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We have developed a significantly more flexible variant of the relativistic atomic method of calculation that
combines configuration-interaction and coupled-cluster approaches. The new version is no longer restricted to a
specific choice of the initial approximation corresponding to the self-consistent field of the atomic core. We have
applied this approach to calculation of different properties of atomic lead, including the energy levels, hyperfine
structure constants, electric-dipole transition amplitudes, and E1 parity nonconserving (PNC) amplitude for
the 6p2 3

P0 -6p2 3
P1 transition. The uncertainty of the E1 PNC amplitude was reduced by a factor of two in

comparison with the previous most accurate calculation [V. A. Dzuba et al., Europhys. Lett. 7, 413 (1988)]. Our
value for the weak charge QW = −117(5) is in agreement with the standard-model prediction.
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I. INTRODUCTION

Accurate calculation of atomic properties of heavy atoms
with several valence electrons is a difficult endeavor. A
standard approach in atomic calculations is to separate the
atomic electrons into two groups, core and valence elec-
trons. Then, various methods exist to treat core-core, core-
valence, and valence-valence correlations. In particular, the
valence-valence correlations can be treated in the framework
of multiconfiguration Hartree-Fock [1,2], relativistic multi-
configuration Dirac-Fock [3–5], or configuration-interaction
(CI) [6–8] methods. The core-core and core-valence corre-
lations can be taken into account using many-body pertur-
bation theory (MBPT) or a more accurate coupled-cluster
method [9–11].

A hybrid approach that combines CI and a linearized
coupled-cluster method (CI + all-order) have been developed
recently [12]. This approach allows us to combine the best
features of both methods and accurately treat core-core,
core-valence, and valence-valence correlations. It was applied
to solve a wide variety of problems requiring calculation of
atomic properties ranging from a search for new physics be-
yond the standard model (SM) of electroweak interactions [13]
to the development of state-of-the-art atomic clocks [14,15].
Complexity of calculations increases rapidly with increasing
number of valence electrons. While the CI + all-order method
has been applied successfully to treat heavy atoms with two,
three, and four valence electrons [13,14,16,17] a problem with
a choice of starting approximation was identified in Ref. [13].
In the original implementation of the CI + all-order method
the initial approximation was limited to the self-consistent
Dirac-Fock potential of the closed core.

For example, when calculating properties of Tl, which has
three valence electrons, we had to start from the potential of
the closed [Xe]4f 145d10 core with all three valence electrons
removed. Such starting potential is usually referred to as V N−3,
where N is the total number of electrons and (N − 3) is the
number of electrons included in the initial Hartree-Fock-Dirac

(HFD) self-consistency procedure. However, that approach
led to a problem when calculating electron electric-dipole
moment (EDM) enhancement factor and other properties of
Tl, in particular, hyperfine structure (HFS) constants. We
found that a number of usually small corrections to the matrix
elements, such as normalization correction, was unexpectedly
large (several percent) in the V N−3 approximation, leading to
reduced accuracy of the final values.

An alternative approach to accurate Tl calculation is to
use better starting approximation for the construction of the
basis-set orbitals, i.e., V N−1 potential of [Xe]4f 145d106s2,
but then carry out the CI for a three-electron system since any
orthonormalized single-electron functions can be used as the
basis-set orbitals for the CI method. This approach treats Tl
as the trivalent system and allows us to account for explicitly
such configurations as 6s6p2. The complication of this method
is an appearance of an extra set of so-called subtraction terms
in all-order equations which were previously absent in the
all-order approach used in [12].

The goal of this work is to remedy this problem. We derived
the linearized coupled-cluster (all-order) equations in arbitrary
closed-shell potential and added all of the subtraction terms
to the CI + all-order method and corresponding code. We
note that flexibility in the choice of the initial potential is
also needed for future application of the all-order method
to systems with more than four valence electrons, since the
quality of the initial V N−M potential, where M is the number
of valence electrons, degrades with the increase of M .

We applied the new version of the CI + all-order
method to the calculation of the parity-nonconserving (PNC)
6p2 3

P0 -6p2 3
P1 transition amplitude in Pb. We selected Pb

since it is a heavy atom with four valence electrons which
can be treated starting from two different potentials, allowing
an excellent test of new methodology. Moreover, accurate
calculation of the PNC amplitude in Pb is an unsolved problem,
with theoretical accuracy still lagging significantly behind the
experimental precision.
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Atomic parity-violation studies test the SM of the ele-
mentary particles in the low-energy sector [18]. All these
studies require theoretical calculation of the PNC amplitude
for the analysis of the experiments in terms of possible physics
beyond the SM. As a result, lack of precision theory for more
complicated systems hinders the progress in this field.

