
 

Multipolar Polarizabilities and Hyperpolarizabilities in the Sr Optical Lattice Clock

S. G. Porsev,1,2 M. S. Safronova,1,3 U. I. Safronova,4 and M. G. Kozlov2,5
1Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA

2Petersburg Nuclear Physics Institute of NRC “Kurchatov Institute”, Gatchina, Leningrad District 188300, Russia
3Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland,

Gaithersburg, Maryland 20742, USA
4Physics Department, University of Nevada, Reno, Nevada 89557, USA

5St. Petersburg Electrotechnical University “LETI,” Prof. Popov Street 5, 197376 St. Petersburg, Russia

(Received 10 November 2017; published 8 February 2018)

We address the problem of the lattice Stark shifts in the Sr clock caused by the multipolar M1 and E2
atom-field interactions and by the term nonlinear in lattice intensity and determined by the hyper-
polarizability. We develop an approach to calculate hyperpolarizabilities for atoms and ions based on a
solution of the inhomogeneous equation which allows us to effectively and accurately carry out complete
summations over intermediate states. We apply our method to the calculation of the hyperpolarizabilities
for the clock states in Sr. We also carry out an accurate calculation of the multipolar polarizabilities for
these states at the magic frequency. Understanding these Stark shifts in optical lattice clocks is crucial for
further improvement of the clock accuracy.
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Introduction.—Extraordinary advancements in optical
atomic clock accuracy and stability have been demonstrated
in the past few years [1–6]. The systematic uncertainty of the
Sr optical lattice clock was reduced to 2.1 × 10−18 in frac-
tional frequency units [3].A similar systematic uncertainty of
3.2 × 10−18was reported in a single trapped ion atomic clock
based on the electric-octupole transition in Ybþ [4]. A
fractional frequency instability of 6 × 10−17=

ffiffiffi
τ

p
for an

averaging time τ in seconds was demonstrated in Ref. [5]
using a zero-dead-time optical clock based on the interleaved
interrogation of two cold-atom ensembles. A Fermi-
degenerate three-dimensional optical lattice clock was dem-
onstrated in Ref. [6], with a synchronous clock comparison
between two regions of the 3D lattice yielding a measure-
ment precision of 5 × 10−19 in 1 hour of averaging time.
Improved precision of atomic clocks enables many applica-
tions, including relativistic geodesy [7], very long baseline
interferometry [8], search for variations of the fundamental
constants [9] and dark matter [10,11], tests of the Lorentz
invariance [12], redefinition of the second [13], and others.
Further improvement of clock precision is needed for these
applications and the implementation of new ideas, such as the
use of atomic clocks for gravitational wave detection [14].
When an atom is placed in a laser field, the atomic

energy levels shift due to the ac Stark effect. In the main
approximation, these shifts are determined by the fre-
quency-dependent electric dipole polarizabilities of the
atomic states [15]. To cancel the ac Stark shift of the clock
transition, the trap laser of the optical lattice clock is
operated at the “magic wavelength” [16,17], at which the
electric dipole polarizabilities of the clock states are the

same, resulting in zero ac Stark shift of a clock transition to
some degree of precision.
With the clock systematic uncertainties reaching 10−18,

such cancellation is no longer sufficient, as other contri-
butions to the Stark shift effects become significant
[18–20]: the magnetic-dipole (M1) and electric-quadrupole
(E2) interactions of the atom with the lattice field and the
term nonlinear in the trap laser intensity and determined by
the hyperpolarizability.
Measurements and calculations of these effects are both

very difficult [20], with contradictory results obtained for Sr
[3,18,19,21,22] for both theory and experiment. Theoretical
evaluations of theM1 and E2 polarizabilities in Sr disagree
even in the sign of the effect [18,19]. The experimental
determination of the Sr clock differential hyperpolarizability
Δβ ¼ βð3Po

0Þ − βð1S0Þ at themagic frequency by JILA [3] is
consistent with zero [Δβ ¼ −1.3ð1.3Þ × 107 a:u:], but the
SYRTE [21,22]measurement [−2.01ð45Þ × 107 a:u:] is not.
Recent experimental assessment of the nonlinear hyper-
polarizability ac Stark shifts in Yb found a difficulty
associated with the finite-temperature effects [20]. In sum-
mary, reliable theoretical values of the ac multipolar polar-
izabilities and hyperpolarizability are required to control
lattice shifts at the 10−19 level.
So far, there are no reliable calculations of the clock states’

