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Polarizabilities of Si2+: A benchmark test of theory and experiment
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We have calculated electric dipole polarizabilities of the 3s2 1S0, 3s3p 3P0, and 3s3p 1P1 states of the Si2+

ion using the recently developed configuration interaction + all-order method. A detailed evaluation of the
uncertainties of the final results is carried out. Our value for the ground-state electric dipole polarizability
11.670(13) a.u. is in excellent agreement with the resonant excitation Stark ionization spectroscopy value
11.669(9) a.u. [Komara et al., J. Phys. B 38, 87 (2005); Mitroy, Phys. Rev. A 78, 052515 (2008)]. This paper
represents a benchmark test of theory and experiment in divalent atoms. The near cancellation of the ns2 1S0

ground state and the lowest nsnp 3P0 polarizabilities previously observed in B+, Al+, In+, Tl+, and Pb2+ is also
found in the Si2+ ion.
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I. INTRODUCTION

The atomic dipole polarizability describes the first-order
response of an atom to an applied electric field. Atomic
polarizabilities have been the subject of considerable interest
and heightened importance in recent years due to a number
of applications, including the development of next-generation
optical atomic clocks, optical cooling and trapping schemes,
quantum information with atoms and ions, tests of fundamental
symmetries, studies of cold degenerate gases, thermometry and
other macroscopic standards, study of long-range interactions,
and atomic transition rate determinations [1]. An imperfect
knowledge of atomic polarizabilities is one of the largest
sources of uncertainty in the new generation of optical
frequency standards [1,2].

Most of the applications listed above involve monovalent
or divalent atoms and ions. There are a number of high-
precision benchmark tests of experimental and theoretical
values for the polarizabilities of monovalent systems [1,3–12].
However, there are few high-precision experimental data for
the polarizabilities of divalent systems, which are of particular
interest to optical clock development [13–16] and quantum
information [17]. The most recent data for polarizability and
Stark shifts of divalent systems are compiled in Tables 11, 13,
and 14 of Ref. [1].

For the first row monovalent systems, such as Li and Be+,
the highest-precision determination of the polarizabilities by
theoretical and experimental methods are found to be in good
agreement (see recent reviews [1,18] and references therein).
Here, we provide such a comparison for a second row divalent
species Si2+. We believe that the experimental data for this
ion provide the most precise value of the polarizability of any
atomic system with two valence electrons.

A. Experimental determination of polarizabilities from
Rydberg spectra

The polarizability of an ion can be extracted from the
energies of the nonpenetrating Rydberg series of the corre-

sponding parent system (see Ref. [19] and references therein).
The polarization interaction between the ionic core and the
Rydberg electron shifts the energy levels away from their
hydrogenic values. If the Rydberg electron is in a high angular
momentum state, it has negligible overlap with the core. In
such cases, the polarization interaction provides the dominant
contribution to the energy shift. This effect is utilized in
resonant excitation Stark ionization spectroscopy (RESIS)
[19–28]. RESIS experiments have been extremely successful
in the high-precision determination of the ground-state polar-
izabilities of H+

2 and D+
2 [21], Ne+ [19], Na-like Mg+ [22],

Na-like Si3+ [23], Mg-like Si2+ [20], Zn-like Kr6+ [28],
Ba+ [24], Hg-like Pb2+ [25], Fr-like Th3+ [26], and Rn-like
Th3+ [27]. Quadrupole polarizabilities and transition matrix
elements have also been determined for some of these systems.

To the best of our knowledge, RESIS experiments provide
the most precise values known to date for the polarizability of
any divalent atomic system. The most precise measurement has
been carried out for the 3s2 1S0 ground state of the Si2+ ion;
α0 = 11.666(4) a.u. [20]. Later analysis of the RESIS data
that included additional terms in the polarization expansion
yielded α0 = 11.669(9) a.u. [29]. Therefore, the Si2+ RESIS
experiment presents an excellent opportunity for a high-
precision benchmark comparison of theory and experiment.

In this paper, we use a recently developed configuration
iteration (CI) + all-order method [30–32] to calculate the prop-
erties of Si2+. Our value for the ground-state electric dipole
polarizability of 11.670(13) a.u. is in excellent agreement with
the RESIS result. Our previous calculation of the Hg-like Pb2+

ground-state polarizability [33] was also in agreement with the
RESIS value (accurate to 0.6%) within our estimated accuracy.

We note that Mg-like Si2+ was a particularly interesting
test system due to its similarity with Mg-like Al+, which
was used to construct an optical clock with a fractional
frequency uncertainty of 8.6 × 10−18 [34], the smallest such
uncertainty yet attained. At room temperature, one of the
largest contributions to the uncertainty budget of this clock
is the blackbody radiation (BBR) shift. The BBR frequency
shift in a clock transition is related to the difference in the
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static electric dipole polarizabilities between the two clock
states [35]. We have recently calculated this effect in Al+

using the same CI + all-order approach. Excellent agreement
of our present calculation with the experiment in the ground
state of Si2+ provides an additional test of the approach.

II. METHOD

To evaluate uncertainties of the final results, we carry out
three calculations in different approximations: CI [36], CI +
many-body perturbation theory (MBPT) [37], and CI + all-
order [30–32]. These methods have been described in a number
of papers [30,31,36,37], and we provide only a brief outline of
these approaches and a few details relevant to this particular
paper.

Our point of departure is a solution of the Dirac-Fock (DF)
equations,

Ĥ0 ψc = εc ψc,

where H0 is the relativistic DF Hamiltonian [31,37] and ψc

and εc are single-electron wave functions and energies. Self-
consistent calculations were performed for the [1s22s22p6]
closed core, and the 3s, 3p, 3d, 4s, 4p, and 4d orbitals were
formed in this potential. We constructed the B-spline basis set
consisting of N = 35 orbitals for each of the s,p1/2,p3/2, . . . ,

partial waves up to l � 5. The basis set is formed in a spherical
cavity with radius 60 a.u. The CI space is effectively complete
and includes 23 orbitals for each partial wave with l = 0 · · · 4.

The wave functions and the low-lying energy levels are
determined by solving the multiparticle relativistic equation

for two valence electrons [36],

Heff(En)�n = En�n.

The effective Hamiltonian is defined as

Heff(E) = HFC + �(E),

where HFC is the Hamiltonian in the frozen-core approxima-
tion. The energy-dependent operator �(E) takes into account
virtual core excitations. It is zero in a pure CI calculation.
The �(E) part of the effective Hamiltonian is constructed
using second-order perturbation theory in the CI + MBPT
approach [37] and linearized single-double coupled-cluster
method in the CI + all-order approach [31]. Construction
of the effective Hamiltonian in the CI + MBPT and CI +
all-order approximations is described in detail in Refs. [31,37].
The dominant part of the Breit interaction is included as
described in Ref. [38].

The scalar polarizability α0 is separated into a valence
polarizability αv

0 , ionic-core polarizability αc, and a small term
αvc that modifies ionic-core polarizability due to the presence
of two valence electrons. The last two terms are evaluated
in the random-phase approximation (RPA). Their uncertainty
is determined by comparing the DF and RPA values. The
small αvc term is calculated by adding vc contributions
from the individual electrons, i.e., αvc(3s2) = 2αvc(3s) and
αvc(3s3p) = αvc(3s) + αvc(3p).

The valence part of the polarizability is determined by
solving the inhomogeneous equation in valence space, which
is approximated as [39]

(Ev − Heff)|�(v,M ′)〉 = Deff|�0(v,J,M)〉 (1)

TABLE I. Comparison of experimental [40] and theoretical energy levels in cm−1. Two-electron binding energies are given in the first row,
energies in other rows are given relative to the ground state. Results of the CI, CI + MBPT, and CI + all-order calculations are given in
columns labeled “CI,” “CI + MBPT,” and “CI + all.” Corresponding relative differences of these three calculations with the experiment are
given in percentages in the last three columns.

Differences (cm−1) Differences (%)

State Expt. CI CI + MBPT CI + all CI CI + MBPT CI + all CI CI + MBPT CI + all

3s2 1S0 634 232 628 511 634 110 634 226 − 5722 − 123 − 7 − 0.9 − 0.019 − 0.001
3p2 1D2 122 215 120 224 122 225 122 294 − 1991 10 80 − 1.6 0.008 0.065
3p2 3P0 129 708 128 589 129 745 129 753 − 1119 36 45 − 0.9 0.028 0.035
3p2 3P1 129 842 128 717 129 878 129 887 − 1125 36 45 − 0.9 0.028 0.035
3p2 3P2 130 101 128 964 130 136 130 145 − 1137 35 44 − 0.9 0.027 0.034
3s3d 3D3 142 944 141 676 142 953 142 944 − 1268 10 1 − 0.9 0.007 0.000
3s3d 3D2 142 946 141 678 142 955 142 946 − 1267 10 1 − 0.9 0.007 0.000
3s3d 3D1 142 948 141 681 142 957 142 948 − 1268 9 0 − 0.9 0.006 0.000
3s4s 3S1 153 377 151 756 153 357 153 403 − 1621 − 20 26 − 1.1 − 0.013 0.017
3p2 1S0 153 444 152 674 153 631 153 613 − 771 187 169 − 0.5 0.122 0.110
3s4s 1S0 159 070 157 543 159 079 159 116 − 1527 9 47 − 1.0 0.006 0.029
3s3d 1D2 165 765 165 071 165 937 165 898 − 694 172 133 − 0.4 0.104 0.080
3s3p 3P0 52 725 51 559 52 722 52 770 − 1166 − 3 45 − 2.2 − 0.006 0.086
3s3p 3P1 52 853 51 682 52 849 52 897 − 1171 − 4 44 − 2.2 − 0.008 0.083
3s3p 3P2 53 115 51 934 53 110 53 159 − 1181 − 5 44 − 2.2 − 0.010 0.082
3s3p 1P1 82 884 82 998 82 969 82 933 113 84 48 0.1 0.102 0.058
3s4p 3P0 175 230 173 409 175 202 175 249 − 1821 − 28 19 − 1.0 − 0.016 0.011
3s4p 3P1 175 263 173 441 175 235 175 282 − 1822 − 28 19 − 1.0 − 0.016 0.011
3s4p 3P2 175 336 173 511 175 308 175 355 − 1825 − 28 18 − 1.0 − 0.016 0.011
3s4p 1P1 176 487 174 807 176 469 176 511 − 1680 − 18 23 − 1.0 − 0.010 0.013
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TABLE II. Contributions to the 3s2 1S0, 3s3p 3P0, and 3s3p 1P1 polarizabilities of Si2+ in a.u. The dominant contributions to the valence
polarizabilities are listed separately with the corresponding absolute values of electric dipole reduced matrix elements given in columns labeled
“D.” The theoretical and experimental [40] transition energies are given in columns “�Eth” and “�Eexpt.” The remaining contributions to
valence polarizability are given in rows labeled “Other.” The contributions from the core and vc terms are given in rows “αc” and “αvc,”
respectively. The dominant contributions to α0 listed in columns “α0 (A)” and “α0 (B)” are calculated with CI + all-order and experimental
energies [40], respectively.

State Contribution �Eexpt �Eth D α0 (A) α0 (B)

3s2 1S0 3s2 1S0 − 3s3p 1P1 82 884 82 933 2.539 11.375 11.382
3s2 1S0 − 3s4p 1P1 176 487 176 511 0.198 0.032 0.032

Other 0.105 0.105
αc 0.162 0.162
αvc − 0.011 − 0.011

Total 11.664 11.670

3s3p 3P0 3s3p 3P0 − 3p2 3P1 77 117 77 117 1.516 4.359 4.359
3s3p 3P0 − 3s3d 3D1 90 224 90 179 1.779 5.137 5.135
3s3p 3P0 − 3s4s 3S1 100 652 100 633 0.628 0.573 0.573

Other 0.201 0.201
αc 0.162 0.162
αvc − 0.006 − 0.006

Total 10.427 10.425

3s3p 1P1 3s3p 1P1 − 3s2 1S0 − 82 884 − 82 933 2.539 − 3.792 − 3.794
3s3p 1P1 − 3p2 1D2 39 330 39 361 1.074 1.428 1.429
3s3p 1P1 − 3p2 1S0 70 560 70 680 1.776 2.178 2.181
3s3p 1P1 − 3s4s 1S0 76 185 76 184 0.996 0.634 0.634
3s3p 1P1 − 3s3d 1D2 82 881 82 965 4.450 11.642 11.654

Other 0.440 0.440
αc 0.162 0.162
αvc − 0.006 − 0.006

Total 12.686 12.701

for state v with total angular momentum J and projection
M . The wave function �(v,M ′) is composed of parts that
have angular momenta of J ′ = J,J ± 1 that allows us to
determine the scalar and tensor polarizabilities of state
|v,J,M〉 [39]. The effective dipole operator Deff includes RPA
corrections.

Unless stated otherwise, we use atomic units (a.u.) for all
matrix elements and polarizabilities throughout this paper:
The numerical values of the elementary charge e, the reduced
Planck constant h̄ = h/2π , and the electron mass me, are set
equal to 1. The atomic unit for polarizability can be con-
verted to Système International units via α/h [Hz/(V/m)2] =
2.488 32 × 10−8α (a.u.) where the conversion coefficient is
4πε0a

3
0/h and the Planck constant h is factored out in order to

provide direct conversion into frequency units; a0 is the Bohr
radius, and ε0 is the electric constant.

III. RESULTS

Comparison of the energy levels (in cm−1) obtained in the
CI, CI + MBPT, and CI + all-order approximations with
experimental values [40] is given in Table I. Corresponding
relative differences in these three calculations from the
experiment are given in the last three columns. Two-electron
binding energies are given in the first row of Table I, energies
in other rows are measured from the ground state. For a few
of the levels, the accuracy of the CI + MBPT calculation is

already on the order of our expected precision. The accuracy of
the ground-state two-electron binding energy is significantly
improved in the CI + all-order calculation in comparison
with the CI + MBPT one; the CI + MBPT value differs
from the experiment by −123 cm−1, whereas, our all-order
value differs from the experiment by only −7 cm−1 (see
line one of Table I). The inclusion of the all-order core-
valence correlations significantly improves the differences
between the singlet and the triplet states. For example, the
CI + all-order value of the 3s3p 1P1 − 3s3p 3P1 interval,
30 035 cm−1, differs by only 4 cm−1 from the experimental
value 30 031 cm−1. The corresponding CI + MBPT value,
30 120 cm−1, differs from the experiment by 89 cm−1. As
a result, the accuracy of the transition energies used in the
polarizability calculations improves in the CI + all-order
approach.

We separated the effect of the Breit interaction by
comparing the results of the calculations with and without
the Breit. The Breit contribution to the energies is very
small, 0.01% or less. However, the inclusion of the Breit
interaction significantly improves the splittings of all triplet
states. For example, the 3s3p 3P1 − 3s3p 3P0 and 3s3p 3P2 −
3s3p 3P0 splittings are 136 and 413 cm−1 without Breit,
respectively. The values of these splittings in our final
calculations that include Breit, are 128 and 389 cm−1, in
excellent agreement with the experimental values 129 and
390 cm−1.
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We note that the transition energies relevant to the cal-
culations of the 3s3p 3P0 polarizabilities are more accurate
than the energies relative to the ground state listed in
Table I.

While we do not use the sum-over-state approach in the
calculation of the polarizabilities, it is useful to establish the
dominant contributions to the final values. We combine our
CI + all-order results for the electric dipole matrix elements
and energies according to the sum-over-states formula for the
valence polarizability [1],

αv
0 = 2

3(2J + 1)

∑

n

|〈v||D||n〉|2
En − Ev

(2)

to calculate the contribution of specific transitions. Here,
J is the total angular momentum of state v, D is the
electric dipole operator, and Ei is the energy of state i. The
breakdown of the contributions to the 3s2 1S0, 3s3p 3P0, and
3s3p 1P1 scalar polarizabilities α0 of Si2+ in a.u. is given
in Table II. Absolute values of the corresponding reduced
electric dipole matrix elements are listed in the column labeled
D in a0e. The theoretical and experimental [40] transition
energies are given in columns �Eth and �Eexpt. The remaining
valence contributions are given in rows labeled Other. The
contributions from the core and vc terms are listed in rows
αc and αvc, respectively. The dominant contributions to α0,
listed in columns α0 (A) and α0 (B), are calculated with CI +
all-order energies and experimental [40] energies, respectively.
The differences between α0 (A) and α0 (B) values are small
due to excellent agreement of the corresponding transition
energies with the experiment. We take α0 (B) results as final.
Our study of the Breit interaction shows that it contributes only
0.03%–0.07% to the ab initio values of polarizabilities.

IV. EVALUATION OF THE UNCERTAINTY AND
CONCLUSION

There are three contributions to the uncertainties in the
final polarizability values that arise from the uncertainties
in the valence αv

0 , core αc, and αvc polarizability terms.
To evaluate uncertainty in the valence polarizabilities, we
compare the results of the CI, CI + MBPT, CI + all-order
calculations with our final CI + all-order calculation in
which energies in the dominant contributions are replaced
by their experimental values. The results of the last two
calculations are given in Table II in columns α0 (A) and
α0 (B). We summarize the results of all four calculations
in Table III. For consistency, we refer to these calculations
as CI (A), CI + MBPT (A), CI + all (A), and CI +
all (B) since only theoretical energies (in the corresponding
approximation) were used in the first three calculations. We
evaluate the uncertainty of the final results in two different
ways: (1) as the difference between the CI + all-order and the
CI + MBPT calculations, listed in the row labeled “Difference
all − MBPT,” and (2) as the difference between the CI +
all-order results with theoretical and experimental energies,
listed in the row labeled “Difference (B) − (A).” We take the
largest of the two uncertainties as the final uncertainty in the
valence polarizability αv

0 . The uncertainty analysis is carried
out separately for each state.

To evaluate the uncertainty in the αc and αvc contributions
to the polarizability, we calculate these terms in both DF and
RPA approximations. The DF values for the αc and αvc(3s2) are
0.153 and −0.0086 a.u., respectively. The difference between
the RPA and the DF results is taken to be the uncertainty.
Uncertainties of the core and valence polarizabilities are added
in quadrature to obtain uncertainties of the final values.

The final results, listed in the row labeled Total α0, are
compared with other theoretical [29,41] and experimental
[20,29] values. Our value for the ground-state polarizability is
in excellent agreement with both the original RESIS value [20]
and the revised RESIS analysis [29]. Our values for the
ground and 3s3p 1P1 state polarizabilities are in excellent
agreement with theoretical values obtained with the large-
scale CI calculation with semiempirical inclusion of the core
polarization [29]. The CI result of Ref. [41] is consistent
with other values; the small difference is probably due to the
omission of the highly excited states in the valence CI and the
restricted treatment of the core excitations in Ref. [41].

We note that the values of the 1S0 and 3P0 polarizabilities
given in Table III are very similar; their difference is only 10%
of the ground-state polarizability.

To summarize, we have carried out a benchmark test
of the theoretical and experimental determinations of the
ground-state polarizability of the Si2+ ion. Our final result
is in excellent agreement with the RESIS experimental value
[20,29]. High-precision recommended values are provided for
the excited state 3s3p 3P0 and 3s3p 1P1 polarizabilities. The
near cancellation of the ns2 1S0 ground state and the lowest
nsnp 3P0 polarizabilities reported for B+, Al+, In+, Tl+, and
Pb2+ is also observed for the Si2+ ion.

TABLE III. Summary of the results for the 3s2 1S0, 3s3p 3P0,
and 3s3p 1P1 polarizabilities of Si2+ in a.u. and the evaluation of
the uncertainties. First three rows give ab initio results for valence
polarizabilities calculated in the CI, CI + MBPT, and CI +
all-order approximations. In the CI + all (B) calculation, theoretical
energies are replaced by the experimental values for the dominant
contributions. The final results listed in row “Total α0” are compared
with other theoretical [29,41] and experimental [20,29] values.

Method 3s2 1S0 3s3p 3P0 3s3p 1P1

CI (A) 11.567 10.353 13.040
CI + MBPT (A) 11.502 10.262 12.539
CI + all (A) 11.512 10.271 12.530
CI + all (B) 11.519 10.268 12.545
Difference all − MBPT 0.010 0.009 − 0.009
Difference (B) − (A) 0.007 − 0.003 0.015
Final αv

0 11.519(10) 10.268(9) 12.545(15)
αc 0.162(9) 0.162(9) 0.162(9)
αvc − 0.011(2) − 0.006(1) − 0.006(1)
Total α0 11.670(13) 10.425(13) 12.701(17)
Theory [29] 11.688 12.707
Theory [41] 11.75
Experiment [20] 11.666(4)
Experiment [20,29]a 11.669(9)

aThis value is a result of a revised analysis [29] of the RESIS
experiment [20].
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