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Relativistic calculations of C6 and C8 coefficients for strontium dimers
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The electric-dipole and quadrupole polarizabilities of the 5s5p 3P o
1 state and the C6 and C8 coefficients for

the 1S0 + 1S0 and 1S0 + 3P o
1 dimers of strontium are calculated using a high-precision relativistic approach that

combines configuration interaction and linearized coupled-cluster methods. Our recommended values of the
long-range dispersion coefficients for the 0u and 1u energy levels are C6(0u) = 3771(32) a.u. and C6(1u) =
4001(33) a.u., respectively. They are in good agreement with recent results from experimental photoassociation
data. We also calculate C8 coefficients for Sr dimers, which are needed for precise determination of long-range
interaction potential. We confirm the experimental value for the magic wavelength, where the Stark shift on
the 1S0-3P o

1 transition vanishes. The accuracy of calculations is analyzed and uncertainties are assigned to all
quantities reported in this work.
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I. INTRODUCTION

The divalent alkaline-earth-metal element strontium is of
interest for many applications of atomic, molecular, and optical
physics. The atomic clock based on the 5s2 1S0–5s5p 3P o

0
transition in Sr has achieved a total systematic uncertainty
of 6 × 10−18 [1], which is the smallest yet demonstrated. The
architecture of this clock also provides capabilities for detailed
studies of quantum many-body physics. The SU(N)-symmetric
interactions of 87Sr atoms in optical lattices provide a platform
for quantum simulation of lattice gauge theories and a variety
of quantum materials such as transition metal oxides, heavy
fermion compounds, and exotic topological phases. Early
demonstrations of this capability have been realized by high-
resolution spectroscopy of SU(N)-symmetric interactions in
Sr orbital magnetism [2].

All four stable isotopes of Sr have been brought to
strong quantum degeneracy: Bose-Einstein condensation has
been achieved in the bosonic isotopes 84, 86, and 88, and
fermionic 87Sr has been cooled to within 10% of its Fermi
temperature [3]. The first isotope to be condensed [4], 84Sr,
is also distinctive in being the only atomic species to date
which has been condensed by laser cooling alone [5]. Sr
has also been used in ultracold gases of both homonuclear
[6,7] and heteronuclear [8] molecules. A quantum degenerate
gas mixture of Sr and Rb has been realized recently [9], as
a prerequisite for the production of a quantum degenerate
gas of polar molecules. Presently, there is much interest in
Sr photoassociation spectroscopy due to its relevance for the
production of ground-state ultracold molecules [6], coherent
photoassociation [10], and search for time variation of the
electron-proton mass ratio [11].

Understanding of the long-range interaction of the Sr atoms
is needed for all of the applications mentioned above. In
Ref. [2], we have provided recommended values of the C6

long-range interaction coefficients for the 1S0-1S0, 1S0-3P o
0 , and

3P o
0 -3P o

0 dimers for the determination of relevant interaction
parameters for spin-orbital quantum dynamics.

Motivated by the diverse applications and particular interest
in the 1S0-3P o

1 intercombination line for the most recent

photoassociation studies, we have calculated the C6 and C8

van der Waals coefficients for the Sr 1S0 + 1S0 and 1S0 + 3P o
1

dimers. The ground-state long-range interaction coefficients
were previously studied in Refs. [12–14]; here we provide
revised value of the C8 coefficient that has been critically
evaluated for its accuracy.

The energy levels of the 1S0 + 3P1 Sr2 molecule were
obtained for 88Sr [15], 84Sr [16], and 86Sr [17]. In a recent
paper, Borkowski et al. [17] provide a theoretical model
based on recent state-of-the-art ab initio potential curves from
[18,19] for the description of the long-range interactions in
this excited state of the strontium dimer. They determined the
van der Waals C6 coefficients for the 0u and 1u bound states
to be C6(0u) = 3868(50) a.u. and C6(1u) = 4085(50) a.u.
[17]. Our recommended values of C6(0u) = 3771(32) a.u.
and C6(1u) = 4001(33) a.u. provide further confidence in the
fitting of precision photoassociation data.

In the course of our work, we also calculated a number of E1
transition amplitudes and the electric-dipole and quadrupole
polarizabilities of the 5s5p 3P o

1 state of atomic Sr for use in
other applications. We report recommended values of these
quantities here.

This paper is organized as follows. In Sec. II we briefly
describe the method of calculation and present the matrix
elements of E1 transitions from the 3P o

1 state to low-lying
even-parity states. In Sec. III we discuss calculation of the
scalar static 3P o

1 polarizability. The 1S0-3P o
1 magic wavelength

is discussed in Sec. IV. Section V is devoted to calculation
of the van der Waals C6(1S0 + 3P o

1 ) coefficients. In Secs. VI
and VII we present the results of calculation of the electric
quadrupole 3P o

1 polarizability and C8(1S0 + 3P o
1 ) coefficients,

respectively.

II. METHOD OF CALCULATION AND
ELECTRIC-DIPOLE MATRIX ELEMENTS

We consider atomic Sr as an atom with frozen Ag-like
Sr2+ core and two valence electrons. Interaction of the valence
electrons is taken into account in the framework of the
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configuration interaction (CI) method (see, e.g., Ref. [20])
while core-core and core-valence correlations are treated in
the framework of the many-body perturbation theory (MBPT)
and the all-order single-double coupled-cluster method. Both
CI+MBPT and CI+all-order methods were described in detail
in a number of papers [21–24], so here we only briefly review
their main features. While the CI+all-order method is more
accurate, carrying out the calculations by both approaches
allows us to estimate the accuracy of the final results.

Unless stated otherwise, we use atomic units (a.u.) for all
matrix elements and polarizabilities throughout this paper: The
numerical values of the elementary charge |e|, the reduced
Planck constant, � = h/2π , and the electron mass me are set
equal to 1. The atomic unit for polarizability can be converted
to SI units via α/h[Hz/(V/m)2] = 2.48832 × 10−8α (a.u.),
where the conversion coefficient is 4πε0a

3
0/h and the Planck

constant h is factored out in order to provide direct conversion
into frequency units; a0 is the Bohr radius and ε0 is the electric
constant.

We start with the solutions of the Dirac-Fock equation,

H0 ψc = εc ψc, (1)

where H0 is the Dirac-Fock Hamiltonian [21,23] and ψc

and εc are single-electron wave functions and energies. The
calculations are carried out in the V N−2 potential, where N

is the total number of electrons and an initial self-consistent
Hartree-Fock procedure is applied to the N − 2 = 36 core
electrons. The wave functions and the energy levels for the
valence electrons are determined by solving the multiparticle
relativistic equation [21],

Heff(En)�n = En�n, (2)

with the effective Hamiltonian defined as

Heff(E) = HFC + �(E).

Here HFC is the Hamiltonian in the frozen-core approximation
and the operator �(E), accounting for virtual core excitations,
is constructed using second-order perturbation theory in the
CI+MBPT method [21] and using a linearized coupled-cluster
single-double method in the CI+all-order approach [23]. Since
the valence space contains only two electrons, the CI can be
made numerically complete. Our calculation of the energy
levels was presented and discussed in detail in Ref. [25].
In analogy with the effective Hamiltonian we can construct
effective electric-dipole and electric-quadrupole operators to
account for dominant core-valence correlations [26–28].

In Ref. [25], we used the CI+all-order method to evaluate
the static and dynamic polarizabilities of the 5s2 1S0 and
5s5p 3P o

0 states of Sr. We found that the E1 matrix elements
for the transitions that give dominant contributions to the
3P o

0 polarizability are sensitive to the higher-order corrections
to the wave functions and other corrections to the matrix
elements beyond the random phase approximation (RPA).
We included the higher-order corrections in an ab initio way
using the CI+all-order approach and also calculated several
other corrections beyond RPA. The resulting value for the dc
Stark shift of the Sr 1S0-3P o

0 clock transition, 247.5 a.u., was
found to be in excellent agreement with the experimental result
247.374(7) a.u. [29].

TABLE I. The CI+MBPT and CI+all-order results for abso-
lute values of the reduced electric-dipole matrix elements for the
transitions that give dominant contributions to the polarizabilities of
the 5s5p 3P o

0 and 5s5p 3P o
1 states. The CI+MBPT and CI+all-order

results including RPA corrections are given in columns labeled
“CI+MBPT” and “CI+all”, respectively. The relative differences
between the CI+all-order and CI+MBPT results are given in the
column labeled “HO” in %. The recommended values of the matrix
elements are given in the last column (see text for details).

Transition CI+MBPT CI+all HO Recomm.

5s5p 3P o
0 –5s4d 3D1 2.681 2.712 1.14% 2.675(13)a

5s5p 3P o
1 –5s4d 3D1 2.326 2.354 1.19% 2.322(11)a

5s5p 3P o
1 –5s4d 3D2 4.031 4.075 1.08% 4.019(20)

5s5p 3P o
0 –5s6s 3S1 1.983 1.970 −0.66% 1.962(10)a

5s5p 3P o
1 –5s6s 3S1 3.463 3.439 −0.70% 3.425(17)

5s5p 3P o
0 –5s5d 3D1 2.474 2.460 −0.57% 2.450(24)a

5s5p 3P o
1 –5s5d 3D1 2.065 2.017 −2.38% 2.009(20)

5s5p 3P o
1 –5s5d 3D2 3.720 3.688 −0.87% 3.673(37)

5s5p 3P o
0 –5p2 3P1 2.587 2.619 1.22% 2.605(26)a

5s5p 3P o
1 –5p2 3P0 2.619 2.671 1.95% 2.657(27)

5s5p 3P o
1 –5p2 3P1 2.317 2.374 2.40% 2.362(24)

5s5p 3P o
1 –5p2 3P2 2.837 2.880 1.49% 2.865(29)

aReference [25].

In order to predict the accurate values for the dynamic part
of black-body radiation shift in the Sr clock, which is one of
the largest sources of Sr clock systematic uncertainty, we have
combined our theoretical calculations with the experimental
measurements of the Stark shift [29] and magic wavelength
[30] of the 5s2 1S0–5s5p 3P o

0 transition to determine very
accurate recommended values for several relevant electric-
dipole matrix elements [25]. Specifically, we were able to
obtain accurate recommended values for the following most
important transitions contributing to the 3P o

0 polarizability:
5s5p 3P o

0 –5s4d 3D1, 5s5p 3P o
0 –5s6s 3S1, 5s5p 3P o

0 –5s5d 3D1,
and 5s5p 3P o

0 –5p2 3P1.
In this work, we use our previous results, supplemented with

theoretical CI+all-order+RPA values of the reduced matrix
element ratios, to obtain recommended values for eight transi-
tions that give dominant contributions to the polarizability of
the 5s5p 3P o

1 state. The results are summarized in Table I.
We assume that the transitions from even-parity states to

the 5s5p 3P o
1 state are calculated in the CI+all-order+RPA ap-

proach with the same accuracy as similar transitions from even-
parity states to the 5s5p 3P o

0 state, for which the recommended
values were presented in Ref. [25]. Then, for example, the
recommended value of the 〈5s4d 3D2||D||5s5p 3P o

1 〉 matrix
element is obtained here from the CI+all-order+RPA ratio,

〈
5s4d 3D2||D||5s5p 3P o

1

〉
〈
5s4d 3D1||D||5s5p 3P o

0

〉 ,
multiplied by the recommended value of the
〈5s4d 3D1||D||5s5p 3P o

0 〉 reduced matrix element. In a
similar manner we find all other matrix elements listed in
Table I. We assign the uncertainties to the new recommended
values based on the uncertainties of the corresponding matrix
element involving the 5s5p 3P o

0 state.
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As an additional check, we also use a simple ratio between
the relativistic and nonrelativistic reduced matrix element
of the electric-dipole operator D valid in the LS coupling
approximation. Since the dipole and spin operators commute,
we obtain [31]

〈γ JLS||D||γ ′J ′L′S ′〉
= δSS ′

√
(2J + 1)(2J ′ + 1) (−1)S+L+J ′+1

×
{

L J S

J ′ L′ 1

}
〈γLS||D||γ ′L′S〉, (3)

where S is the total spin momentum of the atomic state, L and
J are the orbital and total angular momenta, and γ stands for
all other quantum numbers.

The results produced by this formula for the transitions
to 5s4d 3DJ states differ from recommended values listed in
Table I by only 0.15% and 0.2%. These differences are sub-
stantially smaller than the quoted uncertainties of 0.5%. The
5s5p 3P o

1 –5s4d 3DJ transitions give dominant contributions to
the 5s5p 3P o

1 polarizability. The differences between the use
of Eq. (3) and the CI+all-order ratio for the other transitions
range from 0.05% to 5.6%. This demonstrates that LS coupling
works reasonably well for the 5s5p 3P o

J , 5s4d 3DJ , and
5s5d 3DJ terms, as expected from the experimental splittings
of the atomic terms.

We find that absolute values of all recommended matrix
elements are slightly less than the ab initio CI+all-order
results. The difference, as it was discussed in Ref. [25],
can be attributed to the small corrections beyond RPA, such
as the core-Brueckner, two-particle, structural radiation, and
normalization corrections.

Along with the recommended values, we also give ab initio
results of the CI+MBPT and CI+all-order calculations that
include RPA corrections to the effective operator. The higher-
order (HO) corrections may be estimated as the difference
of the CI+all-order+RPA and CI+MBPT+RPA calculations.
These contributions of the higher orders, listed in the “HO”
column of Table I, provide a good estimate of the uncertainty
and are larger than the more accurate final uncertainty estimate
for most of the transitions. Since the basis set is numerically
complete and the configuration space is saturated for two
electrons, the contribution to the uncertainty budget coming
from CI is negligible in comparison to the contributions arising
from core-valence correlations.

III. POLARIZABILITY OF THE 3P o
1 STATE

We calculated the static and dynamic polarizabilities of
the Sr 5s5p 3P o

1 state using the high-precision CI+all-order
method. The dynamic polarizability α(ω) can be represented
as a sum,

α(ω) = αv(ω) + αc(ω) + αvc(ω), (4)

where αv(ω) is the valence polarizability, αc is the ionic core
polarizability, and a small term αvc compensates for Pauli-
principle forbidden excitations to occupied valence shells and
slightly modifies the ionic core polarizability.

The valence part of the polarizability is determined by
solving the inhomogeneous equation in valence space, which

TABLE II. Contributions to the 5s5p 3P o
1 static scalar polar-

izability of Sr in a.u. The dominant contributions to the valence
polarizabilities are listed separately. The theoretical and experimental
[32] transition energies are given in columns �Eth and �Eexpt. The
remaining contributions to valence polarizability are given in row
Other. The total of the core and αvc terms is listed together in row
Core + Vc. The dominant contributions to α0, listed in columns α0 (A)
and α0 (B), are calculated with the CI + all-order + RPA matrix
elements and theoretical (A) and experimental (B) energies [32],
respectively. The dominant contributions to α0 listed in column α0 (C)
are calculated with experimental energies and our recommended
values of the matrix elements given in Table I.

Contribution �Eth �Eexpt α0 (A) α0 (B) α0 (C)

5s5p 3P o
1 –5s4d 3D1 3589 3655 75.3 74.0 71.9

5s5p 3P o
1 –5s4d 3D2 3656 3715 221.5 218.0 212.0

5s5p 3P o
1 –5s6s 3S1 14484 14535 39.8 39.7 39.4

5s5p 3P o
1 –5s5d 3D1 20472 20503 9.7 9.7 9.6

5s5p 3P o
1 –5s5d 3D2 20488 20518 32.4 32.3 32.1

5s5p 3P o
1 –5p2 3P0 20807 20689 16.7 16.8 16.6

5s5p 3P o
1 − 5p2 3P1 21020 20896 13.1 13.2 13.0

5s5p 3P o
1 –5p2 3P2 21300 21171 19.0 19.1 18.9

5s5p 3P o
1 –5s7s 3S1 22869 22920 1.8 1.8 1.8

Other 38.3 38.3 38.3
Core +Vc 5.55 5.55 5.55
Total 473.2 468.4 459.2
Recommended 459.2(3.8)

is approximated as [33]

(Ev − Heff)|(v,M ′)〉 = Deff|0(v,J,M)〉, (5)

for the state v with total angular momentum J and magnetic
quantum number M . The parts of the wave function (v,M ′)
with angular momenta of J ′ = J,J ± 1 allow us to determine
the scalar and tensor polarizabilities of the state |v,J,M〉 [33].
The effective dipole operator Deff includes RPA corrections.

Small core terms αc and αvc are evaluated in the RPA.
The latter is calculated by adding αvc contributions from the
individual electrons, i.e., αvc(5s5p) = αvc(5s) + αvc(5p). The
uncertainties of these terms are determined by comparing the
Dirac-Fock and RPA values.

We use the sum-over-states formula for the scalar part of the
dynamic valence polarizability [34] to establish the dominant
contributions to the final value,

αv
0 (ω) = 2

3(2J + 1)

∑
n

(En − Ev)|〈v‖D‖n〉|2
(En − Ev)2 − ω2

. (6)

Here J is the total angular momentum of the state v and En

is the energy of the state n. For the static polarizability, ω = 0
in Eq. (6). Determination of the dominant contributions is
essential for estimating the uncertainty of the final value.