hyperpolarizabilities for divalent atoms. An accurate calcu-
lation of hyperpolarizabilities is very difficult, because
certain terms are expressed by complicated formulas,
involving three summations over intermediate states, which
cannot be properly evaluated by summing over low-lying
contributions. An exception is the case of Yb, where the
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magic wavelength happens to be accidentally close to
relevant atomic transition energies causing strong resonant
effects, and making a very few hyperpolarizability terms
dominant. For Sr, however, the full expression must be
evaluated, and we focus on this example.
In this Letter, we develop a method that allows us to solve

this problem and accurately calculate the hyperpolarizabil-
ities for states with the total angular momentum J ¼ 0,
which includes Sr, Yb, Hg, Mg, and Cd clock cases.
A generalization of the method to higher total angular
momenta is straightforward but technically more compli-
cated. We apply our method to calculate the 1S0 and 3Po

0

clock states’ hyperpolarizabilities at the magic frequency in
Sr and their uncertainties. Our results definitively determine
that the Sr hyperpolarizability is not zero and has to be taken
into account when reducing lattice shifts at the next level of
precision. We also calculate Sr clock magnetic-dipole and
electric-quadrupole polarizabilities, resolving previous
major discrepancies and providing the final differential
multipolar polarizability with only 13% uncertainty.
General formalism.—We assume that an atom in a state

j0i≡ jγ0; J0 ¼ 0i (where γ0 encapsulates all other quan-
tum numbers) is placed in a linear polarized field of the
lattice standing wave with the electric-field vector along the
z axis, given by

Ez ¼ 2ðE0Þz cosðkxÞ cosðωtÞ: ð1Þ

Here k ¼ ω=c, ω is the lattice laser wave frequency, c is the
speed of light, and the factor 2 accounts for the super-
position of forward and backward traveling along the x-axis
waves that doubles the lattice standing-wave amplitude.
The atom-lattice interaction can be written as Vðx; tÞ ¼
Re½VðxÞe−iωt�, with the spatial part VðxÞ determined by the
expression [18,19]

VðxÞ ¼ VE1 cosðkxÞ þ ðVM1 þ VE2Þ sinðkxÞ: ð2Þ

Here VE1, VM1, and VE2 correspond to operators of E1,
M1, and E2 interactions, and x determines the position of
the atom starting from the standing-wave antinode.

The optical lattice potential for the atom at jkxj ≪ 1 can
be approximated as [18,19]

UðωÞ ≈ −αE1ðωÞð1 − k2x2ÞE2
0

− fαM1ðωÞ þ αE2ðωÞgk2x2E2
0

− βðωÞð1 − 2k2x2ÞE4
0: ð3Þ

The ac 2K-pole polarizability of the j0i state is expressed
(we use atomic units ℏ ¼ m ¼ jej ¼ 1) as [23]

αλKðωÞ ¼ K þ 1

K
2K þ 1

½ð2K þ 1Þ!!�2 ðαωÞ
2K−2

×
X
n

ðEn − E0ÞjhnjjTλKjj0ij2
ðEn − E0Þ2 − ω2

: ð4Þ

Here λ distinguishes between electric (λ ¼ E) and magnetic
(λ ¼ M) multipoles, and hnjjTλkjj0i are the reduced matrix
elements of the multipole operators, TE1 ≡D, TM1 ≡ μ,
and TE2 ≡Q.
The hyperpolarizability βðωÞ of the j0i state is deter-

mined as

βðωÞ ¼ 1

9
Y101ðωÞ þ

2

45
Y121ðωÞ: ð5Þ

The quantities Y101ðωÞ and Y121ðωÞ are given by

Y101ðωÞ≡
X
q

R101ðqω;2qω; qωÞ

þ
X
q;q0

½R0
101ðqω;0; q0ωÞ−R1ðq0ωÞR1ðqω; qωÞ�;

Y121ðωÞ≡
X
q

�
R121ðqω;2qω; qωÞ

þ
X
q0
R121ðqω;0; q0ωÞ

�
;

where q, q0 ¼ �1 and

R1Jn1ðω1;ω2;ω3Þ≡
X

γm;γn;γk

h0∥D∥γm; 1ihγm; 1∥D∥γn; Jnihγn; Jn∥D∥γk; 1ihγk; 1∥D∥0i
ðEm − E0 − ω1ÞðEn − E0 − ω2ÞðEk − E0 − ω3Þ

; ð6Þ

R1ðωÞ≡
X
γm

jh0∥D∥γm; 1ij2
Em − E0 − ω

;

R1ðω;ωÞ≡
X
γk

jh0∥D∥γk; 1ij2
ðEk − E0 − ωÞ2 : ð7Þ

The notationR0
101 (i.e., the prime overR) means that the

term jγn; 0i ¼ jγ0; 0i must be excluded from the summa-
tion over γn in Eq. (6).

The term R1Jn1ðω1;ω2;ω2Þ contains three summations
over intermediate states which so far precluded accurate
calculation of the hyperpolarizabilities for lattice clocks.
A large number of the intermediate states should be
included in the summation unless some accidental reso-
nances arise, making such an approach impractical.
In this Letter, we develop another method of calculating

hyperpolarizabilities, which is based on solutions of the
inhomogeneous equations. We consider
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αqωðγ0; 0Þ ¼
2

3

X
γm

jh0∥D∥γm; 1ij2
Em − E0 − qω

¼ 2

3

X
γm

h0∥D∥γm; 1ihγm; 1∥D∥0i
E0 − Em þ qω

; ð8Þ

which can be treated as the scalar static electric dipole
polarizability of the j0i state, calculated at the shifted
energy ðE0 þ qωÞ. For brevity, we omit the superscript E1,
i.e., αqω ≡ αE1qω. We use the Sternheimer [24] or Dalgarno-
Lewis [25] method and solve the inhomogeneous equation

ðE0 −Heff þ qωÞjδϕi ¼ Dzj0i; ð9Þ

where Heff is the effective Hamiltonian determined below
[see Eq. (13)]. Solving Eq. (9) and introducing jδϕqi as

jδϕqi≡
ffiffiffi
3

p
jδϕi ¼

X
γm

jγm; 1ihγm; 1∥D∥j0i
E0 − Em þ qω

;

we find αqωðγ0; 0Þ as the expectation value

αqωðγ0; 0Þ ¼
2

3
h0∥D∥δϕqi: ð10Þ

Substituting jδϕqi into Eq. (6), we obtain

R1Jn1ðqω; 2qω; qωÞ ¼
X
γn

jhδϕq∥D∥γn; Jnij2
En − E0 − 2qω

: ð11Þ

Thus, using this approach, we include all discrete and
continuum intermediate states in the sums over γm and γk in
Eq. (6). A direct summation over all intermediate states at
fixed values Jn ¼ 0, 2 in Eq. (11) can lead to a loss of
accuracy. To avoid this, we find R1Jn1ðqω; 2qω; qωÞ,
solving again the inhomogeneous equation (9) with
jδϕqi (instead of j0i) on the right-hand side.
The calculation of the terms R0

101ðqω; 0; qωÞ is carried
out in a similar way. For example, for R0

101ðω; 0;ωÞ we
arrive at

R0
101ðω; 0;ωÞ ¼

X
γn

0 jhδϕþ1jjDjjγn; 0ij2
En − E0

: ð12Þ

However, there is a complication in comparison to the
previous case: we need to exclude the term jγn; 0i ¼ jγ0; 0i
from the summation over γn. We developed the following
method to eliminate this term from the solution of the
inhomogeneous equation. We add a small imaginary term
iω0 to the denominator of Eq. (12), so that

R0
101ðω; 0;ωÞ ¼ RefR0

101ðω; iω0 → 0;ωÞg;

and find the real part of R0
101ðω; iω0;ωÞ, given by

RefR0
101ðω; iω0;ωÞg ¼

X
γn

ðEn − E0Þjhδϕþ1∥D∥γn; 0ij2
ðEn − E0Þ2 þ ðω0Þ2 :

The term jγn; 0i ¼ jγ0; 0i automatically disappears because
of the ðEn − E0Þ in the numerator.
In practice, the parameter ω0 should be chosen to be

sufficiently small to satisfy the condition jω0j ≪ jE0 − Enj
for any n, but preserve numerical stability when solving the
inhomogeneous equation at this ω0. To ensure more
flexibility in choosing the parameter ω0, we orthogonalize
jδϕqi to j0i, as

jδϕqi0 ¼ ð1 − j0ih0jÞjδϕqi;

and use jδϕqi0 instead of jδϕqi.
The term R1ðqωÞ ¼ ð3=2Þαqω is calculated following

Eqs. (8)–(10), but the quantity R1ðω;ωÞ has an additional
energy denominator. Therefore, we treat this term as the
derivative of R1ðωÞ over ω, i.e.,

R1ðω;ωÞ ¼
∂R1ðωÞ

∂ω ¼ 3

2
lim
Δ→0

αωþΔ − αω
Δ

:

We find R1ðωÞ and R1ðω;ωÞ by calculating αω and αωþΔ,
where Δ is chosen so that Δ ≪ ω.
Method: Sr calculations.—The electric dipole polariz-

abilities of the Sr clock states at the magic wavelength
λ� ¼ 813.4280ð5Þ nm [26] were calculated in our work
[27] to be αE1ðω�Þ ¼ 286.0ð3Þ a:u:.
In this work we apply the method discussed above to

calculate the hyperpolarizabilities and the multipolar polar-
izabilities, αM1 and αE2, for the Sr clock states, 5s2 1S0 and
5s5p 3Po

0 , at the magic frequency. We consider Sr as an
atom with two valence electrons above the closed shell
core. The calculations are carried out in the framework of
the high-precision relativistic methods combining configu-
ration interaction (CI) with (i) many-body perturbation
theory [28] and (ii) the linearized coupled-cluster method
[29]. In these methods, the energies and wave functions are
found from the multiparticle Schrödinger equation

HeffðEnÞΦn ¼ EnΦn; ð13Þ

where the effective Hamiltonian is defined as

HeffðEÞ ¼ HFC þ ΣðEÞ: ð14Þ

Here, HFC is the Hamiltonian in the frozen core (Dirac-
Hatree-Fock) approximation and Σ is the energy-dependent
correction, which takes into account virtual core excitations
in the second order of the perturbation theory (the CIþ
MBPTmethod) or to all orders (the CIþ all-order method).
Hyperpolarizabilities.—The hyperpolarizability is domi-

nated by the valence electrons’ contribution; the contribu-
tion of the core electrons is small and can be neglected at
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the present level of accuracy. In particular, the static
hyperpolarizability of the Sr2þ ionic core in the ground
state was found in Ref. [30] to be negligible, 62.6 a.u.
To accurately calculate the valence part of the quantities

given by Eqs. (6) and (7), we applied solutions of the
inhomogeneous equations as was described above. We use
effective (or “dressed”) operators in our calculations that
include the random-phase approximation (RPA). A concept
of effective operators was developed in Ref. [31].
The breakdown of the terms contributing to 1S0 and 3Po

0

hyperpolarizabilities at the magic frequency is given in
Table I. We carry out all calculations using both the CIþ
MBPT and CIþ all-order methods. The CIþ all-order
calculations include higher-order terms in comparison with
the CIþMBPT calculations and are more accurate. The
difference between these two calculations gives an estimate
of the uncertainty of the results. This method in evaluating
uncertainties has been extensively tested for Sr and other
atoms [27,32,33].
We compare our recommended value for the differential

clock hyperpolarizability at the magic frequency,

Δβ ¼ βð3Po
0Þ − βð1S0Þ, with the experimental results of

the JILA and SYRTE groups, and also with the theoretical
value obtained in Ref. [19]:

Δβ ¼ −1.5ð4Þ × 107 a:u:ðthis workÞ;
¼ −2.01ð45Þ × 107 a:u:ðSYRTE½21; 22�Þ;
¼ −1.3ð1.3Þ × 107 a:u:ðJILA½3�Þ;
¼ −3.74 × 107 a:u:ðtheory½19�Þ:

Our result is in agreement with the experimental results, but
definitely not consistent with zero.
M1 and E2 polarizabilities at the magic frequency.—To

accurately calculate the valence part of the E2 polar-
izabilities of the clock states at the magic frequency, given
by Eq. (4), we solved an inhomogeneous equation similar
to Eq. (9), as described above, with the electric quadrupole
operator Q. We calculated these quantities using both the
CIþ all-order and CIþMBPT methods, including the
RPA corrections to the operator Q. The core contributions
were calculated in the RPA. For the M1 polarizabilities,
only a few low-lying intermediate states give dominant
contributions, and it is sufficient to calculate their sum. We
estimate the uncertainties of the results as the difference
between the CIþ all-order and CIþMBPT values.
The αM1ð1S0Þ polarizability is very small and can be

neglected. The αM1ð3Po
0Þ polarizability is more than 3

orders of magnitude larger, but still an order of magnitude
smaller than ΔαE2. Therefore, the accuracy of
ΔαQM ≡ ΔαE2 þ ΔαM1, where

ΔαM1 ≡ αM1ð3Po
0Þ − αM1ð1S0Þ;

ΔαE2 ≡ αE2ð3Po
0Þ − αE2ð1S0Þ; ð15Þ

is mostly determined by the uncertainty in ΔαE2.

TABLE I. Contributions to the Sr hyperpolarizabilities
βð5s2 1S0Þ and βð5s5p 3Po

0Þ (in a.u.) calculated in the CIþ all-
order (labeled as “CIþ all”) and CIþMBPT (labeled as
“CIþ PT”) approximations at the magic frequency. Δβ≡
βð3Po

0Þ − βð1S0Þ is the difference of the total 3Po
0 and 1S0 values.

