If no uncertainty is listed, it is zero for the significant figures that are quoted. We note again that we could evaluate only the dominant uncertainties due to missing Coulomb correlation effects.

The polarizability values rapidly increase with increasing n, but the rate of increase depends on l. The ratio of $\alpha_{0}(3 l)$ and $\alpha_{0}(2 l)$ is substantially different for $l=s$ and $l=p$. This difference in ratios decreases with n. The ratio of $\alpha_{0}(3 s)$ and $\alpha_{0}(2 s)$ is equal to 24 , while the ratio of $\alpha_{0}(3 p)$ and $\alpha_{0}(2 p)$ is 740. The ratio of $\alpha_{0}(4 s)$ and $\alpha_{0}(3 s)$ is equal to 8.5 , while the ratio of $\alpha_{0}(4 p)$ and $\alpha_{0}(3 p)$ is only slightly different (9.9). The ratios of $\alpha_{0}(n l)$ and $\alpha_{0}((n-1) l)$ for $l=s$ and $l=p$ are equal to 5.1 and 5.3 for $n=5$ and 3.7-3.8 for $n=6$. There are no differences in the $\alpha_{0}(n l)$ and $\alpha_{0}((n-1) l)$ ratios for $l=s$ and $l=p$ in the cases of $n=7,8$, and 9 . The
ratios of $\alpha_{0}(n l)$ and $\alpha_{0}((n-1) l)$ are similar for the $n d$ states: $3.2,2.6$, and 2.3 for $n=7,8$, and 9 , respectively; it is only slightly different for the tensor polarizabilities. The values for $\alpha_{2}(4 l)$ and $\alpha_{2}(3 l)$ have different signs and their ratios are equal to -12 for to $l=p$ and -57 for $l=d$. Significant cancellations among different contributions are observed that lead to similar values for the $\alpha_{2}\left(3 p_{3 / 2}\right)$ and $\alpha_{2}\left(2 p_{3 / 2}\right)$ tensor polarizabilities. These cancellations were previously observed for $\alpha_{2}(n l)$ polarizabilities in Sr^{+}[79], Rb [77], and Ca^{+}[76].

We illustrate the importance of the different contributions and evaluation of uncertainties for the scalar and tensor $n d_{5 / 2}$ polarizabilities in Table VIII. Uncertainties are given in parentheses. The dominant contributions to the polarizabilities are listed separately with the corresponding absolute values of the electric-dipole reduced matrix elements given in the column labeled $Z^{\text {final }}$. The experimental NIST transition energies [73] are given in the column ΔE. The dominant contributions for the $\alpha_{0}\left(n d_{5 / 2}\right)$ scalar and $\alpha_{2}\left(n d_{5 / 2}\right)$ polarizabilities are from the $n d_{5 / 2}-n p_{3 / 2}, n d_{5 / 2}-n f_{5 / 2}$, and $n d_{5 / 2}-n f_{7 / 2}$ transitions. The remaining contributions to the valence polarizability are given in the next row after the dominant contribution. For example, the dominant contributions to the $\alpha_{0}\left(4 d_{5 / 2}\right)$ polarizability are from the three matrix elements: $4 d_{5 / 2}-4 p_{3 / 2}, 4 d_{5 / 2}-4 f_{5 / 2}$, and $4 d_{5 / 2}-4 f_{7 / 2}$. These give 99.7% of the final value of the $\alpha_{0}\left(4 d_{5 / 2}\right)$ polarizability. The 0.3% remaining contribution comes from the sum over $n=2,3,5-26$ for the $4 d_{5 / 2}-n p_{3 / 2}$ contribution and the sum over $n=5-26$ for the $4 d_{5 / 2}-n f_{5 / 2}$ and $4 d_{5 / 2-n f_{7 / 2}}$ contribution. The contributions from the core and tail $(n>26)$ terms are very small (less than 0.1 in $\left.a_{0}^{3}\right)$ and are omitted from the table.

The dominant contribution to the $n d_{5 / 2}$ polarizabilities comes from the transitions with the largest values of dipole matrix elements among the 71 matrix elements that are included in the evaluation of these polarizabilities. The ratio of the $Z^{\text {final }}\left(n d_{5 / 2}-n f_{7 / 2}\right)$ and $Z^{\text {final }}\left(n d_{5 / 2}-n f_{5 / 2}\right)$ contributions is equal to 4.47 for $n=3-9$. Therefore, the contribution

TABLE VII. The α_{0} scalar and α_{2} tensor polarizabilities for the Be^{+}ion in a_{0}^{3}. Uncertainties are given in parentheses. $X(a)[b]$ means $X \times 10^{b}$ with uncertainty a in the last digit of X.

Scalar polarizabilities α_{0}							
$2 s$	$3 s$	$4 s$	$5 s$	$6 s$	$7 s$	$8 s$	$9 s$
24.483(4)	588.7(1)	5002(1)	25400(4)	94411(14)	284420(40)	736200(100)	1698300(360)
$2 p_{1 / 2}$	$3 p_{1 / 2}$	$4 p_{1 / 2}$	$5 p_{1 / 2}$	$6 p_{1 / 2}$	$7 p_{1 / 2}$	$8 p_{1 / 2}$	$9 p_{1 / 2}$
2.025(2)	1491.3(3)	14816(3)	78545(17)	296710(70)	899600(200)	2333800(500)	5387800(1200)
$2 p_{3 / 2}$	$3 p_{3 / 2}$	$4 p_{3 / 2}$	$5 p_{3 / 2}$	$6 p_{3 / 2}$	$7 p_{3 / 2}$	$8 p_{3 / 2}$	$9 p_{3 / 2}$
2.029(2)	1492.9(3)	14832(3)	78630(16)	297120(60)	900900(200)	2337100(500)	5396900(1100)
	$3 d_{3 / 2}$	$4 d_{3 / 2}$	$5 d_{3 / 2}$	$6 d_{3 / 2}$	$7 d_{3 / 2}$	$8 d_{3 / 2}$	$9 d_{3 / 2}$
	-8.469(2)[2]	2.090[5]	1.392(1)[6]	5.778(4)[6]	1.826(2)[7]	4.763(7)[7]	1.118(2)[8]
	$3 d_{5 / 2}$	$4 d_{5 / 2}$	$5 d_{5 / 2}$	$6 d_{5 / 2}$	$7 d_{5 / 2}$	$8 d_{5 / 2}$	$9 d_{5 / 2}$
	-8.476(2)[2]	$2.100[5]$	1.397(1)[6]	5.757(4)[6]	1.826(2)[7]	4.762(7)[7]	1.118(2)[8]
Tensor polarizabilities α_{2}							
$2 p_{3 / 2}$	$3 p_{3 / 2}$	$4 p_{3 / 2}$	$5 p_{3 / 2}$	$6 p_{3 / 2}$	$7 p_{3 / 2}$	$8 p_{3 / 2}$	$9 p_{3 / 2}$
5.848(2)	8.540(1)	-105.3(7)	-760(4)	-3050(14)	-9166(43)	-23050(100)	-51420(400)
	$3 d_{3 / 2}$	$4 d_{3 / 2}$	$5 d_{3 / 2}$	$6 d_{3 / 2}$	$7 d_{3 / 2}$	$8 d_{3 / 2}$	$9 d_{3 / 2}$
	$6.523(2)[2]$	-3.696(1)[4]	-2.526(2)[5]	-1.058(1)[6]	-3.358(4)[6]	-8.759(14)[6]	-2.058(6)[7]
	$3 d_{5 / 2}$	$4 d_{5 / 2}$	$5 d_{5 / 2}$	$6 d_{5 / 2}$	$7 d_{5 / 2}$	$8 d_{5 / 2}$	$9 d_{5 / 2}$
	9.330(2)[2]	-5.300(2)[4]	-3.620(2)[5]	-1.504(1)[6]	-4.796(6)[6]	-1.251(2)[7]	-2.940(8)[7]

TABLE VIII. Contributions to the $\alpha_{0}\left(n d_{5 / 2}\right)$ scalar and $\alpha_{2}\left(n d_{5 / 2}\right)$ tensor polarizabilities for the Be^{+}ion in a_{0}^{3}. Uncertainties are given in parentheses. The dominant contributions to the polarizabilities are listed separately with the corresponding absolute values of the electric-dipole reduced matrix elements given in column labeled $Z^{\text {final }}$. The experimental NIST transition energies $\left(\mathrm{cm}^{-1}\right)$ are given in the column ΔE. The remaining contributions to the valence polarizability are given in the next row after the dominant contribution. $X(\mathrm{a})[b]$ means $X \times 10^{b}$ with uncertainty a in the last digit of the X value.

Level	Contr.	ΔE	$Z^{\text {final }}$	$\alpha_{0}\left(n d_{5 / 2}\right)$	$\alpha_{2}\left(n d_{5 / 2}\right)$
$3 d_{5 / 2}$	$3 d_{5 / 2}-3 p_{3 / 2}$	-1557.81	7.853(1)	-9.654(2)[2]	9.654(2)[2]
	$3 d_{5 / 2}-n p_{3 / 2}$			-1.75	1.75
	$3 d_{5 / 2}-4 f_{5 / 2}$	21391.49	2.1122(1)	5.086(1)	5.812(1)
	$3 d_{5 / 2}-n f_{5 / 2}$			6.10[-1]	6.98[-1]
	$3 d_{5 / 2}-4 f_{7 / 2}$	21391.62	9.4461(4)	1.017[2]	-3.633([1]
	$3 d_{5 / 2}-n f_{7 / 2}$			1.22[1]	-4.36
Total				-8.476(2)[2]	9.330 (2)[2]
$4 d_{5 / 2}$	$4 d_{5 / 2}-4 p_{3 / 2}$	-660.12	16.175(1)	-9.665(2)[3]	$9.665(2)[3]$
	$4 d_{5 / 2}-n p_{3 / 2}$			-1.65	1.65
	$4 d_{5 / 2}-4 f_{5 / 2}$	25.15	3.2885(3)	1.049[4]	1.198[4]
	$4 d_{5 / 2}-n f_{5 / 2}$			2.38[1]	2.72[1]
	$4 d_{5 / 2}-4 f_{7 / 2}$	25.28	14.707(2)	2.086[5]	-7.451(1)[4]
	$4 d_{5 / 2}-n f_{7 / 2}$			4.75[2]	-1.70[2]
Total				$2.100[5]$	-5.300(2)[4]
$5 d_{5 / 2}$	$5 d_{5 / 2}-5 p_{3 / 2}$	-338.20	26.705(2)	-5.142(1)[4]	5.142(1)[4]
	$5 d_{5 / 2}-n p_{3 / 2}$			2.41[1]	-2.41[1]
	$5 d_{5 / 2}-5 f_{5 / 2}$	13.60	6.2139(5)	6.924(1)[4]	7.913(2)[4]
	$5 d_{5 / 2}-n f_{5 / 2}$			7.61[1]	8.70[1]
	$5 d_{5 / 2}-5 f_{7 / 2}$	13.67	27.790(2)	1.378(1)[6]	-4.920(2)[5]
	$5 d_{5 / 2}-n f_{7 / 2}$			1.52(0)[3]	-5.44[2]
Total				1.397(1)[6]	-3.620(2)[5]
$6 d_{5 / 2}$	$6 d_{5 / 2}-6 p_{3 / 2}$	-195.54	39.518(2)	-1.948[5]	1.948[5]
	$6 d_{5 / 2}-n p_{3 / 2}$			1.61[2]	-1.61[2]
	$6 d_{5 / 2}-6 f_{5 / 2}$	8.05	9.6857(6)	2.842(2)[5]	3.248(1)[5]
	$6 d_{5 / 2}-n f_{5 / 2}$			2.04[2]	2.33[2]
	$6 d_{5 / 2}-6 f_{7 / 2}$	8.08	43.316(3)	5.663(4)[6]	-2.022(1)[6]
	$6 d_{5 / 2}-n f_{7 / 2}$			4.07[3]	-1.45[3]
Total				5.757(4)[6]	-1.504(1)[6]
$7 d_{5 / 2}$	$7 d_{5 / 2}-7 p_{3 / 2}$	-123.05	54.635(3)	-5.916(1)[5]	5.916(1)[5]
	$7 d_{5 / 2}-n p_{3 / 2}$			6.24[2]	-6.24[2]
	$7 d_{5 / 2}-7 f_{5 / 2}$	5.14	13.7530(7)	8.974(9)[5]	1.026(1)[6]
	$7 d_{5 / 2}-n f_{5 / 2}$			4.77[2]	5.45[2]
	$7 d_{5 / 2}-7 f_{7 / 2}$	5.14	61.506(3)	1.795(2)[7]	-6.410(6)[6]
	$7 d_{5 / 2}-n f_{7 / 2}$			9.54[3]	-3.41[3]
Total				1.826(2)[7]	-4.796(6)[6]
$8 d_{5 / 2}$	$8 d_{5 / 2}-8 p_{3 / 2}$	-82.40	72.062(4)	-1.537[6]	1.537[6]
	$8 d_{5 / 2}-n p_{3 / 2}$			1.88[3]	-1.88[3]
	$8 d_{5 / 2}-8 f_{5 / 2}$	3.54	18.430(1)	2.340 (3)[6]	2.674(3)[6]
	$8 d_{5 / 2}-n f_{5 / 2}$			1.01[3]	1.15[3]
	$8 d_{5 / 2}-8 f_{7 / 2}$	3.54	82.423(6)	4.680(7)[7]	-1.671(2)[7]
	$8 d_{5 / 2}-n f_{7 / 2}$			2.02[4]	-7.22[3]
Total				4.762(7)[7]	-1.251(2)[7]
$9 d_{5 / 2}$	$9 d_{5 / 2}-9 p_{3 / 2}$	-57.84	91.799(6)	-3.553(1)[6]	3.553(1)[6]
	$9 d_{5 / 2}-n p_{3 / 2}$			4.79[3]	-4.79[3]
	$9 d_{5 / 2}-9 f_{5 / 2}$	2.50	23.722(2)	5.489(11)[6]	6.273(12)[6]
	$9 d_{5 / 2}-n f_{5 / 2}$			1.97[3]	2.26[3]
	$9 d_{5 / 2}-9 f_{7 / 2}$	2.50	106.089(7)	1.098(2)[8]	-3.921(8)[7]
	$9 d_{5 / 2}-n f_{7 / 2}$			3.95[4]	-1.41[4]
Total				1.118(2)[8]	-2.940(8)[7]

of the $n d_{5 / 2}-n f_{5 / 2}$ transition is smaller by a factor of 20 in comparison with the contribution from the $n d_{5 / 2}-n f_{7 / 2}$ transition. There are almost no differences between the $\Delta E\left(n d_{5 / 2}-n f_{5 / 2}\right)$ and $\Delta E\left(n d_{5 / 2}-n f_{7 / 2}\right)$ energy transitions, while the $\Delta E\left(n d_{5 / 2}-n p_{3 / 2}\right)$ energy transition is larger by a a factor of 23-26 than the $\Delta E\left(n d_{5 / 2}-n f_{j}\right)$ energy transitions. That leads to a contribution smaller by a factor of 23-26 from the $n d_{5 / 2}-n p_{3 / 2}$ transition in comparison with the $n d_{5 / 2}-n f_{7 / 2}$ transition. As a result, the dominant $n d_{5 / 2}-n f_{7 / 2}$ transition is the largest contributor to the values of the $n d_{5 / 2}$ polarizabilities. This transition contributes $99.3 \%-98.2 \%$ to the value of the $\alpha_{0}\left(n d_{5 / 2}\right)(n=4-9)$ polarizabilities. The distribution of contributions to the tensor polarizability is different in comparison with the scalar one due to different angular factors [compare Eqs. (3) and (4)]. The $n d_{5 / 2}-n p_{3 / 2}$ and $n d_{5 / 2}-n d_{5 / 2}$ contributions have different signs in comparison with the $n d_{5 / 2}-n d_{7 / 2}$ contributions. As a result, the dominant $n d_{5 / 2}-n d_{7 / 2}$ contributions are larger than the final tensor $\alpha_{2}\left(n d_{5 / 2}\right)$ polarizabilities by a factor of $1.41-1.33$ for $n=4-9$, respectively.

We find that it is very important to use the accurate values of the transition energies to evaluate the polarizability values. We use the recommended NIST data [73] that are given for Be^{+}, with two significant figures after the decimal point, in
cm^{-1} for the most of the levels. The transition energy for the dominant $n d_{5 / 2}-n d_{7 / 2}$ transition decreases with n from $25.28 \mathrm{~cm}^{-1}$ for $n=4$ to $2.50 \mathrm{~cm}^{-1}$ for $n=9$. Therefore, the uncertainties in the energy values can no longer be assumed to be negligible for these transitions. We take the experimental transition energy uncertainties to be $0.005 \mathrm{~cm}^{-1}$ based on the number of significant figures given in the NIST database. The uncertainty in these small energy intervals dominates the uncertainty in the polarizabilities for the $n d$ states with $n>4$. More accurate measurements of the transition energies are needed to improve the precision of these polarizabilities.

VI. SCALAR HYPERPOLARIZABILITY OF Be ${ }^{+}$

The nonrelativistic scalar hyperpolarizability γ_{0} was defined by Tang et al. [3]. Using the same procedure, we derive the following equation for the relativistic scalar hyperpolarizability γ_{0} :

$$
\begin{align*}
\gamma_{0}\left(n_{0} l_{0} j_{0}\right)= & \frac{24}{\sqrt{\left(2 j_{0}+1\right)}} \sum_{n_{m} l_{m} j_{m}} \sum_{n_{n} l_{n} j_{n}} \sum_{n_{k} l_{k} j_{k}} \Pi_{0}\left(j_{0}, j_{m}, j_{n}, j_{k}\right) \\
& \times \Upsilon\left(n_{0} l_{0} j_{0}, n_{m} l_{m} j_{m}, n_{n} l_{n} j_{n}, n_{k} l_{k} j_{k}\right), \tag{5}
\end{align*}
$$

where

$$
\Pi_{0}\left(j_{0}, j_{m}, j_{n}, j_{k}\right)=\sum_{K_{1}}(-1)^{j_{0}-j_{n}+2 K_{1}}\left(2 K_{1}+1\right) \frac{\left(2 K_{1}+1\right)}{\sqrt{\left(2 j_{0}+1\right)}}\left(\begin{array}{lll}
1 & 1 & K_{1} \tag{6}\\
0 & 0 & 0
\end{array}\right)^{2}\left\{\begin{array}{lll}
1 & 1 & K_{1} \\
j & j_{n} & j_{m}
\end{array}\right\}\left\{\begin{array}{lll}
1 & 1 & K_{1} \\
J & j_{n} & j_{k}
\end{array}\right\}
$$

and

$$
\begin{align*}
\Upsilon\left(n_{0} l_{0} j_{0}, n_{m} l_{m} j_{m}, n_{n} l_{n} j_{n}, n_{k} l_{k} j_{k}\right)= & I\left(n_{0} l_{0} j_{0}, n_{m} l_{m} j_{m}, n_{n} l_{n} j_{n}, n_{k} l_{k} j_{k}\right) \\
& -(-1)^{2 j_{0}-j_{m}-j_{k}} \delta\left(j_{0}, j_{n}\right) \frac{\left\langle n_{0} l_{0} j_{0}\right| r C_{1}\left|n_{m} l_{m} j_{m}\right\rangle^{2}}{\left(E\left(n_{m} l_{m} j_{m}\right)-E\left(n_{0} l_{0} j_{0}\right)\right)} \frac{\left\langle n_{0} l_{0} j_{0}\right| r C_{1}\left|n_{k} l_{k} j_{k}\right\rangle^{2}}{\left(E\left(n_{k} l_{k} j_{k}\right)-E\left(n_{0} l_{0} j_{0}\right)\right)^{2}} . \tag{7}
\end{align*}
$$

The most complicated part in the calculation of $\gamma_{0}\left(n_{0} l_{0} j_{0}\right)$ is in the evaluation of the sum over $I\left(n_{0} l_{0} j_{0}, n_{m} l_{m} j_{m}, n_{n} l_{n} j_{n}, n_{k} l_{k} j_{k}\right)$:

$$
\begin{align*}
& I\left(n_{0} l_{0} j_{0}, n_{m} l_{m} j_{m}, n_{n} l_{n} j_{n}, n_{k} l_{k} j_{k}\right) \\
& \quad=\frac{\left\langle n_{0} l_{0} j_{0}\right| r C_{1}\left|n_{m} l_{m} j_{m}\right\rangle\left\langle n_{m} l_{m} j_{m}\right| r C_{1}\left|n_{n} l_{n} j_{n}\right\rangle\left\langle n_{n} l_{n} j_{n}\right| r C_{1}\left|n_{k} l_{k} j_{k}\right\rangle\left\langle n_{k} l_{k} j_{k}\right| r C_{1}\left|n_{0} l_{0} j_{0}\right\rangle}{\left[E\left(n_{m} l_{m} j_{m}\right)-E\left(n_{0} l_{0} j_{0}\right)\right]\left[E\left(n_{n} l_{n} j_{n}\right)-E\left(n_{0} l_{0} j_{0}\right)\right]\left[E\left(n_{k} l_{k} j_{k}\right)-E\left(n_{0} l_{0} j_{0}\right)\right]} \tag{8}
\end{align*}
$$

The angular part of $\gamma_{0}\left(n_{0} l_{0} j_{0}\right)$ is defined as

$$
\Pi_{0}\left(j_{0}, j_{m}, j_{n}, j_{k}\right)=\sum_{K_{1}}(-1)^{j_{0}-j_{n}+2 K_{1}} \frac{\left(2 K_{1}+1\right)}{\sqrt{\left(2 j_{0}+1\right)}}\left(\begin{array}{lll}
1 & 1 & K_{1} \tag{9}\\
0 & 0 & 0
\end{array}\right)^{2}\left\{\begin{array}{lll}
1 & 1 & K_{1} \\
j & j_{n} & j_{m}
\end{array}\right\}\left\{\begin{array}{lll}
1 & 1 & K_{1} \\
J & j_{n} & j_{k}
\end{array}\right\}
$$

The sum over K_{1} includes only two terms, $K_{1}=0$ and $K_{1}=2$. This allows the following simplification of the $\Pi_{0}\left(j_{0}, j_{m}, j_{n}, j_{k}\right)$ equation:

$$
\begin{align*}
\Pi_{0}\left(j_{0}, j_{m}, j_{n}, j_{k}\right)= & (-1)^{j_{0}-j_{n}} \frac{1}{\sqrt{\left(2 j_{0}+1\right)}}\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)^{2}\left\{\begin{array}{lll}
1 & 1 & 0 \\
j_{0} & j_{n} & j_{m}
\end{array}\right\}\left\{\begin{array}{lll}
1 & 1 & 0 \\
j_{0} & j_{n} & j_{k}
\end{array}\right\} \\
& +(-1)^{j_{0}-j_{n}} \frac{5}{\sqrt{\left(2 j_{0}+1\right)}}\left(\begin{array}{lll}
1 & 1 & 2 \\
0 & 0 & 0
\end{array}\right)^{2}\left\{\begin{array}{lll}
1 & 1 & 2 \\
j_{0} & j_{n} & j_{m}
\end{array}\right\}\left\{\begin{array}{lll}
1 & 1 & 2 \\
j & j_{n} & j_{k}
\end{array}\right\} \\
= & \frac{1}{3}(-1)^{2 j_{n}+j_{m}+j_{k}} \frac{1}{3} \frac{1}{\left(2 j_{0}+1\right)^{3 / 2}} \delta\left(j_{0}, j_{n}\right)+(-1)^{j_{0}-j_{n}} \frac{2}{3} \frac{1}{\sqrt{\left(2 j_{0}+1\right)}}\left\{\begin{array}{lll}
1 & 1 & 2 \\
j_{0} & j_{n} & j_{m}
\end{array}\right\}\left\{\begin{array}{lll}
1 & 1 & 2 \\
j_{0} & j_{n} & j_{k}
\end{array}\right\} . \tag{10}
\end{align*}
$$

Finally, we obtain

$$
\begin{gather*}
\Pi_{0}^{K_{1}=0}\left(j_{0}, j_{m}, j_{n}, j_{k}\right)=(-1)^{j_{m}-j_{k}} \frac{1}{9} \frac{1}{\left(2 j_{0}+1\right)^{3 / 2}} \delta\left(j_{0}, j_{n}\right), \tag{11}\\
\Pi_{0}^{K_{1}=2}\left(j_{0}, j_{m}, j_{n}, j_{k}\right)=(-1)^{j_{0}-j_{n}} \frac{2}{3} \frac{1}{\sqrt{\left(2 j_{0}+1\right)}}\left\{\begin{array}{lll}
1 & 1 & 2 \\
j_{0} & j_{n} & j_{m}
\end{array}\right\}\left\{\begin{array}{lll}
1 & 1 & 2 \\
j_{0} & j_{n} & j_{k}
\end{array}\right\} . \tag{12}\\
032502-11
\end{gather*}
$$

Let us consider the most important case for the alkali-metal systems, $n_{0} l_{0} j_{0}=n_{0} s_{1 / 2}$. We can rewrite Eq. (5) in the following way:

$$
\begin{equation*}
\gamma_{0}\left(n_{0} s_{1 / 2}\right)=12 T(s p p)+12 T(d p p)-12 \alpha_{0}\left(n_{0} l_{0} j_{0}\right) \beta_{0}\left(n_{0} l_{0} j_{0}\right), \tag{13}
\end{equation*}
$$

where $\alpha_{0}\left(n_{0} l_{0} j_{0}\right)$ is the scalar dipole polarizability and $\beta_{0}\left(n_{0} l_{0} j_{0}\right)$ is the first-order nonadiabatic correction to the dipole polarizability [8]:

$$
\begin{gather*}
\alpha_{0}\left(n_{0} l_{0} j_{0}\right)=\frac{1}{3} \sum_{n l j} \frac{\left\langle n_{0} l_{0} j_{0}\right| r C_{1}|n l j\rangle^{2}}{E(n l j)-E\left(n_{0} l_{0} j_{0}\right)}, \tag{14}\\
\beta_{0}\left(n_{0} l_{0} j_{0}\right)=\frac{1}{6} \sum_{n l j} \frac{\left\langle n_{0} l_{0} j_{0}\right| r C_{1}|n l j\rangle^{2}}{\left[E(n l j)-E\left(n_{0} l_{0} j_{0}\right)\right]^{2}} . \tag{15}
\end{gather*}
$$

The values of $T(s p p)$ and $T(d p p)$ are defined as

$$
\begin{equation*}
T\left(s, p_{j}, p_{j^{\prime}}\right)=\sum_{n_{m}} \sum_{n_{n}} \sum_{n_{k}} \frac{\left\langle n_{0} s_{1 / 2}\right| r C_{1}\left|n_{m} p_{j}\right\rangle\left\langle n_{m} p_{j}\right| r C_{1}\left|n_{n} s_{1 / 2}\right\rangle\left\langle n_{n} s_{1 / 2}\right| r C_{1}\left|n_{k} p_{\left.j^{\prime}\right\rangle}\right\rangle\left\langle n_{k} j^{\prime}\right| r C_{1}\left|n_{0} s_{1 / 2}\right\rangle}{\left[E\left(n_{m} p_{j}\right)-E\left(n_{0} s_{1 / 2}\right)\right]\left[E\left(n_{n} s_{1 / 2}\right)-E\left(n_{0} s_{1 / 2}\right)\right]\left[E\left(n_{k} p_{j^{\prime}}\right)-E\left(n_{0} s_{1 / 2}\right)\right]} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
T\left(d_{j^{\prime \prime}}, p_{j}, p_{j^{\prime}}\right)=\sum_{n_{m}} \sum_{n_{n}} \sum_{n_{k}} \frac{\left\langle n_{0} s_{1 / 2}\right| r C_{1}\left|n_{m} p_{j}\right\rangle\left\langle n_{m} p_{j}\right| r C_{1}\left|n_{n} d_{j^{\prime \prime}}\right\rangle\left\langle n_{n} d_{j^{\prime \prime}}\right| r C_{1}\left|n_{k} p_{j^{\prime}}\right\rangle\left\langle n_{k} j^{\prime}\right| r C_{1}\left|n_{0} s_{1 / 2}\right\rangle}{\left[E\left(n_{m} p_{j}\right)-E\left(n_{0} s_{1 / 2}\right)\right]\left[E\left(n_{n} s_{1 / 2}\right)-E\left(n_{0} s_{1 / 2}\right)\right]\left[E\left(n_{k} p_{j^{\prime}}\right)-E\left(n_{0} s_{1 / 2}\right)\right]} . \tag{17}
\end{equation*}
$$

Numerical results for Li -like Be^{+}are given in Table IX. The sums in Eqs. (16) and (17) are evaluated for $n_{m}=2-26$,

TABLE IX. Contributions to the $2 s_{1 / 2}$ dipole hyperpolarizabilities γ_{0} of Be^{+}in a.u. Uncertainties are given in parentheses. Sums in Eqs. (16) and (17) are evaluated for $n_{m}=2-26, n_{k}=2-26$, and $n_{n}=$ $3-26$. Values for "Tail" are the contributions from DF results evaluated with $n_{i}=27-70$. The $\gamma_{v c}$ contribution is obtained by including $1 s$ states in the sum in Eq. (16).

Contr.	$\gamma_{0}^{(\mathrm{DF})}(2 s)$	$\gamma_{0}^{(\text {final })}(2 s)$
$\frac{1}{18} T\left(s, p_{1 / 2}, p_{1 / 2}\right)$	35.247	$32.605(53)$
$-\frac{1}{18} T\left(s, p_{1 / 2}, p_{3 / 2}\right)$	70.487	$68.886(92)$
$-\frac{1}{18} T\left(s, p_{3 / 2}, p_{1 / 2}\right)$	70.487	$68.886(92)$
$\frac{1}{18} T\left(s, p_{3 / 2}, p_{3 / 2}\right)$	140.965	$137.669(109)$
$T(s p p)$	317.186	$308.046(178)$
$\gamma_{v c}$	-0.399	-0.399
Tail	-0.096	-0.096
Total	316.691	307.551
$\frac{1}{18} T\left(d_{3 / 2}, p_{1 / 2}, p_{1 / 2}\right)$	208.678	$202.031(121)$
$\frac{1}{18 \sqrt{10}} T\left(d_{3 / 2}, p_{1 / 2}, p_{3 / 2}\right)$	41.731	$40.403(18)$
$\frac{1}{18 \sqrt{10}} T\left(d_{3 / 2}, p_{3 / 2}, p_{1 / 2}\right)$	41.731	$40.403(18)$
$\frac{1}{180} T\left(d_{3 / 2}, p_{3 / 2}, p_{3 / 2}\right)$	8.345	$8.080(3)$
$\frac{1}{30} T\left(d_{5 / 2}, p_{3 / 2}, p_{3 / 2}\right)$	450.761	$438.434(148)$
$T(d p p)$	751.246	$729.351(192)$
$\gamma_{v c}$	0.0	0.0
Tail	1.800	1.800
Total	753.042	$730.151(192)$
$\alpha_{0} \beta$	2041.637	$1995.743(382)$
Total	-971.904	$-958.041(463)$
γ_{0}	-11663	$-11496(6)$
Ref. $[8]$		$-11521.30(3)$

$n_{k}=2-26$, and $n_{n}=3-26$. The "Tail" contribution from $n_{i}=27-70$ is evaluated in the DF approximation. The $\gamma_{v c}$ contribution is obtained by including $1 s$ states in the sum in Eq. (16). The final result for the $\gamma_{0}(2 s)$ hyperpolarizability is obtained using Eq. (13) and the numerical values given in Table IX.

The difference between $\gamma_{0}^{\text {final }}(2 s)$ and $\gamma_{0}^{(\mathrm{DF})}(2 s)$ is about 1.5%, so the overall correlation contribution is small. In the last row of Table IX, we display the $\gamma_{0}(2 s)$ value evaluated using Hylleraas basis functions [8]. Our $\gamma_{0}^{\text {final }}(2 s)$ value is in excellent agreement with that result. The difference is about 0.22%.

VII. CONCLUSION

A systematic study of Be^{+}atomic properties is carried out using a high-precision relativistic all-order method where all single, double, and partial triple excitations of the Dirac-Fock wave function are included to all orders of perturbation theory. The energies, multipole matrix elements, line strengths, oscillator strengths, transition rates, lifetimes, and scalar and tensor polarizabilities of the $n s, n p_{j}, n d_{j}$, and $n f_{j}$ $(n \leqslant 9)$ states are calculated. Additionally, we evaluated the ground-state hyperpolarizability in Li-like Be^{+}. The uncertainties of our calculations are evaluated for most of the values listed in this work. These calculations provide recommended values critically evaluated for their accuracy for a number of Be^{+}atomic properties useful for a variety of applications.

ACKNOWLEDGMENT

The work of M.S.S. was supported in part by US NSF Grant No. PHY-1068699.
[1] M. S. Safronova and W. R. Johnson, Adv. At. Mol. Opt. Phys. 55, 191 (2008).
[2] M. S. Safronova, U. I. Safronova, and C. W. Clark, Phys. Rev. A 86, 042505 (2012).
[3] Li-Yan Tang, Zong-Chao Yan, Ting-Yun Shi, and James F. Babb, Phys. Rev. A 79, 062712 (2009).
[4] J. S. Sims and S. A. Hagstrom, Phys. Rev. A 80, 052507 (2009).
[5] M. Puchalski, D. Kędziera, and K. Puchalski, Phys. Rev. A 84, 052518 (2011).
[6] L.-Y. Tang, J.-Y. Zhang, Z.-C. Yan, T.-Y. Shi, and J. Mitroy, J. Chem. Phys. 133, 104306 (2010).
[7] M. Puchalski, D. Kędziera, and K. Pachucki, Phys. Rev. A 85, 019910(E) (2012).
[8] L.-Y. Tang, J.-Y. Zhang, Z.-C. Yan, T.-Y. Shi, J. F. Babb, and J. Mitroy, Phys. Rev. A 80, 042511 (2009).
[9] L.-Y. Tang, Z.-C. Yan, T.-Y. Shi, and J. Mitroy, Phys. Rev. A 81, 042521 (2010).
[10] Z.-C. Yan, H. X. Qiao, and G. W. F. Drake, Phys. Rev. A 85, 052513 (2012).
[11] L. M. Wang, Z.-C. Yan, H. X. Qiao, and G. W. F. Drake, Phys. Rev. A 83, 034503 (2011).
[12] Z.-C. Yan, W. Nörtershäuser, and G. W. F. Drake, Phys. Rev. Lett. 100, 243002 (2008).
[13] Z.-C. Yan and G. W. F. Drake, Phys. Rev. A 61, 022504 (2000).
[14] Z.-C. Yan, M. Tambasco, and G. W. F. Drake, Phys. Rev. A 57, 1652 (1998).
[15] Z.-C. Yan and G. W. F. Drake, Phys. Rev. Lett. 79, 1646 (1997).
[16] Z.-C. Yan, D. K. McKenzie, and G. W. F. Drake, Phys. Rev. A 54, 1322 (1996).
[17] Z.-C. Yan, J. F. Babb, A. Dalgarno, and G. W. F. Drake, Phys. Rev. A 54, 2824 (1996).
[18] Z.-C. Yan and G. W. F. Drake, Phys. Rev. A 52, R4316 (1995).
[19] Z.-C. Yan and G. W. F. Drake, Phys. Rev. A 52, 3711 (1995).
[20] G. W. F. Drake and Z.-C. Yan, Phys. Rev. A 52, 3681 (1995).
[21] D. K. McKenzie and G. W. F. Drake, Phys. Rev. A 44, R6973 (1991).
[22] J. Mitroy, M. S. Safronova, and C. W. Clark, J. Phys. B 43, 202001 (2010).
[23] M. Godefroid, C. F. Fischer, and P. Jönsson, J. Phys. B 34, 1079 (2001).
[24] L.-H. Qu, Z.-W. Wang, and B.-W. Li, Opt. Commun. 162, 223 (1999).
[25] L. Qu, Z. Wang, and B. Li, Eur. Phys. J. D 5, 173 (1999).
[26] L. Qu, Z. Wang, and B. Li, J. Phys. B 31, 3601 (1998).
[27] C. F. Fischer, M. Saparov, G. Gaigalas, and M. Godefroid, At. Data Nucl. Data Tables 70, 119 (1998).
[28] A. E. Kramida, Phys. Scr. 57, 66 (1998).
[29] P. Villoresi, P. Bidoli, and P. Nicolosi, J. Quantum Spectrosc. Radiat. Transfer 57, 847 (1997).
[30] S. H. Patil and K. T. Tang, J. Chem. Phys. 106, 2298 (1997).
[31] A. Bharadvaja and K. L. Baluja, Z. Phys. D 38, 1 (1996).
[32] L. J. Curtis, D. G. Ellis, and I. Martinson, Phys. Rev. A 51, 251 (1995).
[33] Z.-W. Wang and K. T. Chung, J. Phys. B 27, 855 (1994).
[34] K. T. Chung, in Proceedings of the Sixth International Conference on the Physics of Highly Charged Ions, Manhattan, KS, 1992, edited by P. Richard, M. Stöckli, C. L. Cocke, and C. D. Lin, AIP Conf. Proc. No. 274 (AIP Press, New York, NY, 1993).
[35] Z.-W. Wang, X.-W. Zhu, and K. T. Chung, Phys. Rev. A 46, 6914 (1992).
[36] Z.-W. Wang, X.-W. Zhu, and K. T. Chung, J. Phys. B 25, 3915 (1992).
[37] C. E. Theodosiou, Phys. Scr. 45, 450 (1992).
[38] C. E. Theodosiou, L. J. Curtis, and M. El-Mekki, Phys. Rev. A 44, 7144 (1991).
[39] S. A. Blundell, W. R. Johnson, Z. W. Liu, and J. Sapirstein, Phys. Rev. A 40, 2233 (1989).
[40] G. Peach, H. E. Saraph, and M. J. Seaton, J. Phys. B 21, 3669 (1988).
[41] J. Pipin and W. Woznicki, Chem. Phys. Lett. 95, 392 (1983).
[42] C. Froese Fischer, Phys. Rev. A 26, 2627 (1982).
[43] K. T. Cheng, Y.-K. Kim, and J. P. Desclaux, At. Data Nucl. Data Tables 24, 111 (1979).
[44] A. Lindgård and S. E. Nielsen, At. Data Nucl. Data Tables 19, 533 (1977).
[45] A. W. Weiss, J. Quantum Spectrosc. Radiat. Transfer 18, 481 (1977).
[46] Y.-K. Kim and J. P. Desclaux, Phys. Rev. Lett. 36, 139 (1976).
[47] L. Armstrong, Jr., W. R. Fielder, and D. L. Lin, Phys. Rev. A 14, 1114 (1976).
[48] G. A. Martin and W. L. Wiese, Phys. Rev. A 13, 699 (1976).
[49] S. Lunell, Phys. Scr. 12, 63 (1975).
[50] U. I. Safronova, Opt. Spectrosc. 38, 477 (1975).
[51] U. I. Safronova, J. Quantum Spectrosc. Radiat. Transfer 15, 231 (1975).
[52] U. I. Safronova, J. Quantum Spectrosc. Radiat. Transfer 14, 251 (1974).
[53] S. A. Adelman and A. Szabo, J. Chem. Phys. 58, 687 (1973).
[54] C. Laughlin, M. N. Lewis, and Z. J. Horak, J. Phys. B 6, 1953 (1973).
[55] G. W. F. Drake, Can. J. Phys. 50, 1896 (1972).
[56] S. Hontzeas, I. Martinson, P. Erman, and R. Buchta, Phys. Scr. 6, 55 (1972).
[57] J. Bromander, Phys. Scr. 4, 61 (1971).
[58] T. Andersen, K. A. Jessen, and G. Sørensen, Phys. Rev. 188, 76 (1969).
[59] T. Andersen, K. A. Jessen, and G. Sørensen, Phys. Lett. A 29, 384 (1969).
[60] I. Bergström, J. Bromander, R. Buchta, L. Lundin, and I. Martinson, Phys. Lett. A 28, 721 (1969).
[61] J. Bromander, R. Buchta, and L. Lundin, Phys. Lett. A 29, 523 (1969).
[62] A. W. Weiss, Astrophys. J. 138, 1262 (1963).
[63] J. R. Fuhr and W. L. Wiese, J. Phys. Chem. Ref. Data 39, 013101 (2010).
[64] E. Träbert and L. J. Curtis, Phys. Scr. 74, C46 (2006).
[65] C. Chen and Z. W. Wang, J. Chem. Phys. 121, 4171 (2004).
[66] W. R. Johnson, S. A. Blundell, and J. Sapirstein, Phys. Rev. A 37, 307 (1988).
[67] W. R. Johnson, U. I. Safronova, A. Derevianko, and M. S. Safronova, Phys. Rev. A 77, 022510 (2008).
[68] J. Sapirstein and K. T. Cheng, Phys. Rev. A 66, 042501 (2002).
[69] Z.-C. Yan and G. W. F. Drake, Phys. Rev. Lett. 81, 774 (1998).
[70] L. Labzowsky, I. Goidenko, M. Tokman, and P. Pyykkö, Phys. Rev. A 59, 2707 (1999).
[71] M. S. Safronova, W. R. Johnson, and U. I. Safronova, Phys. Rev. A 53, 4036 (1996).
[72] M. S. Safronova, W. R. Johnson, and U. I. Safronova, J. Phys. B 30, 2375 (1997).
[73] A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team, NIST Atomic Spectra Database (version 5.0), http://physics.nist.gov/asd, National Institute of Standards and Technology, Gaithersburg, MD.
[74] S. A. Blundell, W. R. Johnson, M. S. Safronova, and U. I. Safronova, Phys. Rev. A 77, 032507 (2008).
[75] W. R. Johnon, Z. W. Liu, and J. Sapirstein, At. Data Nucl. Data Tables 64, 279 (1996).
[76] M. S. Safronova and U. I. Safronova, Phys. Rev. A 83, 012503 (2011).
[77] M. S. Safronova and U. I. Safronova, Phys. Rev. A 83, 052508 (2011).
[78] M. S. Safronova and U. I. Safronova, Phys. Rev. A 85, 022504 (2012).
[79] U. I. Safronova, Phys. Rev. A 82, 022504 (2010).
[80] W. R. Johnson, D. Kolb, and K.-N. Huang, At. Data Nucl. Data Tables 28, 333 (1983).
[81] W. R. Johnson, D. R. Plante, and J. Sapirstein, Adv. At. Mol. Opt. Phys. 35, 255 (1995).

