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Nobelium energy levels and hyperfine-structure constants
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Advances in laser spectroscopy of superheavy (Z > 100) elements enabled determination of the nuclear
moments of the heaviest nuclei, which required high-precision atomic calculations of the relevant hyperfine-
structure (hfs) constants. Here, we calculated the hfs constants and energy levels for a number of nobelium
(Z = 102) states using a hybrid approach combining linearized coupled-cluster and configuration interaction
methods. We also carried out an extensive study of the No energies using the 16-electron configuration interaction
method to determine the position of the 5f 137s26d and 5f 137s27p levels with a hole in the 5f shell to evaluate
their potential effect on the hyperfine-structure calculations of the low-lying 5f 147s6d and 5f 147s7p levels.
We find that unlike the case of Yb, the mixing of the low-lying levels with filled and unfilled f shells is
small and does not significantly influence their properties. The resulting hfs constants for the 5f 147s7p 1P o

1

level, combined with laser-spectroscopy measurement, were used to extract nobelium nuclear properties [Raeder
et al., Phys. Rev. Lett. 120, 232503 (2018)].
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I. INTRODUCTION

A study of superheavy element properties is a very im-
portant and challenging task that requires a development of
new experimental and theoretical methods. Only very limited
experimental information about properties of the superheavy
elements is available due to their low production rate of only
a few atoms per second. These radioactive elements must
be studied immediately following their production in nuclear
fusion reactions. Experimental values of ionization poten-
tials, transition energies, and even assignment of electron
configurations are very scarce for these elements requiring
theoretical calculations. The nuclear moments of the heavi-
est nuclei could only be inferred from nuclear spectroscopy
requiring model assumptions until recent laser spectroscopy
advances [1,2].

Atomic spectra of different isotopes of superheavy ele-
ments can be used to obtain information on the nuclear spin,
nuclear moments, and changes in nuclear mean-charge radii
between isotopes allowing direct probes of nuclear properties.
Atom-at-a-time laser resonance ionization spectroscopy of
nobelium was reported in [1], in which the 7s2 1S0-7s7p 1P o

1
transition was identified. Further laser spectroscopy studies of
this No transition were carried out in [2] including the mea-
surement of the hyperfine splitting of 253No and the isotope
shifts for 252,253,254No. Combining these measurements with
the state-of-the-art atomic calculations allowed one to extract
the nuclear properties such as the nuclear magnetic dipole and
electric quadrupole moments of No and change of the nuclear
radius between 252, 253, and 254 isotopes [2]. In this work we
describe these calculations in detail and present recommended

values for a number of No hyperfine-structure (hfs) constants
for a future improved determination of the nuclear properties.

A problem that occurs in No calculations is the electronic
structure of the low-lying levels. The configurations with
two electrons above the closed 5f shell, such as 5f 147s6d

and 5f 147s7p, can be treated with most accurate methods
of calculation, such as a combination of the configuration
interaction (CI) [3] with many-body perturbation theory (the
CI+MBPT method) or with a coupled-cluster approach (the
CI+all-order method) (see [4–6] for more details). However,
these methods cannot reproduce the energy levels of the
5f 137s26d and 5f 137s27p configurations, which have a hole
in the 5f shell, and, hence, a mixing of these configurations
with the 5f 147s7p and 5f 147s6d configurations. Therefore,
if such states appear low in the spectra, the CI+MBPT or
CI+all-order methods may not be reliable. On the other hand,
if these states appear to be high in the spectra they will not
affect the properties of the low-lying states with a filled 5f

shell.
Nobelium is a chemical homologue of Yb and it is known

[7] that the Yb energy levels with an unfilled 4f shell
already appear at a level of 23 000 cm−1. It leads to a
significant mixing of these states with the states with a filled
4f shell, particularly strongly affecting the properties of
the 4f 146s6p 1P o

1 level and resulting in a poor accuracy of
theoretical hfs constants for this state [8,9]. To check whether
this is also the case for nobelium, whose main configuration is
5f 14 7s2, we consider it as a system with 16 valence electrons
and perform calculations of the low-lying energy levels in
the framework of (i) the conventional CI method and (ii) a
recently developed method based on a CI technique, where
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excitations of the valence electrons to high-energy states are
treated perturbatively (the CIPT method) [10]. It allows us to
determine the position of the states with filled and unfilled
5f shells relative to each other. Both of these methods do not
take into account the core-valence correlations and, hence, are
not expected to be as accurate as the CI-all-order method for
the divalent states. However, the CI and CIPT methods are
applicable to the calculation of properties of polyvalent atoms
with reasonable accuracy.

Our analysis shows that interactions of the states with filled
and unfilled 5f shells is practically negligible, which allows
us to consider the No atom as a divalent system and apply the
CI+all-order method [5] [combining CI with the linearized
single-double coupled-cluster method] for calculating the hfs
constants of the low-lying states. We find that the No case
is very similar to Hg, where core-excited states appear much
higher in the spectrum, not significantly affecting the accuracy
of the 6s6p 1P o

1 hfs constants. We start with a description of
these energy studies and then consider the hfs constants.

II. METHODS OF CALCULATION

Here we consider No as a system with 16 valence elec-
trons and perform calculations in the framework of the CI
method. We start from a solution of the Dirac-Fock equations
and carry out the initial self-consistency procedure for the
[1s2, . . . , 5f 14 7s2] configuration. To optimize the calcula-
tions for a particular problem described above, we construct
the orbitals for specific configurations. The 7p orbitals were
constructed for the 5f 147s7p configuration, i.e., freezing all
orbitals and moving an electron from the 7s to the 7p shell.
The 6d orbitals were constructed for the 5f 13 7s2 6d config-
uration. The virtual orbitals were constructed as described in
[11,12]. In total, the basis set included orbitals up to 9s, 9p,
8d, 8f , and 7g. The size of a configuration space grows very
rapidly with the increased basis set. The basis used by us
makes the calculation manageable while still allowing one to
perform convergence tests to ensure the validity of the results.
The configuration space was formed by allowing single and
double excitations for the even-parity states from the 5f 147s2

and 5f 147s6d configurations and for the odd-parity states
from the 5f 147s7p and 5f 137s26d configurations.

To verify a convergence of the CI method, we calculated
the low-lying energy levels for three cases: including the
single and double excitations to the 7s, 7p, 6d, 6f , and
5g shells (we designate it as [7sp6df 5g]) and including the
single and double excitations to [8sp7df 6g] and [9sp8df 7g].
In the last case the configuration space consisted of 2 460 000
determinants for the even-parity states and 3 000 000 determi-
nants for the odd-parity states presenting already a significant
computational challenge.

The results of the energy calculations using three CI spaces
described above, are given in Table I. Where available, we
compare our results with those obtained in Ref. [13] using
the CI+all-order method, where No was treated as a divalent
atom, thus only allowing one to obtain results for the 5f 147snl

configurations. We refer the reader to Ref. [13] for the de-
scription of the CI+all-order method and its application to the
calculation of No energy levels.

TABLE I. The energy levels of the low-lying excited states of No
counted from the ground state (in cm−1). The columns [7sp6df 5g],
[8sp7df 6g], and [9sp8df 7g] give results obtained using different
sets of the configurations described in the text. The results obtained
in Ref. [13] using the CI+all-order method are given in the column
labeled “CI+all.”

Config. Term [7sp6df 5g] [8sp7df 6g] [9sp8df 7g] CI+all

5f 147s2 1S0 0 0 0 0
5f 147s6d 3D1 35287 30139 31003 28436

3D2 35197 30354 31223 28942
3D3 35023 30722 31608 30183
1D2 41802 37230 37980 33504

5f 137s27p J = 3 59856 56410 56927
J = 4 59959 56537 57068
J = 5 68133 64396 64911
J = 2 68220 64463 64984
J = 3 68571 64899 65434

5f 147s7p 3P o
0 15321 16278 16360 19567

3P o
1 17184 18064 18138 21042

3P o
2 21609 22508 22536 26113

1P o
1 30365 30173 30237 30203

5f 137s26d J = 2 44816 45492 45720
J = 5 49126 49494 49731
J = 3 51741 51929 52172
J = 6 51614 52075 52415
J = 4 53354 53426 53701
J = 2 53438 53671 54016
J = 1 55319 55357 55695
J = 4 56120 56216 56597
J = 3 56608 56577 56958

The CI results are within 10%–20% of those obtained in
Ref. [13], demonstrating sufficient accuracy of our CI approx-
imation. We find a large energy separation between the states
with filled and unfilled 5f shells, unlike the case of Yb. For
comparison, the energy difference between the 4f 146s6p 1P o

1
and 4f 136s25d, J = 1 states in Yb is only 3800 cm−1. For No
the energy difference between the similar terms 5f 147s7p 1P o

1
and 5f 137s26d, J = 1 is found to be ∼25 000 cm−1.

We also performed the energy level calculation employ-
ing the CIPT method to further confirm the validity of our
conclusions. In contrast with the conventional CI method, a
full diagonalization of the energy matrix is not needed in this
approach and a much longer basis set can be used. The method
is applicable to the case of 16 valence electrons including
configurations with filled and unfilled 5f shells into the CI
matrix. This method is very useful since it can deal with
complicated elements, for which the CI+all-order method is
not applicable and the CI method is impractical due to the
extremely large size of the energy matrix. The energy inter-
val between the 5f 147s7p 1P o

1 and 5f 137s26d, J = 1 states,
determined using the CIPT method, was several times larger
than between similar terms in Yb, thus confirming the results
obtained in the framework of the 16-electron CI method.

As a result, we conclude that the states with filled and
unfilled 5f shells are located sufficiently far from each other.
A mixing between them should be small and not essential in
calculating the properties of the low-lying states with a filled
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5f shell. Thus, we use the CI+all-order method, as the most
accurate, for calculation of the hfs constants.

III. HYPERFINE-STRUCTURE CONSTANTS

A. hfs couplings

The hfs coupling due to nuclear multipole moments
may be represented as a scalar product of two tensors of

rank k,

Hhfs =
∑

k

(N(k) · T(k) ),

where N(k) and T(k) act in the nuclear and electronic coordi-
nate space, respectively. Using this expression we write the
matrix element of the operator Hhfs as

〈γ ′IJ ′FMF |Hhfs|γ IJFMF 〉 = (−1)I+J ′+F
∑
k=1

〈I ||N (k)||I 〉〈γ ′J ′||T (k)||γ J 〉
{
I I k

J J ′ F

}
. (1)

Here I is the nuclear spin, J is the total angular momentum
of the electrons, F = I + J, and γ encapsulates all other
electronic quantum numbers.

In the following we restrict ourselves to the first two terms
in the sum over k, considering only the interaction of magnetic
dipole and electric quadrupole nuclear moments with the
electrons, i.e.,

Hhfs ≈ N(1) · T(1) + N(2) · T(2).

We define N(1) and N(2) in a dimensionless form, express-
ing them through the nuclear magnetic dipole moment μ and
nuclear electric quadrupole moment Q, respectively, as

N(1) = μ/μN,

N (2)
q = Q(2)

q /[1 barn],

where μN is the nuclear magneton. The reduced matrix ele-
ments 〈I ||N (k)||I 〉 (k = 1, 2) are

〈I ||N (1)||I 〉 =
√

(2I + 1)(I + 1)

I

μ

μN

,

〈I ||N (2)||I 〉 = 1

2

√
(2I + 3)(2I + 1)(I + 1)

I (2I − 1)

[
Q

1 barn

]
.

The operator T (k)
q is the sum of the one-particle operators

T (k)
q =

Ne∑
i=1

(
T (k)

q

)
i
,

where Ne is the number of the electrons in the atom and the
expressions for one-particle electronic tensors T

(k)
i are given

(in the SI units) by

(
T (1)

q

)
i
= − |e|

4πε0

i
√

2
[
αi · C(0)

1q (r̂i )
]

cr2
i

μN,

(
T (2)

q

)
i
= − |e|

4πε0

C2q (r̂i )

r3
i

[1 barn],

where αi is the Dirac matrix, ε0 is the dielectric constant,
C(0)

1q is a normalized spherical harmonic, C2q is a normalized
spherical function, ri is the radial position of the ith electron,
and r̂i ≡ ri/ri .

The formulas connecting the hfs constants A and B of an
atomic state |J 〉 with the matrix elements 〈γ J ||T (k)||γ J 〉 of

the electronic tensors T(k) are

A = gN√
J (J + 1)(2J + 1)

〈γ J ||T (1)||γ J 〉,

B = −2

[
Q

1 barn

]√
J (2J−1)

(2J+3)(2J+1)(J+1)
〈γ J ||T (2)||γ J 〉,

where gN = μ/(μNI ).

TABLE II. Contributions to the magnetic-dipole and electric-
quadrupole hfs constants A and B (in megahertz). The CI,
CI+MBPT, and CI+all-order values, without any corrections to the
hfs operators are listed in the columns labeled “CI,” “CI+MBPT,”
and “CI+all,” correspondingly. The RPA corrections to the hfs
operator are listed in the column labeled “RPA.” All other corrections
to the hfs operator (core Brueckner, two-particle, structure radiation,
and normalization) are grouped together in the column labeled
“Other.” The values in the column labeled “Total” are obtained as
the sum of the values in the “CI+all,” “RPA,” and “Other” columns.

CI CI+MBPT CI+all RPA Other Total

A(7s6d 3D1) 783 1054 989 184 −235 939
A(7s6d 3D2) −417 −728 −658 −26 47 −637
A(7s6d 3D3) −560 −777 −729 −53 88 −694
A(7s6d 1D2) 112 330 277 63 −74 266
A(7s7p 3P o

1 ) −1415 −2289 −2107 −288 293 −2102
A(7s7p 3P o

2 ) −858 −1219 −1143 −156 182 −1118
A(7s7p 1P o

1 ) 437 883 780 102 −144 739
A(7s8p 3P o

1 ) −1835 −2696 −2537 −336 387 −2486
A(7s8p 3P o

2 ) −1029 −1382 −1314 −174 205 −1283
A(7s8p 1P o

1 ) 773 1260 1172 154 −189 1137
B(7s6d 3D1) 572 982 928 109 624 1661
B(7s6d 3D2) 813 1384 1316 507 557 2380
B(7s6d 3D3) 1071 1538 1510 1136 933 3579
B(7s6d 1D2) 2062 1721 1958 1281 679 3919
B(7s7p 3P o

1 ) −2522 −2656 −2824 −1029 −405 −4258
B(7s7p 3P o

2 ) 2663 3069 3121 1777 303 5201
B(7s7p 1P o

1 ) 1279 2270 2161 1342 −490 3013
B(7s8p 3P o

1 ) −303 −202 −231 −91 −50 −373
B(7s8p 3P o

2 ) 546 650 648 358 53 1059
B(7s8p 1P o

1 ) 546 615 621 314 −49 886
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TABLE III. Contributions to the magnetic-dipole hfs constants A (in megahertz) for the two odd-parity levels of 259No and 201Hg (I = 3/2
and μ/μN = −0.5602). The CI, CI+MBPT, and CI+all-order values, without any corrections to the hfs operators are listed in the columns
labeled “CI,” “CI+MBPT,” and “CI+All,” correspondingly. The relative differences of the CI+MBPT and CI values and the CI+all-order and
CI+MBPT values are listed in percent to illustrate the size of the second-order and higher-order corrections to the wave functions. The RPA
corrections to the hfs operator are listed in the column labeled “RPA.” The relative size (the ratio of the RPA correction and the total value) is
listed in the next column in percent. All other corrections to the hfs operator are grouped together in the column labeled “Other.” Their relative
size (the ratio of the “Other” correction and the total value) is given in the next column in percent. The values in the column labeled “Total”
are obtained as (CI+all) + RPA + Other. The experimental values for Hg are given in the last column.

Ion State CI CI+MBPT Diff. % CI+all Diff. % RPA RPA % Other Other % Total Experiment

No 7s7p 3P o
1 −1415 −2289 38% −2107 −9% −288 14% 293 −14% −2102

7s7p 1P o
1 437 883 51% 780 −13% 102 14% −144 −19% 739

Hg 6s6p 3P o
1 −3924 −5829 33% −5499 −6% −560 10% 408 −7% −5651 −5454.569(3)a

6s6p 1P o
1 774 1593 51% 1422 −12% 153 11% −113 −8% 1462 1316b

aReference [16].
bReference [17].

B. Results and estimate of uncertainties

In Ref. [2] the nuclear ground-state properties were ob-
tained from laser spectroscopy of the 252,253,254No isotopes.
Using these measurements and the calculation of the hfs
constants A and B for the 5f 147s7p 1P o

1 state, the nuclear
magnetic-dipole and electric-quadrupole moments were ex-
tracted to be μ/μN = −0.527 and Q = 5.9 b, respectively.
Below, we use these values to calculate the hfs constants for
the low-lying states of 259No (I = 9/2).

This calculation was performed using the CI+all-order
method, introduced in [5] and applied to calculation of no-
belium energy levels in Ref. [13]. We determine the A and
B hfs constants for the even- and odd-parity low-lying states
of 259No for the future laser spectroscopy studies of other No
transitions. The results are summarized in Table II where we
list the results of several computations to demonstrate the size
of various contributions and to evaluate the uncertainties of
the results. The first one is the two-particle CI which does not
include any core corrections to the wave function. The next
stage is a combination of CI and MBPT which includes core-
valence correlations in the second order of the perturbation
theory.