Numbers in brackets represent powers of 10. The uncertainties
are given in parentheses.

5s2 1S0 5s5p 3Po
0

Contribution CIþ All CIþ PT CIþ All CIþ PT
1
9
R101ðω; 2ω;ωÞ 5.08½5� 4.62½5� −5.96½6� −5.64½6�

1
9
R101ð−ω;−2ω;−ωÞ 4.48½4� 4.38½4� 9.83½4� 9.91½4�

1
9
R0

101ðω; 0;ωÞ 2.41½5� 2.29½5� 2.43½6� 2.68½6�
1
9
R0

101ðω; 0;−ωÞ 6.47½4� 6.20½4� 3.26½5� 3.47½5�
1
9
R0

101ð−ω; 0;ωÞ 6.47½4� 6.20½4� 3.26½5� 3.47½5�
1
9
R0

101ð−ω; 0;−ωÞ 1.76½4� 1.70½4� 6.78½4� 6.84½4�
R1ðωÞ 6.63½2� 6.49½2� 6.03½2� 6.39½2�
R1ð−ωÞ 1.94½2� 1.92½2� 2.67½2� 2.68½2�
R1ðω;ωÞ 1.52½4� 1.47½4� 4.79½4� 5.12½4�
R1ð−ω;−ωÞ 1.17½3� 1.17½3� 2.40½3� 2.40½3�
1
9
Y101ðωÞ −6.18½5� −6.06½5� −7.57½6� −7.50½6�
2
45
R121ðω; 2ω;ωÞ 7.61½5� 7.10½5� −1.82½7� −1.65½7�

2
45
R121ð−ω;−2ω;−ωÞ 1.83½4� 1.78½4� 4.97½4� 5.03½4�

2
45
R121ðω; 0;ωÞ 3.86½5� 3.68½5� 9.64½6� 1.13½7�

2
45
R121ðω; 0;−ωÞ 1.07½5� 1.03½5� 8.72½5� 9.76½5�

2
45
R121ð−ω; 0;ωÞ 1.07½5� 1.03½5� 8.72½5� 9.76½5�

2
45
R121ð−ω; 0;−ωÞ 2.98½4� 2.90½4� 1.44½5� 1.50½5�

2
45
Y121ðωÞ 1.41½6� 1.33½6� −6.58½6� −3.03½6�

Total 7.90½5� 7.25½5� −1.42½7� −1.05½7�
Recommended 7.90ð65Þ½5� −1.42ð37Þ½7�
Δβ −1.50½7� −1.12½7�
Δβ (Recommended) −1.5ð4Þ½7�

TABLE II. The dynamic M1 and E2 polarizabilities (in a.u.) of
the 5s2 1S0 and 5s5p 3Po

0 states at the magic frequency, calculated
in the CIþMBPT (labeled as “CIþ PT”) and CIþ all-order
(labeled as “CIþ all”) approximations. The recommended value
of ΔαQM is given in the last line. The uncertainties are given in
parentheses.

Polariz. CIþ PT CIþ All Other theor.

αM1ð1S0Þ 2.19 × 10−9 2.37 × 10−9

αM1ð3Po
0Þ −5.09 × 10−6 −5.08 × 10−6

ΔαM1 −5.09 × 10−6 −5.08 × 10−6

αE2ð1S0Þ 8.61 × 10−5 8.87ð26Þ × 10−5

αE2ð3Po
0Þ 12.1 × 10−5 12.2ð25Þ × 10−5

ΔαE2 3.50 × 10−5 3.31ð36Þ × 10−5

ΔαQM 2.99 × 10−5 2.80ð36Þ × 10−5 0.74 × 10−5 [19]
−3.60 × 10−5 [18]

Rec. ΔαQM 2.80ð36Þ × 10−5
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The final values of the polarizabilities, the recommended
value of ΔαQM, and their uncertainties are listed in Table II.
We estimate the uncertainty of the recommended value of
ΔαQM to be 13%.
To conclude, we have developed a method to calculate

hyperpolarizabilities for atoms and ions based on a solution
of inhomogeneous equation (9), which allows us to carry
out complete summations over all intermediate states. We
applied our method to the calculation of the hyperpolar-
izabilities for the 1S0 and 3Po

0 clock states in Sr and found
the differential hyperpolarizability to be −1.5ð4Þ × 107 a:u:
We have also calculated the M1 and E2 polarizabilities for
these states at the magic frequency.
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