We have carried out several calculations of the dominant
contributions to the 5s5p 3P o

1 static scalar polarizability using
different sets of the energies and E1 matrix elements. The re-
sults are presented in Table II. The theoretical and experimental
[32] transition energies are given in columns �Eth and �Eexpt

in cm−1. The dominant contributions to the polarizability listed
in columns α0 (A) and α0 (B) are calculated with CI + all-order
+ RPA matrix elements and theoretical (A) and experimental
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TABLE III. The dominant contributions to the Sr 5s5p 3P o
1 and 5s5p 3P o

0 scalar polarizabilities in a.u. and in percent. Ab initio (columns
2–5) and recommended (columns 6–9) values are given. Nonrelativistic term notation is used when the sum of relativistic contributions is given
(see the main text for details). The results for the 5s5p 3P o

0 state are taken from Ref. [25]. Final (recommended) results for the scalar 5s5p 3P o
1

polarizability are given in the last column.

Theor. matrix elements and energies Recomm. matrix elements and expt. energies Recomm.

State α0(3P o
1 ) α0(3P o

0 ) α0(3P o
1 ) α0(3P o

0 ) α0(3P o
1 ) α0(3P o

0 ) α0(3P o
1 ) α0(3P o

0 ) α0(3P o
1 )

5s4d 3D 296.8 285.0 62.7% 62.2% 283.9 272.6 61.8% 61.3% 283.9(3.4)
5s6s 3S1 39.8 38.7 8.4% 8.4% 39.4 38.3 8.6% 8.6% 39.4(0.4)
5s5d 3D 42.1 42.9 8.9% 9.4% 41.7 42.5 9.1% 9.6% 41.7(0.8)
5p2 3P 48.8 47.3 10.3% 10.3% 48.6 47.1 10.6% 10.6% 48.6(0.9)
5p7s 3S1 1.81 1.70 0.4% 0.4% 1.81 1.69 0.4% 0.4% 1.81(0.05)
Other 38.3 36.9 8.1% 8.1% 38.2 36.9 8.3% 8.3% 38.2(1.1)
Core+Vc 5.6 5.6 1.2% 1.2% 5.6 5.6 1.2% 1.2% 5.55(0.06)
Total 473.2 458.1 100.0% 100.0% 459.2 444.6 100.0% 100.0% 459.2(3.8)

(B) energies [32], respectively. The dominant contributions to
α0 listed in column α0 (C) are calculated with experimental
energies and recommended matrix elements. These results are
taken as final. The remaining valence contributions that are not
listed separately are given in the row labeled “Other”. The sum
of the core and αvc terms is listed in row labeled “Core +Vc”.

A comparison of the main contributions to the 5s5p 3P o
0

and 5s5p 3P o
1 scalar polarizabilities is given in Table III. Two

sets of calculations are presented. In the first calculation, we
use the ab initio values of the matrix elements and energies,
while in the second calculation the recommended matrix
elements and the experimental energies are used. To simplify
the comparison, we sum the contributions from the transitions
to the 3DJ and 3PJ states and use 3D and 3P terms labels for
the totals. For example, the contribution of the intermediate
5s4d 3D state to α0(3P o

1 ) means the sum of contributions of the
5s4d 3D1 and 5s4d 3D2 states, while in the case of the 3P o

0 state
the notation 5s4d 3D means the contribution of the 5s4d 3D1

state only.
The contribution of different terms to α0(3P o

1 ) and α0(3P o
0 ) is

very similar. Therefore, we are able to assign the uncertainties
to these contributions based on the uncertainties of the matrix
elements listed in Table I and on the uncertainties of the re-
spective contributions to α0(3P o

0 ) determined in Ref. [25]. Our
final recommended result for the 5s5p 3P o

1 scalar polarizability
is 459.2(3.8) a.u.

IV. MAGIC WAVELENGTH

The magic wavelength λ∗ at which α1S0 (λ∗) = α3P o
1,|mJ |=1

(λ∗)

and the quadratic Stark shift on the 1S0-3P o
1 transition vanishes,

was experimentally determined by Ido and Katori [35] to
be 914(1) nm. Note that α3P o

1,|mJ |=1
is the total polarizability,

i.e., is the sum of the scalar and tensor parts. Using the
magic frequency ω∗ = 0.049851(5) a.u., corresponding to the
magic wavelength λ∗, and the experimental value of the
matrix element |〈5s2 1S0||D||5s5p 1P o

1 〉| = 5.248(2) a.u. [36],
α1S0 (ω∗) was obtained in Ref. [37] to be 261.2(3) a.u.

Solving inhomogeneous equation (5), we found α1S0 (ω∗) =
261.03 a.u. in excellent agreement with the result 261.2(3).
When this value was recalculated with the recommended
matrix elements and the experimental energies we obtained

261.07 a.u. Similar calculations of the α1P o
1,|mJ |=1

(ω∗) yield
264.3 a.u. and 261.0 a.u., respectively. Therefore, the use of the
recommended matrix elements and the experimental energies
yields the experimentally determined magic wavelength to
within its stated uncertainty.

V. C6 COEFFICIENTS

The expression for the C6(1S0 + 3P o
1 ) coefficient is given

by [38]

C6(�p) =
2∑

J=0

AJ (�)XJ , (7)

where the angular dependence AJ (�) is represented by

AJ (�) = 1

3

1∑
μ=−1

{
w(1)

μ

(
1 1 J

−� −μ � + μ

)}2

, (8)

with the dipole weights w
(1)
±1 = 1 and w

(1)
0 = 2 and � = 0,1.

The coefficients AJ (�) (and, consequently, the C6 coefficients)
do not depend on gerade/ungerade symmetry.

The quantities XJ for the 1S0 + 3P o
1 dimer are given by

XJ = 27

2π

∫ ∞

0
αA

1 (iω) αB
1J (iω) dω + δX0 δJ,0, (9)

where A ≡ 1S0 and B ≡ 3P o
1 , possible values of the total

angular momentum J are 0, 1, and 2, and the other quantities
are defined below.

The αA
1 (iω) is the electric-dipole dynamic polarizability

of the 1S0 state at the imaginary argument. The quantity
α�

KJ (iω) is a part of the scalar electric-dipole (K = 1) or
electric-quadrupole (K = 2) dynamic polarizability of the
state �, in which the sum over the intermediate states |n〉
is restricted to the states with fixed total angular momentum
Jn = J :

α�
KJ (iω) ≡ 2

(2K + 1)(2J� + 1)

×
∑
γn

(En − E�)|〈γn,Jn = J ||T (K)||γ�,J�〉|2
(En − E�)2 + ω2

.

(10)

052715-4



RELATIVISTIC CALCULATIONS OF C6 AND C8 . . . PHYSICAL REVIEW A 90, 052715 (2014)

TABLE IV. A breakdown of the contributions to the C6(�) coefficient for the (1S0 + 3P o
1 ) dimer. The CI+MBPT+RPA values for XJ are

given in the column labeled “CI+MBPT”. The explanation for two other calculations listed in “CI+all” and “Recomm.” columns is given in
the text. The δX0 term is given separately in the second row; it is included in the J = 0 contribution.

AJ XJ C6 (CI+all) C6 (Recomm.)

J � = 0 � = 1 CI+MBPT CI+all Recomm. � = 0 � = 1 � = 0 � = 1

0 4/9 1/9 1473 1494 1486 664 166 660 165
δX0 4/9 1/9 22.8 23.7 23 11 3 10 3
1 1/9 5/18 6406 6395 6320 711 1776 702 1756
2 11/45 19/90 9981 10007 9853 2446 2113 2409 2080
Sum 3821 4055 3771 4001
Recommended 3771(32) 4001(33)

Here T (K) is the electric-multipole operator of rank K (in
particular, T (1) ≡ D and T (2) ≡ Q) and γn stands for all
quantum numbers of the intermediate states except Jn.

The correction δX0 to the X0 term in Eq. (9) arises due to a
downward 3P o

1 → 1S0 transition and is given by the following
expression:

δX0 = 2
∣∣〈3P o

1 ||D||1S0
〉∣∣2 ∑

n
= 3P o
1

(En − E1S0 ) |〈n||D||1S0〉|2(
En − E1S0

)2 − ω2
0

+
∣∣〈3P o

1 ||D||1S0
〉∣∣4

2ω0
, (11)

where ω0 = E3P o
1

− E1S0 .
A breakdown of the C6(�) contributions for the Sr (1S0 +

3P o
1 ) dimer is given in Table IV. Two calculations were carried

out.
(1) In the first calculation (labeled “CI+all” in Table IV)

the CI+all-order+RPA values of matrix elements and
energies were used for α1(3P o

1 )(iω). For α1(1S0)(iω) we
used the experimental 1S0-1P o

1 electric-dipole matrix
element and experimental transition energy for all
frequencies.

(2) In the second calculation (labeled “Recomm.” in Ta-
ble IV) the CI+all-order matrix elements and energies
were replaced by the recommended matrix elements
and the experimental energies for all frequencies in the
evaluation of α1(3P o

1 )(iω).
We list in Table IV the quantities XJ and coefficients AJ

given by Eqs. (8) and (9) for allowed J = 0,1,2. The δX0

term is given separately in the second row to illustrate the
magnitude of this contribution. It is very small, 0.3% of the
total for � = 0 and 0.07% for � = 1.

The fractional uncertainty δC6 for the A + B dimer may be
expressed via fractional uncertainties in the scalar static dipole
polarizabilities of the atomic states A and B [39],

δC6 ≈
√(

δαA
1 (0)

)2 + (
δαB

1 (0)
)2

. (12)

The polarizabilities and their absolute uncertainties are
presented in Table V. The uncertainty of the electric-dipole
static 1S0 polarizability was discussed in detail in Ref.
[25]; its recommended value is α0(1S0) = 197.14(20) a.u.
The uncertainty of the scalar static 3P o

1 polarizability was
determined in this work to be 0.8%. The uncertainty of the
tensor part of the static 3P o

1 polarizability was determined as the

difference of the CI+all-order+RPA and CI+MBPT+RPA
values. Using the uncertainties of the scalar polarizabilities
and Eq. (12) we are able to determine the fractional uncertainty
of the C6(�)(1S0 + 3P o

1 ) coefficients to be 0.83%. The final
recommended values are presented in Table IV.

VI. ELECTRIC QUADRUPOLE POLARIZABILITIES

In this section we discuss the calculation of the static electric
quadrupole polarizabilities for the 5s2 1S0 and 5s5p 3P o

1 states.
There are three contributions to α2(3P o

1 ) coming from the
intermediate states with J = 1,2,3.

Using Eq. (10), we find for the valence part of the reduced
dynamic scalar electric quadrupole polarizability α2(iω) of the
state |γ0,J0〉 ≡ |0〉 with the energy E0,

αv
2J (iω) = 2

5(2J0 + 1)

∑
n

(En − E0)|〈γnJn = J ||Q||0〉|2
(En − E0)2 + ω2

.

(13)

To correctly include the core contributions for all projec-
tions J we use the equation,

α2J = αv
2J + 2J + 1

5(2J0 + 1)

(
αc

2 + αvc
2

)
,

TABLE V. The 5s2 1S0, 5s5p 3P o
0 , and 5s5p 3P o

1 electric-
dipole, α1, static polarizabilities in the CI+MBPT+RPA and
CI+all-order+RPA approximations are given in columns labeled
“CI+MBPT” and “CI+all”. For the 3P o

1 state the scalar (α1s) and
tensor (α1t ) parts of the polarizabilities are presented. C6(�u/g)
coefficients for the A + B dimers are listed in the bottom part. The
values of C6, given in column “CI+all”, were obtained with the
CI+all-order+RPA values of α1s(3P o

1 )(iω) and CI+all-order+RPA
values of α1(1S0)(iω) (adjusted for the experimental 1P o

1 – 1S0 matrix
element and transition energy).

Level Property CI+MBPT CI+all HO Recomm.

5s2 1S0 α1 195.4 197.8 1.2% 197.14(20)a

5s5p 3P o
0 α1 482.1 458.1 −5.2% 444.51(20)a

5s5p 3P o
1 α1s 499.1 473.2 −5.2% 459.2(3.8)

α1t 27.9 25.7 −8.6% 26(2)
1S0 + 3P o

1 C6(0u/g) 3806 3821 0.4% 3771(32)
C6(1u/g) 4050 4055 0.1% 4001(33)

aFrom Ref. [25].
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TABLE VI. Contributions to the 5s2 1S0 and 5s5p 3P o
1 quadrupole scalar polarizabilities. The experimental transition energies [32] are

given in column �Eexpt. Theoretical transition energies, absolute values of electric quadrupole reduced matrix elements Q, and the dominant
contributions to α2 are given for the CI+MBPT+RPA and CI+all-order+RPA approximations in columns labeled �Eth (in cm−1), Q (in a.u.),
and α2 (in a.u.). The remaining contributions to valence polarizability are grouped together in row Other. The contributions from the core and
vc terms are listed together in row Core + Vc. The recommended values of the dominant contributions to α2, listed in column α2(Recomm.),
are calculated with the CI+all-order+RPA values of Q and the experimental energies.

CI+MBPT+RPA CI+all-order+RPA

State Contribution �Eexpt �Eth Q α2 �Eth Q α2 α2 (Recomm.)

5s2 1S0 5s2 1S0 − 5s4d 3D2 18394 18298 1.20 7 18219 1.18 7 7
5s2 1S0 − 5s4d 1D2 20441 20428 26.00 2905 20150 26.54 3026 3069
5s2 1S0 − 5s5d 1D2 34958 35092 17.39 757 34727 17.26 749 754
5s2 1S0 − 5s5d 3D2 35226 35387 0.52 1 35022 0.54 1 1
Other 689 697 697
Core +Vc 17 17 17
Total 4375 4496 4545
Recommended 4545(120)

5s5p 3P o
1 5s5p 3P o

1 − 5s5p 3P o
2 394.2 404.3 36.30 95397 403.2 36.46 96487 98680

5s5p 3P o
1 − 4d5p 3F o

2 18763 18724 15.51 376 18909 16.17 404 408
5s5p 3P o

1 − 4d5p 3F o
3 19085 19095 25.46 994 19264 26.26 1048 1057

5s5p 3P o
1 − 5s6p 3P o

1 19364 19260 9.89 149 19332 10.07 154 153
5s5p 3P o

1 − 5s6p 3P o
2 19469 19370 16.03 388 19395 18.61 522 521

Other 4596 4482 4482
Core +Vc 17 17 17
Total 101917 103114 105317
Recommended 1.053(12) ×105

from [38], where we assume that the factor (2J + 1)/(5(2J0 +
1)) is the same for both αc

2 and αvc
2 . This is correct for the 1S0

state. For the 3P o
1 state, the αvc

2 term is negligibly small.
The breakdown of the contributions to the 5s2 1S0 E2

and 5s5p 3P o
1 E2 scalar polarizabilities obtained using the

CI+MBPT and CI+all-order methods is given in Table VI.
The RPA corrections to the quadrupole operator were also
included. The recommended values obtained by replacing the

theoretical transition energies by the experimental ones are
given in the last column of the table. The uncertainties were
determined as the differences of the CI+all-order+RPA and
CI+MBPT+RPA results.

The main contribution to the ground-state quadrupole
polarizability comes from the 5s4d 1D2 and 5s5d 1D2 states,
which give together 84% of the total. The main contribution
to the scalar part of the 3P o

1 static quadrupole polarizability

TABLE VII. The X
JaJb

k for different Ja , Jb, and k and C8 coefficients obtained in the CI+MBPT+RPA and CI+all-order+RPA
approximations are given in columns labeled “CI+MBPT” and “CI+all”. The recommended values, given in column labeled “Recomm.”, are
calculated with CI+all-order+RPA values of Q and the experimental transition energies to the mainly contributing intermediate states listed in
Table VI. The contribution of δX11

1 is included in X11
1 and the contribution of δX20

2 is included in X20
2 . The (rounded) recommended values are

taken as final. Higher-order contributions, defined as relative differences of the “CI+all” and “CI+MBPT” values, are listed in column labeled
“HO” in %. Determination of uncertainties, given in parenthesis, is discussed in the text. All quantities are given in a.u.

CI+MBPT CI+all HO Recomm. Final

1S0 + 1S0 C8 361454 370965 2.4% 371455 3.7(1) × 105

1S0 + 3P o
1 δX11

1 126234 128515 1.8% 128515
X11

1 186311 189088 1.5% 189088
X12

1 704597 713986 1.3% 711015
X13

1 425433 429976 1.1% 429976
δX20

2 863 890 3.0% 920
X20

2 57407 59132 2.9% 59202
X21

2 247138 249097 0.8% 249812
X22

2 383908 387224 0.9% 388487
X11

3 90 90
X22

4 154 154
C8(0u) 555172 561944 1.2% 562406 5.624(73) × 105

C8(1u) 724902 733370 1.2% 732694 7.327(86) × 105

C8(0g) 554954 561727 1.2% 562187 5.622(73) × 105

C8(1g) 724829 733297 1.2% 732621 7.326(86) × 105
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TABLE VIII. The values of the A
JaJb

l (�p) coefficients. The
parameter p = 0 for ungerade symmetry and p = 1 for gerade
symmetry.

�p = 0 �p = 1

A11
1 3/5 1/5

A12
1 1/15 7/15

A13
1 43/105 31/105

A20
2 3/5 1/5

A21
2 1/5 2/5

A22
2 9/25 8/25

A11
3 (−1)p 3/5 (−1)p 1/5

A22
4 (−1)p 9/25 (−1)p 3/25

comes from the 5s5p 3P o
2 state. This intermediate state gives

94% of the total. This is due to a very small energy interval
�E = E(3P o

2 ) − E(3P o
1 ) of only 394.2 cm−1. We note that we

obtained very close results for �E, 404 and 403 cm−1, at
the CI+MBPT and CI+all-order stages, respectively. At the
same time these values are 2.5% larger than the experimental
transition energy �E = 394.2 cm−1. This difference is taken
into account in the recommended values of the quadrupole
polarizabilities, where the experimental energies are used for
the dominant transitions.

VII. C8 COEFFICIENTS

The C8 dispersion coefficient for the 1S0 + 1S0 dimer can
be found as the quadrature of the electric-dipole αA

1 (iω) and
the electric-quadrupole αA

2 (iω) dynamic polarizabilities of the
A ≡ 1S0 state:

C8 = 15

π

∫ ∞

0
αA

1 (iω) αA
2 (iω) dω. (14)

The results of calculation of the C8 coefficient in the
CI+MBPT+RPA and CI+all-order+RPA approximations are
presented in Table VII. The recommended value is obtained
with the CI+all-order+RPA matrix elements of the Q operator
and the experimental transition energies for the intermediate
states listed in Table VI. The recommended value is taken as
final.

In analogy to the C6 coefficient the fractional uncertainty
of C8(1S0 + 1S0) can be expressed via fractional uncertainties

of the electric-dipole and quadrupole static polarizabilities of
the A ≡ 1S0 state as

δC8(1S0 + 1S0) ≈
√(

δαA
1 (0)

)2 + (
δαA

2 (0)
)2

. (15)

Now taking into account that δαA
1 (0) is negligible in compari-

son to δαA
2 (0), we arrive at δC8 ≈ δαA

2 (0) ≈ 2.6%.
The C8(5s2 1S0 + 5s5p 3P o

1 ) coefficient can be written in a
general form [38]:

C8(�p) =
4∑

l=1

∑
JαJβ

A
JαJβ

l (�p)X
JαJβ

l .

The nonzero angular factors A
JαJβ

l (�p) are listed in

Table VIII. A derivation of the corresponding quantities X
JαJβ

l

was discussed in detail in Ref. [38], therefore, we give only
the final formulas:

X1J
1 = 45

2π

∫ ∞

0
αA

1 (iω) αB
2J (iω) dω + δX11

1 δJ1,

δX11
1 = 3

2

∣∣〈3P o
1 ||Q||3P o

1

〉∣∣2
αA

1 (0), (16)

where J = 1,2,3.

X2J
2 = 45

2π

∫ ∞

0
αA

2 (iω) αB
1J (iω) dω + δX20

2 δJ0,

δX20
2 = 5

∣∣〈3P o
1 ||D||1S0

〉∣∣2
αA

2 (ω0), (17)

where J = 0,1,2 and ω0 ≡ E 3P o
1

− E 1S0 .

X11
3 =

∑
n,k

〈1S0||D||n〉〈n||Q|∣∣3
P o

1

〉〈3
P o

1

∣∣|Q||k〉〈k||D||1S0〉
En − E 1S0 + Ek − E 3P o

1

,

X22
4 =

∑
n,k

〈1S0||Q||n〉〈n||D|∣∣3
P o

1

〉〈3
P o

1

∣∣|D||k〉〈k||Q||1S0〉
En − E 1S0 + Ek − E 3P o

1

.

A complete calculation of the X11
3 and X22

4 terms is rather
difficult due to double summations over intermediate states
n and k. However, these expressions can be simplified if we
note that the main contributions to the static electric-dipole
and quadrupole 1S0 polarizabilities come from a few low-lying
intermediate states. Thus, we can leave in the sums over index
k in X11

3 and X22
4 only a few first terms arriving at the following

approximate expressions:

X11
3 ≈ 〈3

P o
1

∣∣|Q|∣∣5s5p 3P o
1

〉〈
5s5p 3P o

1

∣∣|D||1S0〉
∑

n

〈1
S0

∣∣|D||n 〉〈n ||Q|∣∣3
P o

1

〉
En − E1S0

+ 〈3
P o

1

∣∣|Q|∣∣5s5p 1P o
1

〉〈
5s5p 1P o

1

∣∣|D||1S0〉
∑

n

〈1
S0

∣∣|D||n 〉〈n ||Q|∣∣3
P o

1

〉
En − E1S0 + E(5s5p 1P o

1 ) − E 3P o
1

+ 〈3
P o

1

∣∣|Q|∣∣5s6p 3P o
1

〉〈
5s6p 3P o

1

∣∣|D||1S0〉
∑

n

〈1
S0

∣∣|D||n 〉〈n ||Q|∣∣3
P o

1

〉
En − E1S0 + E(5s6p 3P o

1 ) − E3P o
1

+ 〈3
P o

1

∣∣|Q|∣∣5s6p 1P o
1

〉〈
5s6p 1P o

1

∣∣|D||1S0〉
∑

n

〈1
S0

∣∣|D||n 〉〈n ||Q|∣∣3
P o

1

〉
En − E1S0 + E(5s6p 1P o

1 ) − E 3P o
1

. (18)
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X22
4 ≈ 〈1S0||Q||5s4d 3D2〉〈5s4d 3D2||D|∣∣3

P o
1

〉 ∑
k,Jk=2

〈3
P o

1

∣∣|D||k 〉〈k ||Q|∣∣1
S0

〉
Ek − E 3P o

1
+ E(5s4d 3D2) − E 1S0

+〈1S0||Q||5s4d 1D2〉〈5s4d 1D2||D|∣∣3
P o

1

〉 ∑
k,Jk=2

〈3
P o

1

∣∣|D||k 〉〈k ||Q|∣∣1
S0

〉
Ek − E 3P o

1
+ E(5s4d 1D2) − E1S0

+〈1S0||Q||5s5d 1D2〉〈5s5d1D2||D|∣∣3
P o

1

〉 ∑
k,Jk=2

〈3
P o

1

∣∣|D||k 〉〈k ||Q|∣∣1
S0

〉
Ek − E3P o

1
+ E(5s5d 1D2) − E1S0

+〈1S0||Q||5s5d 3D2〉〈5s5d 3D2||D|∣∣3
P o

1

〉 ∑
k,Jk=2

〈3
P o

1

∣∣|D||k 〉〈k ||Q|∣∣1
S0

〉
Ek − E3P o

1
+ E(5s5d 3D2) − E1S0

. (19)

The X
JaJb

l values and C8(�g/u) coefficients for the 5s2 1S0 +
5s5p 3P o

1 dimer are given in Table VII. The contributions of the
X11

3 and X22
4 are very small, which is expected since these terms

contain intercombination transition matrix elements for both
D and Q operators. Such matrix elements are equal to zero
in nonrelativistic approximation. Relativistic corrections are
small for Sr and, correspondingly, X11

3 and X22
4 are four orders

of magnitude smaller than the main contributions coming from
the X1J

1 and X2J ′
2 terms.

The recommended values are calculated with the CI+all-
order+RPA values of Q and the experimental transition
energies for the main intermediate states listed in Table VI.
The (rounded) recommended values are taken as final. Higher-
order contributions were defined as relative differences of the
CI+all-order+RPA and CI+MBPT+RPA values.

To estimate the uncertainties of the C8 coefficients we
neglect small quantities X11

3 and X22
4 . Then, designating

C1 ≡
3∑

J=1

A1J
1 X1J

1 ,

(20)

C2 ≡
2∑

J=0

A2J ′
2 X2J ′

2 ,

we can express the absolute uncertainty of CAB
8 via absolute

uncertainties of C1 and C2 as

�CAB
8 ≈

√
�C2

1 + �C2
2 . (21)

The fractional uncertainties in C1 and C2 can be expressed
via corresponding fractional uncertainties in the scalar static
polarizabilities,

δC1 ≈
√(

δαA
1 (0)

)2 + (
δαB

2 (0)
)2

,
(22)

δC2 ≈
√(

δαA
2 (0)

)2 + (
δαB

1 (0)
)2

.

We note that X11
1 includes the additional term δX11

1 [see
Eq. (16)]. Nevertheless the equation above for δC1 is valid
if we assume that the uncertainty of |〈3P o

1 ||Q||3P o
1 〉|2 is

approximately the same as the uncertainty of the scalar part
of α2(3P o

1 ). This assumption is based on the 5s5p 3P o
2 state

contributing ∼94% to the scalar α2(3P o
1 ), i.e., the uncertainty of

α2(3P o
1 ) is mostly determined by the uncertainty of the matrix

element |〈3P o
1 ||Q||3P o

2 〉|. The latter is assumed to be the same

as the uncertainty of the matrix element |〈3P o
1 ||Q||3P o

1 〉| =
20.9 a.u.

The term δX20
2 contributing to X20

2 gives only 0.25% of total
C2 and, respectively, its contribution to the uncertainty budget
is negligible.

Using these formulas and knowing the fractional uncer-
tainties of the polarizabilities we assign the uncertainties to
the final values of the C8 coefficients presented in Table VII. It
is worth noting that if we estimate the uncertainties of the C8

coefficients as the difference of the CI+all-order+RPA and
CI+MBPT+RPA values, we obtain very close results.

VIII. SUMMARY

In Table IX we summarize the results for the Sr van
der Waals coefficients obtained in the present work and

TABLE IX. The C6 and C8 coefficients for the Sr 1S0 + 1S0, 1S0 +
3P o

0 , 3P o
0 + 3P o

0 , and 1S0 + 3P o
1 dimers (in a.u.). The uncertainties are

given in parenthesis.

Property This work Other results Ref.

1S0 + 1S0 C6 3103(7) [14]
3250 [13]

3164(10) [40]
3131(41) [41]

3142 [18]
C8 3.7(1)×105 3.792(8)×105 [14]

3.854×105 [13]
1S0 + 3P o

0 C6 3880(80) [2]
3P o

0 + 3P o
0 C6 5360(200) [2]

5260(500) [42]
5102 [43]

1S0 + 3P o
1 C6(0u/g) 3771(32) 3868(50) [17]

3951a [18]
C6(1u/g) 4001(33) 4085(50) [17]

4220a [18]
C8(0u) 5.624(73) × 105

C8(1u) 7.327(86) × 105

C8(0g) 5.622(73) × 105

C8(1g) 7.326(86) × 105

aCalculated via C6(0u) = C6(c 3�u) and C6(1u) = (C6(a 3�+
u ) +

C6(c 3�u))/2 [17,44] from Hund’s case (a) values of Ref. [18].
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other studies [2,13,14,17,18,40–43]. The ab initio molecular
calculations carried out using the multireference configuration
interaction (MRCI) method [18] give the ground-state C6

coefficient with excellent agreement with the recommended
value of Ref. [40]. The MRCI results for the excited state
1S0-3P o

1 Sr dimer agree well, to 5%, with our values for C6

coefficients. The difference between the present values and
MRCI results is significantly larger for the C8 coefficients.
Our recommended values of the long-range dispersion coef-
ficients C6(0u) = 3771(32) a.u. and C6(1u) = 4001(33) a.u.
are in a good agreement with the experimental results
C6(0u) = 3868(50) a.u. and C6(1u) = 4085(50) a.u. obtained
in Ref. [17].

To conclude, we evaluated E1 transition amplitudes from
the 5s5p 3P o

1 state to the low-lying even-parity states and
the electric-dipole and quadrupole static polarizabilities of

the 5s5p 3P o
1 state of atomic Sr. We also calculated the C6

and C8 coefficients for the Sr 1S0 + 1S0 and 1S0 + 3P o
1 dimers

and confirmed the experimental value for the 1S0-3P o
1 magic

wavelength. We have analyzed the accuracy of calculations
and assigned the uncertainties to all presented quantities.
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