Most precise calculation of PNC amplitude was carried
out for the 6s-7s transition in monovalent atomic Cs, with
the theoretical uncertainty reaching a few tenths of a percent
[19–21]. The uncertainty of the PNC amplitude in the
(6s26p) 2

P
o
1/2 -(6s26p) 2

P
o
3/2 transition of three-valence Tl is

an order of magnitude larger [22–24].
The ground-state electronic configuration of Pb atom is

[Xe]4f 145d106s26p2. Measurements of PNC optical rotation
near the 1.279-μm, 6p2 3

P0 → 6p2 3
P1 magnetic dipole

transition in Pb were carried out almost 20 yr ago by the Seattle
[25,26] and Oxford [27] groups, giving the ratio, R, of the E1
PNC to the M1 transition amplitude to be (−9.86 ± 0.12) ×
10−8 and (−9.80 ± 0.33) × 10−8, correspondingly. Thus, the
Seattle group achieved the experimental precision of 1.2%.

The quantity R is proportional to QW , where the nuclear
weak charge QW at tree level is given by the formula

QW ≈ −N + Z (1 − 4 sin2θW ), (1)

where N is the number of neutrons, Z is the nuclear charge,
and θW is the Weinberg angle. For 208Pb, this expression
gives QW ≈ −120. A more accurate SM value, which includes
radiative corrections, is QSM

W = −118.79(5) [28].
Atomic parity violation tests of the SM are carried out

by comparing the SM value of the weak charge with QW

extracted from the experiment. Such extraction requires an
accurate calculation of the quantity R. Due to complicated
electronic structure of Pb, there were only a few calculations
of the PNC amplitude in the 6p2 3

P0 → 6p2 3
P1 transition

[29–31]. The most accurate result for R was obtained in [31],
where this quantity was determined with 8% uncertainty.

The method development carried out in this work allows
us to improve the precision of the PNC amplitude in Pb.
Our original implementation of the method required to treat
Pb as a system with two valence electrons and construct
basis orbitals in the [Xe]4f 145d106s2 V N−2 potential. Another
possibility was to consider Pb as a four-valence-electron
system and use the [Xe]4f 145d10 V N−4 potential for the initial
self-consistency procedure.

In the present work we extend the CI + all-order method
to the case when initial approximation does not correspond to
the self-consistent field of the core. A variant of the method
allowed us to consider Pb as a system with four valence
electrons but use the V N−2 potential for the construction of
the basis-set orbitals. This potential is expected to provide
better initial approximation when combined with full four-
valence-electron CI. We report calculations of Pb properties
with two choices of the starting potential and conclude that the
new method is more reliable and accurate. We calculated the
quantity R to be R = 10.6(4) × 10−8 i(−QW/N ), reducing
its uncertainty by a factor of 2 in comparison with that seen
in [31].

The paper is organized as follows. In Sec. II we describe
main features of our method and discuss a choice of initial
approximation. In Sec. III we show how the equations,

describing core-valence correlations, are modified for a more
flexible choice of the potential. In Secs. IV and V we
discuss and compare the results obtained in V N−2 and V N−4

approximations. The last section contains concluding remarks
and acknowledgements. If not stated otherwise, atomic units
(� = |e| = me = 1) are used throughout.

II. A CHOICE OF INITIAL APPROXIMATION

Using second quantization, the relativistic no-pair Hamil-
tonian H can be written as H = H0 + V [32,33]:

H0 =
∑

i

εi{a†
i ai}, (2)

V = 1

2

∑
ijkl

gijkl{a†
i a

†
j alak} +

∑
ij

(VDF − UDF)ij {a†
i aj }. (3)

Here a
†
i and ai are the creation and annihilation operators,

respectively; {· · · } designates normal form of operators in
respect to the core state �c: {· · · }|�c〉 = 0, and the indexes
i, j, k, and l range over all possible single-electron states.
H0 = T + UDF is the HFD operator for NDF electrons, forming
closed subshells. In this work we do not consider a more
general case, when H0 is not a HFD operator.

Two-particle matrix elements (MEs), designated as gijkl ,
are given by

gijkl =
∫

dr3dr ′3ψ†
i (r)ψ†

j (r′)
1

|r − r′|ψk(r)ψl(r′),

where ψi are the single-electron wave functions and VDF is the
frozen-core Dirac-Fock (DF) potential determined as

(VDF)ij =
Nc∑
b=1

(gibjb − gibbj ) ≡
Nc∑
b=1

g̃ibjb, (4)

with Nc being the number of the core electrons.
There is certain flexibility in choosing potential UDF, which

defines initial approximation H0 and enters Eq. (3). It is
convenient to determine UDF as the DF potential for NDF

electrons:

(UDF)ij ≡
NDF∑
b=1

g̃ibjb. (5)

For monovalent atoms the natural choice is NDF = Nc = N −
1, which leads to UDF = VDF. This is often referred to as V N−1

approximation. With such a choice the second term in Eq. (3)
vanishes.

For multivalent atoms it is sometimes convenient to choose
NDF > Nc. The dominant configuration of Pb ground state
is [· · · ] 6s26p2; thus, Pb can be considered as an atom
with four valence electrons. However, we can include two
6s electrons, forming a closed subshell, in the initial HFD
self-consistency procedure and construct the basis set in the
V N−2 approximation. