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We evaluated the C6 coefficients of Yb-Yb, Yb-alkali, and Yb-group II van der Waals interactions with

2% uncertainty. The only existing experimental result for such quantities is for the Yb-Yb dimer. Our

value, C6 ¼ 1929ð39Þ a:u:, is in excellent agreement with the recent experimental determination of

1932(35) a.u. We have also developed a new approach for the calculation of the dynamic correction to the

blackbody radiation shift. We have calculated this quantity for the Yb 6s2 1S0 � 6s6p 3Po
0 clock transition

with 3.5% uncertainty. This reduces the fractional uncertainty due to the blackbody radiation shift in the

Yb optical clock at 300 K to the 10�18 level.
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Introduction.—Ytterbium (Yb: Z ¼ 70) has recently
emerged as a subject of great interest in ultracold chemis-
try, physics, and metrology. The observation of state-
resolved ionic chemical reactions was recently reported
for the Ybþ þ Rb ! Ybþ Rbþ system [1]. Yb is a favor-
ite candidate for the studies of ultracold gas mixtures. For
example, Li and Yb mixtures have recently been brought to
simultaneous quantum degeneracy [2–5] and it appears
that cold YbLi molecules could be formed by magneto-
association [6]. Controlled production of ultracold YbRb*
molecules by photoassociation in a mixture of Rb and Yb
gases was recently reported in Refs. [7,8]. Such mixtures
are of interest for producing ultracold polar molecules for
study of dipolar quantum matter, fundamental symmetry
studies, and many-body quantum simulation [5]. The avail-
ability of five bosonic and two fermionic stable isotopes
makes Yb especially attractive for studies of multicompo-
nent superfluids.

The spectrum of Yb contains a number of long-lived
excited states that are conveniently accessed by optical
techniques. This makes Yb an excellent candidate for
atomic parity violation (APV) studies that test the standard
model of electroweak interactions, put limits on its possible
extensions, constrain parameters of weak hadronic interac-
tions, and may yield information on neutron distributions
within nuclei [9,10]. The APV signal recently observed in
the Yb 6s2 1S0 � 5d6s 3D1 408 nm forbidden transition

[10,11] is 2 orders of magnitude larger than in Cs, subject
of the most accurate APV study to date. Such long-lived
states are also convenient for the development of next
generation ultraprecise frequency standards. The Yb 1S0 !
3Po

0 578 nm transition now provides one of theworld’s most

accurate optical atomic frequency standards [12,13].
The work carried out in this Letter is pertinent to all

applications mentioned above. Our two main subjects are

the determination of van der Waals C6 coefficients that
characterize the long range interactions between two
atoms, and the blackbody radiation (BBR) shifts of the
two states in atomic clock transitions. Knowledge of the
long range interactions in Yb-Yb, Yb-alkali, and Yb-group
II dimers is critical to understanding the physics of dilute
gas mixtures. The dynamic correction to the BBR shift is
one of the largest irreducible contributions to the uncer-
tainty budget of the Yb clock [12], and it is difficult to
measure directly. These two seemingly disparate topics
both require accurate determination of frequency-
dependent atomic polarizabilities over a wide range of
frequencies. Therefore, it is natural to consider them in
the same work. A future accurate theoretical determination
of the APV amplitude in Yb requires a similar approach,
and this work provides a background for such studies.
We carry out the calculation of frequency-dependent

atomic polarizabilities using the first-principles approach
that combines configuration interaction (CI) with the
coupled-cluster all-order approach (CIþ all-order) that
treats both core and valence correlation to all orders.
Several new method developments are presented in this
Letter. First, we have implemented the reduced linear
equation (RLE) and direct inversion in iterative subspace
(DIIS) stabilizer procedures described in Ref. [14] into the
coupled-cluster part of the CIþ all-order method.
Otherwise, the construction of the effective Hamiltonian
needed for the incorporation of the core and core-valence
correlations into the CI method could not be carried out
due to convergence problems associated with extremely
large correlations involving the 4f shell. Second, we have
applied the CIþ all-order method for the first time to the
calculation ofC6 coefficients. Finally, we have developed a
new approach to the calculation of the dynamic correction
to the blackbody radiation shift in terms of the second
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partial derivative with respect to frequency of the dynamic
polarizability, as obtained from the solution of the inho-
mogeneous equation in the valence sector. Previous calcu-
lations of the dynamic correction to the BBR shift
accounted for the contributions of just a few intermediate
states to the polarizability [15].

Unless stated otherwise, we use atomic units (a.u.) for all
matrix elements and polarizabilities throughout this Letter.
The atomic unit for polarizability can be converted to SI
units via �=h ½Hz=ðV=mÞ2� ¼ 2:48832� 10�8� ða:u:Þ,
where the conversion coefficient is 4��0a

3
0=h, a0 is the

Bohr radius, and �0 is the electric constant.
Calculation of Yb properties requires an accurate treat-

ment of both core-valence and valence-valence correla-
tions. This can be accomplished within the framework of
the CIþ all-order method that combines configuration
interaction and coupled-cluster approaches [16–18].
Here, we report the extension of this method that resolves
the convergence problems associated with particularly
large correlation corrections as well as apply it for the first
time to the calculation of the C6 coefficients. We refer the
reader to Refs. [16,17] for detailed description of this
approach, and here, we report only new method develop-
ments specific to this Letter. In order to establish the
accuracy of our approach, we also perform the pure CI
and the CI combined with many-body perturbation theory
(CIþMBPT) calculations carried out with the same pa-
rameters such as basis set, configuration space, number of
partial waves, etc.

The single-electron energies and the wave functions are
found from the solution of the Dirac-Hartree-Fock (DHF)
equations. Then the wave functions and the low-lying
energy levels are determined by solving the multiparticle
relativistic equation for two valence electrons [19],
HeffðEnÞ�n ¼ En�n. The effective Hamiltonian is defined
as HeffðEÞ ¼ HFC þ �ðEÞ, where HFC is the Hamiltonian
in the frozen-core approximation. The energy-dependent
operator �ðEÞ, which takes into account virtual core exci-
tations, is constructed using second-order perturbation the-
ory in the CIþMBPT method [20] and using a linearized
coupled-cluster single-double method in the CIþ all-order
approach [16]. However, the CIþ all-order approach
developed in Refs. [16,17] could not be directly imple-
mented for Yb owing to convergence problems of the all-
order equations associated with large oscillations of the
iterative solution due to very large correlations in the 4f
shell. Both the Yb2þ core and some of the Ybþ valence
shell all-order equations that are used to construct the
effective Hamiltonian diverge using conventional iteration
schemes. We have resolved this problem by using RLE and
DIIS convergence stabilizers described in Ref. [14] within
the framework of the CIþ all-order method. Both the DIIS
and RLE methods seek to minimize the error between the
iteratively found solutions of the all-order equations and
the exact answer using a least-squares approach to the error

minimization. Since the exact answer is unknown, the
approximate solution is constructed as a linear combina-
tion of a series of iteratively found solutions.
We present the energy levels obtained in the CI, CIþ

MBPT, and CIþ all-order approximations and compare
them with the experimental values [21] in Table I of the
Supplemental Material [26]. At the CI stage, the theoretical
energy levels differ rather significantly from the experi-
mental energies, up to 19% for the 6s6p states. Including
the core-valence correlations in the second order of the
MBPT improves the agreement to the 1.5–5.5% level.
Further improvement of the theoretical energies is
achieved when the CIþ all-order approximation is used.
The two-electron binding energy of the ground state is
accurate to 0.7% with the ab initio CIþ all-order
approach, a factor of 2 improvement in comparison with
the CIþMBPT result.
The valence part of the polarizability is determined by

solving the inhomogeneous equation of perturbation the-
ory in the valence space, which is approximated as

ðEv �HeffÞj�ðv;M0Þi ¼ Deff;qj�0ðv; J;MÞi (1)

for a valence state v with the total angular momentum J
and projection M [27]. The effective dipole operator Deff

includes random phase approximation (RPA) corrections.
The ionic core part of the polarizability, �c, is calculated
separately in the RPA and is found to be �c ¼ 6:4 a:u: The
small valence-core �vc term that corrects the ionic core
polarizability for the presence of the valence electrons is
also calculated in the RPA; it is equal to �0:4 a:u: and
�0:2 a:u: for the 6s2 1S0 and 6s6p

3P0 states, respectively.

DHF calculations are carried out as well for both of these
contributions to evaluate the uncertainty associated with

TABLE I. The 6s2 1S0 and 6s6p 3Po
0 static polarizabilities

�gð! ¼ 0Þ of Yb and their difference �� � �ð3Po
0Þ � �ð1S0Þ

calculated in CI, CIþMBPT, and CIþ all-order approxima-
tions in a.u. The CIþ all-order values are taken as final. The
present results are compared with other theoretical and experi-
mental values.

Method �ð1S0Þ �ð3Po
0Þ ��

CI 187.9 279.7 91.6

CIþ RPA 166.1 258.4 92.3

CIþMBPTþ RPA 138.3 305.9 167.5

CIþ all-orderþ RPA 140.9 293.2 152.3

Final 141(2) 293(10) 152

Theory [15] (2006) 111.3(5) 266(15) 155

Theory [22] (2007) 143

Theory [23] (2008) 144.6

Theory [24] (2010) 141(6) 302(14) 161

Reference [25]a (2012) 134.4–144.2 280–290

Expt. [13] (2012) 145.726(3)

aConstraints based on experimental data. The uncertainty in each
of these values is 1.0.
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these terms, which was found to be negligible at the present
level of accuracy. The contributions to the 6s2 1S0 and

6s6p 3Po
0 polarizabilities � of Yb are given in Table II of

the Supplemental Material [26].
Accurate calculation of the polarizabilities of low-lying

states is more difficult for Yb than for alkaline-earth atoms.
It is known that the main contribution to the ground state
polarizability of Yb comes from 4f146s6p 1Po

1 and
4f135d6s2ð7=2; 5=2Þo1 states (see, e.g., Ref. [22]). The en-
ergy difference between these states is only 3789 cm�1

and they strongly interact with each other. Figure 1 of the
Supplemental Material [26] illustrates positions of the
relevant energy levels. Calculations that treat Yb as an
atom with only two valence electrons fail to account prop-
erly for the interaction between valence and core-excited
states and describe states with an unfilled f shell. While the
state 4f135d6s2ð7=2; 5=2Þo1 does not belong to the valence
subspace and is not directly mixed with the 4f146s6p 1Po

1

state in our calculations, its effect is introduced via the
calculation of the effective Hamiltonian, since we allow all
single and double excitations of the core shells during its
construction. As a result, the polarizability calculation
carried out via the solution of the inhomogeneous equation
does not appear to be affected by this problem. A theoreti-
cal explanation of this fact was suggested in Ref. [24]
which considered mixed and unmixed basis sets that
included 4f146s6p 1Po

1 and 4f135d6s2ð7=2; 5=2Þo1 states.
Excellent agreement of our results with all measured Yb
polarizability-related properties, including Stark shift and
magic wavelength of the 6s2 1S0 � 6s6p 3Po

0 transition and

the C6 coefficient of the Yb-Yb dimer, confirms that the
mixing problem does not appear to affect such properties.
We note that this is only true as long as no experimental
data are substituted for theoretical CIþ all-order

quantities in any part of the calculations, since this will
compromise the basis set completeness [24]. It follows that
the direct solution of the inhomogeneous equation may be
more accurate than expected from the comparison of the
individual matrix elements with experiment. This conclu-
sion is important for future calculations of the parity-
violating amplitudes that could by evaluated by the same
techniques.
Table I presents results for the static polarizabilities of

the 6s2 1S0 and 6s6p 3Po
0 states and their differences. We

note that the states with an unfilled 4f shell contributed
less to the polarizability of the 3Po

0 than 1S0 state. In

particular, even-parity states with an unfilled 4f shell lie
rather high in energy and their contributions to the polar-
izability and influence on other states is not so significant.
The results obtained in the CI, CIþ RPA, CIþMBPTþ
RPA, and CIþ all-orderþ RPA approximations are pre-
sented. Our recommended values obtained at the CIþ
all-orderþ RPA stage are in a reasonable agreement
with other theoretical values. We emphasize that our cal-
culations are completely ab initio. The most recent recom-
mended values of Ref. [24] include an adjustment to
reproduce the experimental value of the magic wavelength.
The set of accurate experimental data was used to set upper
and lower bounds on the 1S0 and 3Po

0 polarizabilities in

Ref. [25]. Our recommended values are in excellent agree-
ment with these constraints taking an account the uncer-
tainties. We can roughly estimate the uncertainty of our
calculations as the difference of the CIþMBPT and CIþ
all-order values, which yields 1.8% and 4.3% for 1S0 and
3Po

0 states. We note that the CIþ all-order value is higher

than CIþMBPT for 1S0 but lower for 3Po
0 , so we can

expect that these uncertainties will add cumulatively for
the �� polarizability difference. However, our value of
�� agrees with a recent experiment to 4.3%, so our values
are somewhat more accurate than the estimates above (1%
and 3.5%, respectively). A direct measurement of the
ground state polarizability with 1% accuracy would be an
excellent test of the quality of calculations.
To further check the accuracy of our approach, we

calculated the magic wavelength � for the 1S0 and 3Po
0

states. At the magic wavelength, the frequency-dependent
polarizabilities of the two states are equal. We obtain � ¼
754 nm in the CIþ all-order approximation, which is
within 1% of the experimental value 759.355 nm [31].
The polarizability of the 3Po

0 state grows rapidly in the

vicinity of the intersection of the ac polarizabilities. It
means that even a small change in � leads to a significant
change in �ð3Po

0Þ. For example, the CIþMBPT value is

significantly higher, 789 nm. Such close agreement of the
CIþ all-order value with the experimental wavelength
confirms the accuracy of the polarizabilities quoted above.
An important application of the polarizability calcula-

tion is to determine the shift of the 1S0 � 3Po
0 transition

frequency by the effects of the ambient blackbody

TABLE II. The values of the C6 coefficients (in a.u.) for the
homonuclear Yb dimer and the heteronuclear alkali-Yb and
group II-Yb dimers. All atoms are in their ground states. The
�ði!Þ for alkali and Mg, Sr, and Ca are taken from Ref. [28] in
rows CIþMBPT and CIþ allðaÞ. The �ði!Þ for Mg and Ca are
calculated with the CIþ all-order method in the present work in
row CIþ allðbÞ. The present CIþMBPT and CIþ all-order
Yb �ði!Þ values are used in rows CIþMBPT and
CIþ all-orderða;bÞ, respectively. The uncertainty of the final
CIþ all-order values is estimated to be 2%.

Li-Yb Na-Yb K-Yb Rb-Yb Cs-Yb

CIþMBPT 1534 1655 2548 2807 3367

CIþ allðaÞ 1551 1672 2576 2837 3403

Theory [29] 1594

Yb-Yb Mg-Yb Ca-Yb Sr-Yb

CIþMBPT 1901 1086 2000 2414

CIþ allðbÞ 1093 2017 2435

CIþ allðbÞ 1929 1092 2024

Expt. [30] 1932(35)
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radiation. The BBR shift is now one of the largest irreduc-
ible contributions to the budget of the uncertainty of optical
atomic clocks. The leading contribution to the BBR shift of
the energy level g can be expressed in terms of its static
polarizability �gð! ¼ 0Þ by

�Eg ¼ � 2

15
ð��Þ3ðkBTÞ4�gð0Þ½1þ ��; (2)

where kB is the Boltzmann constant, T is the temperature,
and� is a ‘‘dynamic’’ fractional correction to the total shift
that reflects the averaging of the frequency dependence
polarizability over the frequency of the blackbody radia-
tion spectrum [15].

The dynamic correction � can be approximated by

� ¼ �1 þ �2 þ �3 ¼ 80

63ð2Jg þ 1Þ
�2

�gð0ÞkBT

�X

n

jhnjjDeffjjgij2
y3n

�
1þ 21�2

5y2n
þ 336�4

11y4n

�
; (3)

where yn ¼ ðEn � EgÞ=ðkBTÞ [15]. We express the domi-

nant term in the equation above as the second derivative of
the polarizability:

�1 ¼ 20

21ð2Jg þ 1Þ
ð�kBTÞ2
�gð0Þ

@2

@E2
g

�gð0Þ (4)

and find �1ð1S0Þ ¼ 0:00116 and �1ð3P0Þ ¼ 0:00934. We

calculated the second term in Eq. (3) using both a forth
derivative of � and sum over states with the CIþ all-order
values of the matrix elements; identical result �2ð3P0Þ ¼
0:00029 was obtained. �2 is negligible for 1S0, 0.000003.
The third term can be neglected at the present level of
accuracy. The resulting values of the dynamic corrections
to the BBR shift at 300 K are ��BBRð1S0Þ ¼ �0:0014 Hz
and ��BBRð3P0Þ ¼ �0:0243 Hz, respectively.

The total dynamic correction to the BBR shift at 300 K
is determined as the difference between the individual

shifts, ��dyn
BBR ¼ �0:0229ð8Þ Hz. The uncertainty is

taken to be 3.5% based on the uncertainty in the CIþ
all-order value of the 3P0 polarizability obtained above.

