Polarizabilities of $\mathrm{Si}^{\mathbf{2 +}}$: A benchmark test of theory and experiment

M. S. Safronova, ${ }^{1}$ S. G. Porsev, ${ }^{1,2}$ M. G. Kozlov, ${ }^{2,3}$ and Charles W. Clark ${ }^{4}$
${ }^{1}$ Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
${ }^{2}$ Petersburg Nuclear Physics Institute, Gatchina, Leningrad District 188300, Russia
${ }^{3}$ St. Petersburg Electrotechnical University "LETI", Prof. Popov Str. 5, St. Petersburg, 197376, Russia
${ }^{4}$ Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, Gaithersburg, Maryland, 20899-8410, USA
(Received 17 April 2012; published 14 May 2012)

Abstract

We have calculated electric dipole polarizabilities of the $3 s^{2} S_{0}, 3 s 3 p^{3} P_{0}$, and $3 s 3 p^{1} P_{1}$ states of the Si^{2+} ion using the recently developed configuration interaction + all-order method. A detailed evaluation of the uncertainties of the final results is carried out. Our value for the ground-state electric dipole polarizability $11.670(13)$ a.u. is in excellent agreement with the resonant excitation Stark ionization spectroscopy value $11.669(9)$ a.u. [Komara et al., J. Phys. B 38, 87 (2005); Mitroy, Phys. Rev. A 78, 052515 (2008)]. This paper represents a benchmark test of theory and experiment in divalent atoms. The near cancellation of the $n s^{2}{ }^{1} S_{0}$ ground state and the lowest $n s n p^{3} P_{0}$ polarizabilities previously observed in $\mathrm{B}^{+}, \mathrm{Al}^{+}, \mathrm{In}^{+}, \mathrm{Tl}^{+}$, and Pb^{2+} is also found in the Si^{2+} ion.

DOI: 10.1103/PhysRevA.85.052506

I. INTRODUCTION

The atomic dipole polarizability describes the first-order response of an atom to an applied electric field. Atomic polarizabilities have been the subject of considerable interest and heightened importance in recent years due to a number of applications, including the development of next-generation optical atomic clocks, optical cooling and trapping schemes, quantum information with atoms and ions, tests of fundamental symmetries, studies of cold degenerate gases, thermometry and other macroscopic standards, study of long-range interactions, and atomic transition rate determinations [1]. An imperfect knowledge of atomic polarizabilities is one of the largest sources of uncertainty in the new generation of optical frequency standards [1,2].

Most of the applications listed above involve monovalent or divalent atoms and ions. There are a number of highprecision benchmark tests of experimental and theoretical values for the polarizabilities of monovalent systems [1,3-12]. However, there are few high-precision experimental data for the polarizabilities of divalent systems, which are of particular interest to optical clock development [13-16] and quantum information [17]. The most recent data for polarizability and Stark shifts of divalent systems are compiled in Tables 11, 13, and 14 of Ref. [1].

For the first row monovalent systems, such as Li and Be^{+}, the highest-precision determination of the polarizabilities by theoretical and experimental methods are found to be in good agreement (see recent reviews $[1,18]$ and references therein). Here, we provide such a comparison for a second row divalent species Si^{2+}. We believe that the experimental data for this ion provide the most precise value of the polarizability of any atomic system with two valence electrons.

A. Experimental determination of polarizabilities from Rydberg spectra

The polarizability of an ion can be extracted from the energies of the nonpenetrating Rydberg series of the corre-
sponding parent system (see Ref. [19] and references therein). The polarization interaction between the ionic core and the Rydberg electron shifts the energy levels away from their hydrogenic values. If the Rydberg electron is in a high angular momentum state, it has negligible overlap with the core. In such cases, the polarization interaction provides the dominant contribution to the energy shift. This effect is utilized in resonant excitation Stark ionization spectroscopy (RESIS) [19-28]. RESIS experiments have been extremely successful in the high-precision determination of the ground-state polarizabilities of H_{2}^{+}and D_{2}^{+}[21], Ne^{+}[19], Na-like Mg^{+}[22], Na-like Si^{3+} [23], Mg-like Si^{2+} [20], Zn -like Kr^{6+} [28], Ba^{+}[24], Hg-like Pb^{2+} [25], Fr-like Th^{3+} [26], and Rn -like Th^{3+} [27]. Quadrupole polarizabilities and transition matrix elements have also been determined for some of these systems.

To the best of our knowledge, RESIS experiments provide the most precise values known to date for the polarizability of any divalent atomic system. The most precise measurement has been carried out for the $3 s^{2}{ }^{1} S_{0}$ ground state of the Si^{2+} ion; $\alpha_{0}=11.666(4)$ a.u. [20]. Later analysis of the RESIS data that included additional terms in the polarization expansion yielded $\alpha_{0}=11.669(9)$ a.u. [29]. Therefore, the Si^{2+} RESIS experiment presents an excellent opportunity for a highprecision benchmark comparison of theory and experiment.

In this paper, we use a recently developed configuration iteration (CI) + all-order method [30-32] to calculate the properties of Si^{2+}. Our value for the ground-state electric dipole polarizability of 11.670 (13) a.u. is in excellent agreement with the RESIS result. Our previous calculation of the Hg -like Pb^{2+} ground-state polarizability [33] was also in agreement with the RESIS value (accurate to 0.6%) within our estimated accuracy.

We note that Mg -like Si^{2+} was a particularly interesting test system due to its similarity with Mg -like Al^{+}, which was used to construct an optical clock with a fractional frequency uncertainty of 8.6×10^{-18} [34], the smallest such uncertainty yet attained. At room temperature, one of the largest contributions to the uncertainty budget of this clock is the blackbody radiation (BBR) shift. The BBR frequency shift in a clock transition is related to the difference in the
static electric dipole polarizabilities between the two clock states [35]. We have recently calculated this effect in Al^{+} using the same $\mathrm{CI}+$ all-order approach. Excellent agreement of our present calculation with the experiment in the ground state of Si^{2+} provides an additional test of the approach.

II. METHOD

To evaluate uncertainties of the final results, we carry out three calculations in different approximations: CI [36], CI + many-body perturbation theory (MBPT) [37], and CI + allorder [30-32]. These methods have been described in a number of papers [30,31,36,37], and we provide only a brief outline of these approaches and a few details relevant to this particular paper.

Our point of departure is a solution of the Dirac-Fock (DF) equations,

$$
\hat{H}_{0} \psi_{c}=\varepsilon_{c} \psi_{c}
$$

where H_{0} is the relativistic DF Hamiltonian [31,37] and ψ_{c} and ε_{c} are single-electron wave functions and energies. Selfconsistent calculations were performed for the $\left[1 s^{2} 2 s^{2} 2 p^{6}\right]$ closed core, and the $3 s, 3 p, 3 d, 4 s, 4 p$, and $4 d$ orbitals were formed in this potential. We constructed the B-spline basis set consisting of $N=35$ orbitals for each of the $s, p_{1 / 2}, p_{3 / 2}, \ldots$, partial waves up to $l \leqslant 5$. The basis set is formed in a spherical cavity with radius 60 a.u. The CI space is effectively complete and includes 23 orbitals for each partial wave with $l=0 \cdots 4$.

The wave functions and the low-lying energy levels are determined by solving the multiparticle relativistic equation
for two valence electrons [36],

$$
H_{\mathrm{eff}}\left(E_{n}\right) \Phi_{n}=E_{n} \Phi_{n}
$$

The effective Hamiltonian is defined as

$$
H_{\mathrm{eff}}(E)=H_{\mathrm{FC}}+\Sigma(E),
$$

where H_{FC} is the Hamiltonian in the frozen-core approximation. The energy-dependent operator $\Sigma(E)$ takes into account virtual core excitations. It is zero in a pure CI calculation. The $\Sigma(E)$ part of the effective Hamiltonian is constructed using second-order perturbation theory in the CI + MBPT approach [37] and linearized single-double coupled-cluster method in the CI + all-order approach [31]. Construction of the effective Hamiltonian in the CI + MBPT and CI + all-order approximations is described in detail in Refs. [31,37]. The dominant part of the Breit interaction is included as described in Ref. [38].

The scalar polarizability α_{0} is separated into a valence polarizability α_{0}^{v}, ionic-core polarizability α_{c}, and a small term $\alpha_{v c}$ that modifies ionic-core polarizability due to the presence of two valence electrons. The last two terms are evaluated in the random-phase approximation (RPA). Their uncertainty is determined by comparing the DF and RPA values. The small $\alpha_{v c}$ term is calculated by adding $v c$ contributions from the individual electrons, i.e., $\alpha_{v c}\left(3 s^{2}\right)=2 \alpha_{v c}(3 s)$ and $\alpha_{v c}(3 s 3 p)=\alpha_{v c}(3 s)+\alpha_{v c}(3 p)$.

The valence part of the polarizability is determined by solving the inhomogeneous equation in valence space, which is approximated as [39]

$$
\begin{equation*}
\left(E_{v}-H_{\mathrm{eff}}\right)\left|\Psi\left(v, M^{\prime}\right)\right\rangle=D_{\mathrm{eff}}\left|\Psi_{0}(v, J, M)\right\rangle \tag{1}
\end{equation*}
$$

TABLE I. Comparison of experimental [40] and theoretical energy levels in cm^{-1}. Two-electron binding energies are given in the first row, energies in other rows are given relative to the ground state. Results of the CI, CI + MBPT, and $\mathrm{CI}+$ all-order calculations are given in columns labeled "CI," "CI + MBPT," and "CI + all." Corresponding relative differences of these three calculations with the experiment are given in percentages in the last three columns.

State	Expt.	CI	$\mathrm{CI}+\mathrm{MBPT}$	$\mathrm{CI}+$ all	Differences (cm^{-1})			Differences (\%)		
					CI	$\mathrm{CI}+\mathrm{MBPT}$	$\mathrm{CI}+\mathrm{all}$	CI	$\mathrm{CI}+\mathrm{MBPT}$	$\mathrm{CI}+$ all
$3 s^{2}{ }^{1} S_{0}$	634232	628511	634110	634226	-5722	- 123	-7	-0.9	-0.019	-0.001
$3 p^{2}{ }^{1} D_{2}$	122215	120224	122225	122294	- 1991	10	80	- 1.6	0.008	0.065
$3 p^{2}{ }^{3} P_{0}$	129708	128589	129745	129753	-1119	36	45	-0.9	0.028	0.035
$3 p^{23} P_{1}$	129842	128717	129878	129887	-1125	36	45	-0.9	0.028	0.035
$3 p^{2}{ }^{3} P_{2}$	130101	128964	130136	130145	-1137	35	44	-0.9	0.027	0.034
$3 s 3 d^{3} D_{3}$	142944	141676	142953	142944	- 1268	10	1	-0.9	0.007	0.000
$3 s 3 d^{3} D_{2}$	142946	141678	142955	142946	- 1267	10	1	-0.9	0.007	0.000
$3 s 3 d^{3} D_{1}$	142948	141681	142957	142948	- 1268	9	0	-0.9	0.006	0.000
$3 s 4 s^{3} S_{1}$	153377	151756	153357	153403	- 1621	-20	26	- 1.1	-0.013	0.017
$3 p^{2}{ }^{1} S_{0}$	153444	152674	153631	153613	- 771	187	169	-0.5	0.122	0.110
$3 s 4 s{ }^{1} S_{0}$	159070	157543	159079	159116	- 1527	9	47	- 1.0	0.006	0.029
$3 s 3 d^{1} D_{2}$	165765	165071	165937	165898	-694	172	133	-0.4	0.104	0.080
$3 s 3 p^{3} P_{0}$	52725	51559	52722	52770	- 1166	-3	45	-2.2	-0.006	0.086
$3 s 3 p^{3} P_{1}$	52853	51682	52849	52897	- 1171	-4	44	-2.2	-0.008	0.083
$3 s 3 p^{3} P_{2}$	53115	51934	53110	53159	- 1181	-5	44	-2.2	-0.010	0.082
$3 s 3 p{ }^{1} P_{1}$	82884	82998	82969	82933	113	84	48	0.1	0.102	0.058
$3 s 4 p^{3} P_{0}$	175230	173409	175202	175249	- 1821	-28	19	-1.0	-0.016	0.011
$3 s 4 p^{3} P_{1}$	175263	173441	175235	175282	- 1822	-28	19	-1.0	-0.016	0.011
$3 s 4 p^{3} P_{2}$	175336	173511	175308	175355	- 1825	-28	18	- 1.0	-0.016	0.011
$3 s 4 p{ }^{1} P_{1}$	176487	174807	176469	176511	-1680	-18	23	-1.0	-0.010	0.013

TABLE II. Contributions to the $3 s^{2}{ }^{1} S_{0}, 3 s 3 p^{3} P_{0}$, and $3 s 3 p^{1} P_{1}$ polarizabilities of Si^{2+} in a.u. The dominant contributions to the valence polarizabilities are listed separately with the corresponding absolute values of electric dipole reduced matrix elements given in columns labeled " D." The theoretical and experimental [40] transition energies are given in columns " ΔE_{th} " and " $\Delta E_{\text {expt. }}$ " The remaining contributions to valence polarizability are given in rows labeled "Other." The contributions from the core and $v c$ terms are given in rows " α_{c} " and " $\alpha_{v c}$," respectively. The dominant contributions to α_{0} listed in columns " α_{0} (A)" and " α_{0} (B)" are calculated with CI + all-order and experimental energies [40], respectively.

State	Contribution	$\Delta E_{\text {expt }}$	$\Delta E_{\text {th }}$	D	α_{0} (A)	α_{0} (B)
$3 s^{2}{ }^{1} S_{0}$	$3 s^{2}{ }^{1} S_{0}-3 s 3 p^{1} P_{1}$	82884	82933	2.539	11.375	11.382
	$3 s^{2} S_{0}-3 s 4 p^{1} P_{1}$	176487	176511	0.198	0.032	0.032
	Other				0.105	0.105
	α_{c}				0.162	0.162
	$\alpha_{v c}$				-0.011	-0.011
	Total				11.664	11.670
$3 s 3 p^{3} P_{0}$	$3 s 3 p^{3} P_{0}-3 p^{2}{ }^{3} P_{1}$	77117	77117	1.516	4.359	4.359
	$3 s 3 p^{3} P_{0}-3 s 3 d^{3} D_{1}$	90224	90179	1.779	5.137	5.135
	$3 s 3 p^{3} P_{0}-3 s 4 s^{3} S_{1}$	100652	100633	0.628	0.573	0.573
	Other				0.201	0.201
	α_{c}				0.162	0.162
	$\alpha_{v c}$				-0.006	-0.006
	Total				10.427	10.425
$3 s 3 p^{1} P_{1}$	$3 s 3 p^{1} P_{1}-3 s^{2}{ }^{1} S_{0}$	-82884	-82933	2.539	-3.792	- 3.794
	$3 s 3 p{ }^{1} P_{1}-3 p^{2}{ }^{1} D_{2}$	39330	39361	1.074	1.428	1.429
	$3 s 3 p^{1} P_{1}-3 p^{2}{ }^{1} S_{0}$	70560	70680	1.776	2.178	2.181
	$3 s 3 p^{1} P_{1}-3 s 4 s^{1} S_{0}$	76185	76184	0.996	0.634	0.634
	$3 s 3 p{ }^{1} P_{1}-3 s 3 d^{1} D_{2}$	82881	82965	4.450	11.642	11.654
	Other				0.440	0.440
	α_{c}				0.162	0.162
	$\alpha_{v c}$				-0.006	-0.006
	Total				12.686	12.701

for state v with total angular momentum J and projection M. The wave function $\Psi\left(v, M^{\prime}\right)$ is composed of parts that have angular momenta of $J^{\prime}=J, J \pm 1$ that allows us to determine the scalar and tensor polarizabilities of state $|v, J, M\rangle$ [39]. The effective dipole operator $D_{\text {eff }}$ includes RPA corrections.

Unless stated otherwise, we use atomic units (a.u.) for all matrix elements and polarizabilities throughout this paper: The numerical values of the elementary charge e, the reduced Planck constant $\hbar=h / 2 \pi$, and the electron mass m_{e}, are set equal to 1 . The atomic unit for polarizability can be converted to Système International units via $\alpha / h\left[\mathrm{~Hz} /(\mathrm{V} / \mathrm{m})^{2}\right]=$ $2.48832 \times 10^{-8} \alpha$ (a.u.) where the conversion coefficient is $4 \pi \epsilon_{0} a_{0}^{3} / h$ and the Planck constant h is factored out in order to provide direct conversion into frequency units; a_{0} is the Bohr radius, and ϵ_{0} is the electric constant.

III. RESULTS

Comparison of the energy levels (in cm^{-1}) obtained in the $\mathrm{CI}, \mathrm{CI}+\mathrm{MBPT}$, and CI + all-order approximations with experimental values [40] is given in Table I. Corresponding relative differences in these three calculations from the experiment are given in the last three columns. Two-electron binding energies are given in the first row of Table I, energies in other rows are measured from the ground state. For a few of the levels, the accuracy of the CI + MBPT calculation is
already on the order of our expected precision. The accuracy of the ground-state two-electron binding energy is significantly improved in the $\mathrm{CI}+$ all-order calculation in comparison with the CI + MBPT one; the CI + MBPT value differs from the experiment by $-123 \mathrm{~cm}^{-1}$, whereas, our all-order value differs from the experiment by only $-7 \mathrm{~cm}^{-1}$ (see line one of Table I). The inclusion of the all-order corevalence correlations significantly improves the differences between the singlet and the triplet states. For example, the $\mathrm{CI}+$ all-order value of the $3 s 3 p^{1} P_{1}-3 s 3 p^{3} P_{1}$ interval, $30035 \mathrm{~cm}^{-1}$, differs by only $4 \mathrm{~cm}^{-1}$ from the experimental value $30031 \mathrm{~cm}^{-1}$. The corresponding CI + MBPT value, $30120 \mathrm{~cm}^{-1}$, differs from the experiment by $89 \mathrm{~cm}^{-1}$. As a result, the accuracy of the transition energies used in the polarizability calculations improves in the $\mathrm{CI}+$ all-order approach.

We separated the effect of the Breit interaction by comparing the results of the calculations with and without the Breit. The Breit contribution to the energies is very small, 0.01% or less. However, the inclusion of the Breit interaction significantly improves the splittings of all triplet states. For example, the $3 s 3 p^{3} P_{1}-3 s 3 p^{3} P_{0}$ and $3 s 3 p^{3} P_{2}-$ $3 s 3 p^{3} P_{0}$ splittings are 136 and $413 \mathrm{~cm}^{-1}$ without Breit, respectively. The values of these splittings in our final calculations that include Breit, are 128 and $389 \mathrm{~cm}^{-1}$, in excellent agreement with the experimental values 129 and $390 \mathrm{~cm}^{-1}$.

We note that the transition energies relevant to the calculations of the $3 s 3 p^{3} P_{0}$ polarizabilities are more accurate than the energies relative to the ground state listed in Table I.

While we do not use the sum-over-state approach in the calculation of the polarizabilities, it is useful to establish the dominant contributions to the final values. We combine our $\mathrm{CI}+$ all-order results for the electric dipole matrix elements and energies according to the sum-over-states formula for the valence polarizability [1],

$$
\begin{equation*}
\alpha_{0}^{v}=\frac{2}{3(2 J+1)} \sum_{n} \frac{|\langle v\|D\| n\rangle|^{2}}{E_{n}-E_{v}} \tag{2}
\end{equation*}
$$

to calculate the contribution of specific transitions. Here, J is the total angular momentum of state v, D is the electric dipole operator, and E_{i} is the energy of state i. The breakdown of the contributions to the $3 s^{2}{ }^{1} S_{0}, 3 s 3 p^{3} P_{0}$, and $3 s 3 p^{1} P_{1}$ scalar polarizabilities α_{0} of Si^{2+} in a.u. is given in Table II. Absolute values of the corresponding reduced electric dipole matrix elements are listed in the column labeled D in $a_{0} e$. The theoretical and experimental [40] transition energies are given in columns ΔE_{th} and $\Delta E_{\text {expt }}$. The remaining valence contributions are given in rows labeled Other. The contributions from the core and $v c$ terms are listed in rows α_{c} and $\alpha_{v c}$, respectively. The dominant contributions to α_{0}, listed in columns α_{0} (A) and $\alpha_{0}(\mathrm{~B})$, are calculated with $\mathrm{CI}+$ all-order energies and experimental [40] energies, respectively. The differences between $\alpha_{0}(\mathrm{~A})$ and $\alpha_{0}(\mathrm{~B})$ values are small due to excellent agreement of the corresponding transition energies with the experiment. We take $\alpha_{0}(\mathrm{~B})$ results as final. Our study of the Breit interaction shows that it contributes only $0.03 \%-0.07 \%$ to the $a b$ initio values of polarizabilities.

IV. EVALUATION OF THE UNCERTAINTY AND CONCLUSION

There are three contributions to the uncertainties in the final polarizability values that arise from the uncertainties in the valence α_{0}^{v}, core α_{c}, and $\alpha_{v c}$ polarizability terms. To evaluate uncertainty in the valence polarizabilities, we compare the results of the CI, CI + MBPT, CI + all-order calculations with our final $\mathrm{CI}+$ all-order calculation in which energies in the dominant contributions are replaced by their experimental values. The results of the last two calculations are given in Table II in columns α_{0} (A) and α_{0} (B). We summarize the results of all four calculations in Table III. For consistency, we refer to these calculations as $\mathrm{CI}(\mathrm{A}), \mathrm{CI}+\mathrm{MBPT}(\mathrm{A}), \mathrm{CI}+$ all (A), and $\mathrm{CI}+$ all (B) since only theoretical energies (in the corresponding approximation) were used in the first three calculations. We evaluate the uncertainty of the final results in two different ways: (1) as the difference between the CI + all-order and the $\mathrm{CI}+$ MBPT calculations, listed in the row labeled "Difference all - MBPT," and (2) as the difference between the CI + all-order results with theoretical and experimental energies, listed in the row labeled "Difference (B) - (A)." We take the largest of the two uncertainties as the final uncertainty in the valence polarizability α_{0}^{v}. The uncertainty analysis is carried out separately for each state.

To evaluate the uncertainty in the α_{c} and $\alpha_{v c}$ contributions to the polarizability, we calculate these terms in both DF and RPA approximations. The DF values for the α_{c} and $\alpha_{v c}\left(3 s^{2}\right)$ are 0.153 and -0.0086 a.u., respectively. The difference between the RPA and the DF results is taken to be the uncertainty. Uncertainties of the core and valence polarizabilities are added in quadrature to obtain uncertainties of the final values.

The final results, listed in the row labeled Total α_{0}, are compared with other theoretical $[29,41]$ and experimental $[20,29]$ values. Our value for the ground-state polarizability is in excellent agreement with both the original RESIS value [20] and the revised RESIS analysis [29]. Our values for the ground and $3 s 3 p^{1} P_{1}$ state polarizabilities are in excellent agreement with theoretical values obtained with the largescale CI calculation with semiempirical inclusion of the core polarization [29]. The CI result of Ref. [41] is consistent with other values; the small difference is probably due to the omission of the highly excited states in the valence CI and the restricted treatment of the core excitations in Ref. [41].

We note that the values of the ${ }^{1} S_{0}$ and ${ }^{3} P_{0}$ polarizabilities given in Table III are very similar; their difference is only 10% of the ground-state polarizability.

To summarize, we have carried out a benchmark test of the theoretical and experimental determinations of the ground-state polarizability of the Si^{2+} ion. Our final result is in excellent agreement with the RESIS experimental value [20,29]. High-precision recommended values are provided for the excited state $3 s 3 p^{3} P_{0}$ and $3 s 3 p^{1} P_{1}$ polarizabilities. The near cancellation of the $n s^{2}{ }^{1} S_{0}$ ground state and the lowest nsnp ${ }^{3} P_{0}$ polarizabilities reported for $\mathrm{B}^{+}, \mathrm{Al}^{+}, \mathrm{In}^{+}, \mathrm{Tl}^{+}$, and Pb^{2+} is also observed for the Si^{2+} ion.

TABLE III. Summary of the results for the $3 s^{2}{ }^{1} S_{0}, 3 s 3 p^{3} P_{0}$, and $3 s 3 p^{1} P_{1}$ polarizabilities of Si^{2+} in a.u. and the evaluation of the uncertainties. First three rows give $a b$ initio results for valence polarizabilities calculated in the $\mathrm{CI}, \mathrm{CI}+\mathrm{MBPT}$, and $\mathrm{CI}+$ all-order approximations. In the $\mathrm{CI}+$ all (B) calculation, theoretical energies are replaced by the experimental values for the dominant contributions. The final results listed in row "Total α_{0} " are compared with other theoretical [29,41$]$ and experimental $[20,29]$ values.

Method	$3 s^{2}{ }^{1} S_{0}$	$3 s 3 p^{3} P_{0}$	$3 s 3 p^{1} P_{1}$
CI (A)	11.567	10.353	13.040
CI + MBPT (A)	11.502	10.262	12.539
CI + all (A)	11.512	10.271	12.530
CI + all (B)	11.519	10.268	12.545
Difference all - MBPT	0.010	0.009	-0.009
Difference (B) - (A)	0.007	-0.003	0.015
Final α_{0}^{v}	$11.519(10)$	$10.268(9)$	$12.545(15)$
α_{c}	$0.162(9)$	$0.162(9)$	$0.162(9)$
$\alpha_{v c}$	$-0.011(2)$	$-0.006(1)$	$-0.006(1)$
Total α_{0}	$11.670(13)$	$10.425(13)$	$12.701(17)$
Theory [29]	11.688		12.707
Theory [41]	11.75		
Experiment [20]	$11.666(4)$		
Experiment [20,29]	$11.669(9)$		

${ }^{\text {a }}$ This value is a result of a revised analysis [29] of the RESIS experiment [20].

ACKNOWLEDGMENTS

We thank J. Mitroy for bringing our attention to this problem. This research was performed, in part, under the sponsorship of the US Department of Commerce, National Institute of Standards and Technology and was supported
by the National Science Foundation under Physics Frontiers Center Grant No. PHY-0822671. The work of S.G.P. was supported, in part, by US NSF Grants No. PHY-1068699 and No. PHY-0758088. The work of M.G.K. was supported, in part, by RFBR Grant No. 11-02-00943.
[1] J. Mitroy, M. S. Safronova, and C. W. Clark, J. Phys. B 43, 202001 (2010).
[2] M. S. Safronova, D. Jiang, B. Arora, C. W. Clark, M. G. Kozlov, U. I. Safronova, and W. R. Johnson, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 94 (2010).
[3] C. R. Ekstrom, J. Schmiedmayer, M. S. Chapman, T. D. Hammond, and D. E. Pritchard, Phys. Rev. A 51, 3883 (1995).
[4] A. Derevianko, W. R. Johnson, M. S. Safronova, and J. F. Babb, Phys. Rev. Lett. 82, 3589 (1999).
[5] J. M. Amini and H. Gould, Phys. Rev. Lett. 91, 153001 (2003).
[6] M. S. Safronova and C. W. Clark, Phys. Rev. A 69, 040501 (2004).
[7] M. Auzinsh, K. Bluss, R. Ferber, F. Gahbauer, A. Jarmola, M. S. Safronova, U. I. Safronova, and M. Tamanis, Phys. Rev. A 75, 022502 (2007).
[8] M. Gunawardena, D. S. Elliott, M. S. Safronova, and U. Safronova, Phys. Rev. A 75, 022507 (2007).
[9] E. Iskrenova-Tchoukova and M. S. Safronova, Phys. Rev. A 78, 012508 (2008).
[10] J. Mitroy and M. S. Safronova, Phys. Rev. A 79, 012513 (2009).
[11] W. F. Holmgren, M. C. Revelle, V. P. A. Lonij, and A. D. Cronin, Phys. Rev. A 81, 053607 (2010).
[12] A. Kortyna, C. Tinsman, J. Grab, M. S. Safronova, and U. I. Safronova, Phys. Rev. A 83, 042511 (2011).
[13] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Phys. Rev. A 78, 032508 (2008).
[14] T. Rosenband et al., Science 319, 1808 (2008).
[15] Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, Nat. Photonics 5, 158 (2011).
[16] H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Palchikov, M. Takamoto, and H. Katori, Phys. Rev. Lett. 100, 053001 (2008).
[17] A. V. Gorshkov, A. M. Rey, A. J. Daley, M. M. Boyd, J. Ye, P. Zoller, and M. D. Lukin, Phys. Rev. Lett. 102, 110503 (2009).
[18] Atoms, Molecules and Clusters in Electric Fields. Theoretical Approaches to the Calculation of Electric Polarizability, edited by G. Maroulis (Imperial College Press, London, 2006).
[19] R. F. Ward Jr., W. G. Sturrus, and S. R. Lundeen, Phys. Rev. A 53, 113 (1996).
[20] R. A. Komara, M. A. Gearba, C. W. Fehrenbach, and S. R. Lundeen, J. Phys. B 38, 87 (2005).
[21] P. L. Jacobson, R. A. Komara, W. G. Sturrus, and S. R. Lundeen, Phys. Rev. A 62, 012509 (2000).
[22] E. L. Snow and S. R. Lundeen, Phys. Rev. A 77, 052501 (2008).
[23] R. A. Komara, M. A. Gearba, S. R. Lundeen, and C. W. Fehrenbach, Phys. Rev. A 67, 062502 (2003).
[24] E. L. Snow, M. A. Gearba, R. A. Komara, S. R. Lundeen, and W. G. Sturrus, Phys. Rev. A 71, 022510 (2005).
[25] M. E. Hanni, J. A. Keele, S. R. Lundeen, C. W. Fehrenbach, and W. G. Sturrus, Phys. Rev. A 81, 042512 (2010).
[26] J. A. Keele, M. E. Hanni, S. L. Woods, S. R. Lundeen, and C. W. Fehrenbach, Phys. Rev. A 83, 062501 (2011).
[27] J. A. Keele, S. R. Lundeen, and C. W. Fehrenbach, Phys. Rev. A 83, 062509 (2011).
[28] S. R. Lundeen and C. W. Fehrenbach, Phys. Rev. A 75, 032523 (2007).
[29] J. Mitroy, Phys. Rev. A 78, 052515 (2008).
[30] M. S. Safronova, M. G. Kozlov, and C. W. Clark, Phys. Rev. Lett. 107, 143006 (2011).
[31] M. S. Safronova, M. G. Kozlov, W. R. Johnson, and D. Jiang, Phys. Rev. A 80, 012516 (2009).
[32] M. G. Kozlov, Int. J. Quantum Chem. 100, 336 (2004).
[33] M. S. Safronova, M. G. Kozlov, and U. I. Safronova, Phys. Rev. A 85, 012507 (2012).
[34] C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, Phys. Rev. Lett. 104, 070802 (2010).
[35] S. G. Porsev and A. Derevianko, Phys. Rev. A 74, 020502(R) (2006).
[36] S. A. Kotochigova and I. I. Tupitsyn, J. Phys. B 20, 4759 (1987).
[37] V. A. Dzuba, V. V. Flambaum, and M. G. Kozlov, Phys. Rev. A 54, 3948 (1996).
[38] M. G. Kozlov, S. G. Porsev, and I. I. Tupitsyn, e-print arXiv:physics/0004076.
[39] M. G. Kozlov and S. G. Porsev, Eur. Phys. J. D 5, 59 (1999).
[40] Y. Ralchenko, A. Kramida, J. Reader, and the NIST ASD Team (2011). NIST Atomic Spectra Database (version 4.1) (online). Available at [http://physics.nist.gov/asd]. National Institute of Standards and Technology, Gaithersburg, MD.
[41] L. Hamonou and A. Hibbert, J. Phys. B 41, 245004 (2008).

