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The goal of this work is to resolve the present controversy in the value of the electric dipole moment

(EDM) enhancement factor of Tl. We carry out several calculations by different high-precision methods,

study previously omitted corrections, as well as test our methodology on other, parity conserving,

quantities. We find the EDM enhancement factor of Tl to be equal to �573ð20Þ. This value is 20%

larger than the recently published result of Nataraj et al. [Phys. Rev. Lett. 106, 200403 (2011)], but agrees

very well with several earlier results.
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A number of extensions of the standard model of particle
physics predict electric-dipole moments (EDM) of parti-
cles that may be observable with the present state-of-the art
experiments [1] making EDM studies a remarkable tool
in search for new physics. The EDMs arise from the
violations of both parity and time-reversal invariance.
The present constraints on the EDMs are already within
bounds predicted by some theories [1]. If the EDMs are not
observed in the next generation of the experiments, some
of the low-energy supersymmetry and other theories will
be ruled out. The standard model predicts tiny electron
EDM, de < 10�40e cm since it cannot originate even from
three-loop diagrams [2].

The electron EDM is enhanced in certain atomic and
molecular systems, and two of the most stringent limits
on the electron EDM de were obtained from the experi-
ments with 205Tl: de < 1:6� 10�27e cm [3], and with YbF
molecule: de < 1:05� 10�27e cm [4]. These limits signif-
icantly constrain supersymmetric and other extensions of
the standard model [1].

Both results crucially depend on the calculated values of
the effective electric field on the valence electron. In the
case of Tl this effective field is proportional to the applied
field E0, Eeff ¼ KE0, and Tl atom EDM is datð205TlÞ ¼
Kde. The quantity K is referred to as the EDM enhance-
ment factor.

Until recently, there was a consensus that the value of K
is close to �580 [5,6], but the latest calculation [7] gave
the value�466ð10Þ, or more than 20% smaller. All three of
these calculations used high-accuracy methods that include
some parts of the correlation corrections to all orders.
Liu and Kelly [5] used the relativistic coupled-cluster
approach, but had to make various restrictions in their
calculations to make it manageable with the computer
power available in 1992. Dzuba and Flambaum [6] used
a combination of the configuration interaction (CI) method
with many-body perturbation theory (MBPT) starting from
the ½Xe�4f145d10 Dirac-Fock (DF) potential and consider-
ing thallium as a system with three valence electrons.

This potential is referred to as VN�3, where N is the total
number of electrons. Nataraj et al. [7] used the relativistic
coupled-cluster (RCC) method with single, double, and
perturbative triple excitations of the DF wave functions
starting from the ½Xe�4f145d106s2 potential. In this poten-
tial, referred to as VN�1, 6s2 shell is included in the core
and thallium is considered to be a monovalent system, such
as an alkali-metal atom. Both the relativistic coupled-
cluster method, in its various implementations, and the
CIþMBPT method have been used for a number of years
in many other applications, including the study of parity
violation, the calculation of other (P, T-odd) effects, the
search for variation of fundamental constants, and many
others. We note that calculations of the effective field for
such a heavy molecule as YbF are more difficult than for
atomic Tl, and the discrepancy in the theory for atoms may
compromise the molecular limit [4] as well.
Because of the importance of this issue, we return to the

problem of Tl EDM in this Letter. We have carried out
several calculations by different high-precision methods in
different potentials. Below, we briefly summarize the
calculations that we have performed and our main findings
before providing more details of the methods used in this
work.
1. CIþMBPT calculation in VN�3 potential.—First, we

have repeated the calculation of Dzuba and Flambaum [6]
and ensured that we agree with their value at the same level
of approximation. Then, we have calculated a number of
corrections that were omitted in [6], including structure
radiation, core-Brueckner, two-particle, selected three-
particle, and normalization corrections. We found that
some of these corrections are large, 5%–7% percent, but
partially canceling, causing lower accuracy of VN�3 results
than was previously expected.
2. CIþ all-order calculation in VN�3 potential.—

Recently, we have developed the relativistic CIþ
all-order method [8] combining CI with the coupled-
cluster (CC) approach. This method, first suggested in
[9], was successfully applied to the calculation of divalent
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atomproperties inRefs. [8,10]. In thiswork,we applied it for
the first time to calculate properties of the system with three
valence electrons. This calculation allowed us to evaluate
the effect of higher-order core-core and core-valence cor-
rections to the EDM. We found that the effect of these
corrections to the enhancement factor is small, 0.7%.

3. CIþMBPT calculation in VN�1 potential.—We have
repeated the entire CIþMBPT calculation described
above, including all corrections, in VN�1 potential. We
note that the CIþMBPT approach still allows us to fully
treat all three valence electrons using CI. Therefore, we can
accurately treat the contributions of the 6s6p2 states to K
on the same footing as the 6s2ns terms unlike the approach
of [7]. Our final result is based on the VN�1 calculation
with the higher-order corrections estimated from the VN�3

CIþ all-order calculation.
4. RCC calculation of the 6s2ns contributions to

EDM.—In an attempt to compare with RCC calculations
of [7], we carried out full relativistic coupled-cluster cal-
culations including single, double, and perturbative triple
(RCCSDpT) excitations of the DF functions in VN�1

potential. We have also used this calculation to evaluate
the effect of the Breit interaction on the EDM and found it
to be negligible (0.36%). We have verified that our
RCCSDpT value for the 6s27s and 6s28s contributions to
the EDM are in excellent (2%) agreement with our final
CIþMBPT values confirming the accuracy of our calcu-
lations. We have conducted RCC calculations with a trun-
cated basis that we have constructed using parameters of
[7]. The truncation of the basis set to the size of the one
used in Ref. [7] produced very large reduction (by 18%) in
the value of the 6p1=2 � 7s EDM matrix element.

We discuss these four calculations in more details below.

We start with solving DF equations Ĥ0c c ¼ "cc c, where
H0 is the relativistic DF Hamiltonian [8,11] and c c and "c
are single-electron wave functions and energies. The
self-consistent calculations were performed for the
[1s; . . . ; 5d10] closed core and the 6s-8s, 6p, 7p, and 6d
orbitals were obtained in VN�3 approximation. We have
constructed the basis set [12,13] consisting of 166 orbitals,
22s, 22p, 21d, 20f, 13g, and 11h. In order to estimate the
accuracy of this basis set, we repeated some of the calcu-
lations with significantly larger B-spline basis set consist-
ing of 273 orbitals (35s, 34p, 28d, 27f, 21g, and 20h) and
found that the differences were small and well below our
estimated accuracy. Our CI space included orbitals up to
22s, 22p, 17d, and 16f; higher n orbitals were allowed
fewer excitations. Such CI space is effectively complete.
All MBPT and all-order calculations were carried out with
inclusion of all orbitals. In Ref. [6], 40 (out of 50 in the
basis set) B-spline states up to lmax ¼ 5 were used in the
MBPT calculations, and the CI space included orbitals up
to 16s, 16p, and 16d.

The multiparticle relativistic equation for three valence
electrons is solved within the CI framework [14] to find the

wave functions and the low-lying energy levels:
HeffðEnÞ�n ¼ En�n, with the effective Hamiltonian de-
fined asHeffðEÞ ¼ HFC þ�ðEÞ. HFC is the Hamiltonian in
the frozen-core approximation and the energy-dependent
operator �ðEÞ takes into account virtual core excitations.
The �ðEÞ part of the effective Hamiltonian is constructed
using the second-order perturbation theory in the CIþ
MBPT approach [11] and linearized coupled-cluster
single-double method (LCCSD) in the CIþ all-order
approach [8]. Since the valence-valence correlations are
very large, the CI method provides a better description of
these correlations than the perturbative approaches such as
RCC due to possible large contributions of higher-order
(or higher-excitation) corrections. The LCCSD method
used here is known to describe the core-core and core-
valence correlations very well as demonstrated by its great
success in predicting alkali-metal atom properties [15].
Therefore, the combination of the CI and all-order
LCCSD methods allows us to account for all dominant
correlations to all orders.
The absolute values of the three-electron binding energy

and the energy levels of the low-lying excited states in
respect to the ground state obtained in the pure CI, the
CIþMBPT, and the CIþ all-order approximations are
given in Table I of the Supplemental Material [18]. We
find that the CIþ all-order improves the accuracy of
energies and reduces the error in the ground state three-
electron binding energy to 0.2% level.
The atomic EDM dat of the ground state of Tl is defined

as

d at ¼ 2
X

n

h0jDjnihnjHdj0i
E0 � En

; (1)

where D is the electric-dipole moment operator. The
operator Hd is given by [2]:

Hd ¼ 2de
0 0
0 �r

� �
ZðrÞ
r3

; (2)

TABLE I. The ground state three-electron binding energy jEvj
(in a.u.) and the energy levels of the low-lying excited states in
respect to the ground state (in cm�1) for VN�1 potential. Results
of the calculations and the differences with the experimental
values [16,17] (in %) are presented for CI and CIþMBPT
approximations.

CI CIþMBPT Experiment

Ev 1.9809 4% 2.0682 0.2% 2.0722

6p3=2 7016 10% 7854 �0:8% 7793

7s1=2 24 649 7% 26 328 0.6% 26 478

7p1=2 31 876 7% 33 954 0.6% 34 160

7p3=2 32 834 7% 34 974 0.5% 35 161

6d3=2 33 762 7% 36 106 0.0% 36 118

6d5=2 33 828 7% 36 180 0.1% 36 200

8s1=2 36 549 6% 38 693 0.1% 38 746
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where de is the EDM of the electron, ZðrÞ is the charge of
the nucleus and core electrons within the sphere of radius r,
and � are Pauli matrices. In the CIþMBPT and CIþ
all-order approaches, we construct effective valence opera-
tors for all observables of interest [19,20]. In this work, we
need effective operators for the electric-dipole operator
Deff , magnetic-dipole hyperfine interaction, and the
operator ðHdÞeff . These effective operators account for
the core-valence correlations in analogy with the effective
Hamiltonian. We do not perform explicit summation over
three-particle states in our approach [19,20], but use the
Dalgarno-Lewis-Sternheimer method that involves solu-
tion of the inhomogeneous equation with the correspond-
ing effective operators. We include additional corrections
beyond random-phase approximation (RPA) in the con-
struction of all effective operators in comparison with
[6]. These contributions include the core-Brueckner (�),
two-particle (2P) corrections, structural radiation (SR),
and normalization (norm) corrections. Finally, we calcu-
lated selected three-particle (3P) corrections to the effec-
tive Hamiltonian [11]. We find that an accurate calculation
of different observables in VN�3 potential is more compli-
cated due to the poor convergence of the MBPT. We
present the contributions to hyperfine structure (hfs) con-
stants A for the 8 low-lying states in Table II of the
Supplemental Material [18]. We find that many corrections
beyond CIþMBPT and RPA are large and partially can-
celing. Partial cancellation of the structural radiation and
normalization corrections was discussed in Ref. [24].
Detailed analysis of the structure radiation correction was
carried out in the samework [24]. As a result, an agreement
between final theoretical values and the experimental
results in certain cases is not very good. In particular, the
discrepancy between theoretical and experimental values
of Að7sÞ is at the level of 8%. The normalization correc-
tions are unusually large (� 6%). We calculated the nor-
malization correction by approximately expressing it in
terms of the derivatives of the MBPT corrections in respect
to the energy [11]. It appears that accurate treatment of this
correction may required development of a different
approach in the case of VN�3 potential.

We find the same problem when calculating these cor-
rections to the EDM enhancement factor in the VN�3

approximation. The CI value is �584 and the CIþ
MBPT, CIþ all-order, and RPA corrections contribute
only 3, 4, and 3, respectively. Usually these are the most
important corrections to the valence CI. At the CIþ
MBPTþ RPA level, our result is �578 and is in a good
agreement with the value�582ð20Þ obtained by Dzuba and
Flambaum [6] using the same CIþMBPTþ RPA ap-
proximation in the VN�3 potential. The small difference
may be due to the use of a different basis set and CI space,
or the treatment of MBPT corrections. The corrections �,
SR, 2P, 3P, and norm are 25, �1, �22, �2, and 36,
respectively. The two-particle and normalization correc-
tions are large,þ4% and�6%, correspondingly leading to
the value K ¼ �538ð46Þ. We estimated the uncertainty in
K based on the maximum difference of the relevant hyper-
fine constants with experiment, 8% for Að7sÞ, and the total
contribution of all corrections beyond CI (8.6%).
In summary, we find that the corrections beyond CIþ

all-orderþ RPA are large; even though they partially can-
cel each other, their total contribution is significant, almost
7% in VN�3 potential. At the same time, the all-order CC
corrections due to higher-order core-valence correlations
are very small, 0.7%. We conclude that the size of different
corrections to the EDM in the VN�3 potential is not typical
and missing higher-order contributions to the effective
operators can be important. Because of that, we repeat
calculations in the VN�1 approximation. We already used
this approximation in the calculation of the parity-
nonconserving amplitude for the 6p1=2 � 6p3=2 transition

in Tl with 3% accuracy [25]. Comparison of the VN�1 and
VN�3 potentials for Tl calculations has been recently dis-
cussed in Ref. [26].
The CIþMBPT calculation in the VN�1 potential fol-

lows the same procedure as the one in the VN�3 approxi-
mation, but the self-consistent DF procedure is carried out
for the [1s; . . . ; 5d10; 6s2] core. We note that we use the
Brillouin-Wigner variant of the MBPT in both cases. In this
formalism, the effective Hamiltonian for the valence elec-
trons is energy dependent. It was shown in our work [27]
that the accuracy of the theory can be improved by calcu-
lating the Hamiltonian at the optimal valence energy for Tl,
which was found to be�1:8 a:u: In Table I, we present the
absolute values of the valence energy of the ground state
and the energy levels of the low-lying excited states
counted from the ground state obtained in the pure CI
and in the CIþMBPT approximations. We note that the
CIþ all-order formalism is presently limited to the VN�3

potential. In VN�1, so-called subtraction diagrams have to
be included consistently at the all-order level which so far
has not been implemented. Since the all-order core-valence
corrections contributed only 0.7% in the VN�3 approxima-
tion, these are small at the present calculation as well.
A comparison of the results presented in Tables I shows

TABLE II. The magnetic-dipole hfs constants (in MHz) and
the absolute values of the reduced matrix elements of the
electric-dipole operator jh�jjDjj�0ij (in a.u.)

Theory Experiment

A (MHz) 6p1=2 22 041 21 310.8 [21]

7s1=2 12 395 12 297(2) [22]

8s1=2 3900 3871(1) [22]

E1 (a.u.) jh7sjjDjj6p1=2ij 1.781 1.81(2) [23]

jh8sjjDjj6p1=2ij 0.521

jh7sjjDjj6p3=2ij 3.393 3.28(4) [23]

jh8sjjDjj6p3=2ij 0.764
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that the energy levels found in VN�1 approximation turn
out to be closer to the experimental results than in VN�3

approximation, which is already observed at the stage of
pure CI approximation. As a result, the MBPT corrections
that give the main contribution to the uncertainty budget
are smaller leading to better agreement between the theo-
retical and experimental energy levels. Our values for the
magnetic-dipole hfs constants and E1 transition ampli-
tudes between low-lying levels in VN�1 potential are com-
pared with experimental results [21–23] in Table II. The
calculation of these properties was discussed in detail in
Ref. [25]. The corrections that are taken into account are
similar to those for the VN�3 potential. The only essential
difference is an appearance of the subtraction diagrams
(Sbt) in the former case. The differences between the
theoretical and experimental results do not exceed 3% for
all relevant properties.

In Table III, we present the breakdown of different
contributions to the atomic EDM enhancement factor K.
The difference between the CI value, �594, and the final
value, �573, is only 3.7%. It demonstrates that the inter-
action between valence electrons is much more important
and should be treated as accurately as possible. In Table IV,
we list the contributions to K from most significant con-
figurations. These values were calculated using Eq. (1) and
results of our VN�1 CIþMBPT calculation. We find that
contributions from 4 configurations give 85% of the total
value. Table IV illustrates that it is very important to
accurately account for the contributions of the 6s6p2 con-
figurations. Their contribution to the EDM is�45%. In the
RCC method of [7], these contributions were treated as
excitations of the core electrons which is unlikely to pro-
vide required accuracy.

We have also carried out a completely different set of
calculations using the relativistic coupled-cluster method
with single, double, and perturbative triple (RCCSDpT)

excitations in VN�1 potential [15,28] to evaluate the domi-
nant contributions to the EDM from the 6s27s and 6s28s
states by a different approach. All nonlinear terms were
included at the SD level. This method is theoretically very
close to that of Nataraj et al. [7]. While there are differ-
ences in the treatment of the triple excitations between ours
and Ref. [7] approaches, we find that contributions of the
triple excitations to the EDM are small (less than 2%). We
have also used this calculation to evaluate the effect of the
Breit interaction on EDM and found it to be negligible
(0.36% for the 6s27s contribution). Our final values for the
6s27s and 6s28s contributions are given in the last column
of Table IV. RCCSDpT values are in excellent (2%)
agreement with our final CIþMBPT values. The agree-
ment of the results obtained by two completely different
approaches confirms the accuracy of our calculations.
However, the value of the 6s27s contribution inferred
from Fig. 2 of [7] is 10% lower, about �188. We find
that this difference may be due to significant truncation of
the basis set used in RCC calculation of [7]. The main part
of our RCCSDpT calculation was carried out with very
large numerically complete basis set (650 orbitals with
l � 6). Figure 2 in [7] shows that their 9s orbital already
belongs to continuum, which is consistent with their re-
striction of ns orbitals to n � 14 in the RCC calculation.
We have conducted a basis set test truncating our smaller
166 orbital basis to n ¼ 14 for all partial waves and using it
in the RCC calculations. We find that the value of the
6p1=2 � 7s EDM matrix element was reduced by 18%

due to basis set truncation.
To conclude, we calculated the EDM enhancement fac-

tor to be equal to �573ð20Þ. The uncertainty is, somewhat
conservatively, assigned based on the accuracy of the
relevant hyperfine constants (3%) and total size of all
corrections beyond the CI, which is 3.7%. This value
differs by 20% from the recently published result of

TABLE III. The breakdown of different contributions to our final value of the EDM enhancement factor K, VN�1 potential. The first
column gives the CI value and the following columns give various corrections described in the text.

CI CIþMBPT RPA Sbt 2P � SR Norm Final Ref. [5] Ref. [6] Ref. [7]

�593:6 8.7 �13:0 16.5 �18:8 22.5 0.0 5.2 �573ð20Þ �585ð30–60Þ �582ð20Þ �466ð10Þ

TABLE IV. The contributions to the EDM enhancement factor K in our final VN�1 CIþMBPT calculation. ColumnsD andHd give
reduced matrix elements of the electric-dipole and EDM operators. The results of our RCCSDpT calculation for the 6s2ns
contributions are given in the last column labeled K(CC) for comparison.

State �Eth �Eexpt D Hd K K(CC)

6s27s 2S1=2 26 328 26 478 �1:798 17.7 �216:6 �212:2
6s28s 2S1=2 38 693 38 746 �0:526 9.2 �22:4 �22:8
6s6p2 4P1=2 46 281 45 220 �0:427 45.1 �74:6
6s6p2 2P1=2 69 218 67 150 �2:472 28.0 �179:2
6s6p2 4D1=2? 79 830 �0:142 �4:2 1.3

Other �81:1
Total �572:5
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Nataraj et al. [7], but agrees well with the results obtained
by Dzuba and Flambaum [6] and Liu and Kelly [5].
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