The CI+all-order results include third- and higher-order
correlations of the valence electrons with the core. This cal-
culation provides state-of-the-art wave functions, with correc-
tions from the entire core being included, and valence-valence
correlations accurately treated in the framework of the CI.
We note that the CI+MBPT results include the CI values
and the CI+all-order results include the CI+MBPT values,
so these are listed as total values and not additive corrections.
Next, we include corrections to the hfs expectation values
beyond the correlation corrections to wave functions, which
we refer to as the corrections to the hfs operator. The random-
phase approximation (RPA) was taken into account to all
orders and given separately in the table in the column labeled
“RPA.” The core Brueckner, two-particle, structural radiation,
and normalization corrections were calculated in the second
order of MBPT (see Ref. [14] for more details). They are
grouped together as “Other.”

Since the CI calculation for two valence electrons has a
negligible uncertainty, the main source of the uncertainties
is the core-valence correlations. Therefore, uncertainties in

the values of the hfs constants may be estimated based on
differences between the CI+all-order and CI+MBPT values.
The resulting uncertainties of the magnetic-dipole constants
A for the triplet 3DJ and 3P o

J states are 5%–10%, while the
uncertainties of the constants for the singlet 1D2 and 1P o

1
states are slightly worse, 10%–20%. The RPA and “Other”
corrections tend to cancel each other for the constants A.
We carried out an additional analysis demonstrating that if
the core Brueckner and structural radiation corrections are
accounted for in all orders of the perturbation theory, this
cancellation becomes even more pronounced in most cases.

It is more complicated to estimate the uncertainties of
the constants B because the relative role of different correc-
tions is larger. The magnitude of the “RPA” and/or “Other”
corrections is comparable with the “CI+all” values in some
cases. In contrast with the constants A, the RPA and “Other”
corrections to B have the same sign for most levels. Roughly
estimating the absolute uncertainty to be equal to the mag-
nitude of the correction “Other,” we assume the fractional
uncertainties of the B constants to be at the level of 20%–25%.

We also use another method to evaluate the accuracy of the
hfs constants. Similar calculations of the magnetic-dipole hfs
constants using the CI+all-order method were done for Hg
for the lowest-lying odd-parity 3P1 and 1P1 states and different
contributions were analyzed in Ref. [15]. Hg is a good testing
case for No due to similar mixing of the core-excited states
of the odd-parity configurations with J = 1. As illustrated by
Table III, relative contributions to Hg and No hfs constants are
similar, with the only exception of the “Other” contribution
which is two times larger in No due to larger core and resulting
larger size of the core Brueckner corrections.

In Hg, the CI+all-order value of A(1P o
1 ) (with no RPA

and other corrections) agrees with experiment to 8%, while
the final number differs from the experimental result by 11%.
This is caused by the cancellations in the values of the various
corrections and some inconsistency in their accuracy. The
RPA corrections are accounted for in all orders while other
corrections are calculated in the second order of the per-
turbation theory. Assuming additional uncertainty in the No
values in comparison with Hg due to larger core-Brueckner
corrections, we estimate the accuracy of the A(7s7p 3P o

1 ) to
be on the order of 15%.
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The accuracy of A(3P o
1 ) in Hg is much better, 3.5%. There-

fore, we expect that in No the hfs constant A(3P o
1 ) is accurate

to about 5%–6% making it a good case for a benchmark
comparison with experiment. Both methods give uncertainty
estimates that are in reasonable agreement.

We note that the A and B hfs constants of the 7s7p 1P o
1

state were calculated also by other groups using different
methods [2]. All results are in agreement within their uncer-
tainties.

IV. CONCLUSION

We calculated the energy levels of the low-lying even-
and odd-parity states in the framework of the 16-electron CI
method to demonstrate significant reordering of the No energy
levels in comparison with the homologue Yb. In contrast
with Yb, the No states with a hole in the f shell are lying
sufficiently high; a possible mixing with the states with a
filled f shell is small and does not significantly influence their
properties. As a result, the low-lying divalent No levels can be
reliably treated with the CI+all-order method.

We predicted the values for 7s7p, 7s6d, and 7s8p

magnetic-dipole and electric-quadrupole hfs constants using
the CI+all-order method, also incorporating different correc-
tions to the hfs operators. The uncertainties of the recom-
mended values are estimated. We find that the theoretical
accuracy for the 7s7p 3P o

1 hfs constant A is expected to be
a factor of 3 better in comparison with the 7s7p 1P o

1 level
making it particularly attractive for future more precise de-
termination of No nuclear properties.
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