Combining this result with the experimental determination
of the �� ¼ 145:726ð3Þ a:u: that yields ��static

BBR ¼
�1:25484ð3Þ Hz [13], we get the final result for the BBR
shift at 300 K: ��BBR ¼ �1:2777ð8Þ Hz. This value is in
excellent agreement with the determination of the BBR
shift mostly from the experimental data ��BBR ¼
�1:2774ð6Þ Hz that was just reported in Ref. [32].
Details of the calculation of the dynamic correction to
the BBR shift are given in the Supplemental Material [26].

Many of the same considerations concerning accurate
calculation of the frequency-dependent polarizability arise
in the calculation of the van der Waals coefficients. If two
atoms A and B have spherically symmetrical ground states,
the leading power of the long-range interactions takes the
form VðRÞ ¼ �CAB

6 =R6, where R is the distance between

atomic nuclei. The van der Waals coefficient CAB
6 can be

calculated as

CAB
6 ¼ 3

�

Z 1

0
�Aði!Þ�Bði!Þd!; (5)

where �ði!Þ is the frequency-dependent polarizability at
an imaginary frequency [33]. In practice, we compute the
CAB
6 coefficients by approximating the integral [Eq. (5)] by

Gaussian quadrature of the integrand computed on the
finite grid of discrete imaginary frequencies [34].
For the alkali and group II atoms, we use frequencies

and weights tabulated in Ref. [28] at 50 points. These
dynamic polarizabilities were obtained by combining
high-precision experimental data for matrix elements of
principal transitions with high-precision many-body
methods, such as linearized coupled-cluster approach and
CIþMBPT. The accuracy of the corresponding homonu-
celar C6 was estimated to be better than 1% for all cases
relevant in this Letter with the exception of Ca, where it
was 1.5% [28].
The Yb imaginary frequency polarizabilities �ði!Þ for

the ground 1S0 state are calculated in this Letter by solving
the inhomogeneous Eq. (1) with the appropriate modifica-
tions. We use the same 50 point frequency grid as in
Ref. [28] for consistency. To evaluate the uncertainty in
the C6 coefficients, we carried out both CIþMBPT and
CIþ all-order calculations of the ground state �ði!Þ. The
same alkali and group II data are used in both cases. The
results are summarized in Table II. We find that the differ-
ences between CIþMBPT and CIþ all-order results are
actually smaller (1–1.5%) than for the ground state static
polarizability (1.8%) since the differences decrease with!
for �ði!Þ for Yb. As a result, we expect the accuracy of the
C6 to be on the same order as the static polarizability,
rather than larger by a factor of 2. Moreover, our value
for the C6 coefficient of the homonuclear Yb dimer is in
excellent agreement with the experimental result [30],
which is accurate to 1.8%. Comparison of the present value
of the C6 coefficient for the homonuclear Yb dimer with
other theoretical results is given in Table II of the
Supplemental Material [26]. Our Li-Yb value is consistent
with coupled-cluster value from Ref. [29] within the uncer-
tainties. Based on the comparison of the CIþMBPT and
CIþ all-order values for heteronuclear C6 coefficients,
and agreement with experiment for the Yb 3P0 � 1S0
Stark shift and magic wavelengths, and C6 coefficient for
Yb-Yb dimer, we estimate that our predictions of the C6

coefficients for the heteronuclear alkali-metal atom or
group II-Yb dimers are accurate to about 2%.
In conclusion, we have carried out fully ab initio all-

order calculations of Yb properties. Our values of the Yb
1S0 � 3Po

0 Stark shift and magic wavelength as well as the

C6 coefficient of the Yb2 dimer are in excellent agreement
with experiment. We have developed a new approach of
calculation of the dynamic correction to the BBR shift that
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does not involve an explicit sum over states. The Stark shift
of the clock transition was determined experimentally [13]
with a high precision. As a result, the uncertainty in the
dynamic correction can now be directly related to the
uncertainty of the BBR shift of this transition. Thus,
when combined with the recent measurement of the Yb
clock Stark shift [13], our calculation of the dynamic
correction allows us to reduce the fractional uncertainty
due to the BBR shift in the Yb optical lattice clock to the
10�18 level. The same method can be used to evaluate the
dynamic correction for any optical atomic clock. Finally,
we have presented the first recommended values of C6

coefficients for alkali-Yb and group II-Yb dimers for future
experimental efforts in producing ultracold polar
molecules.
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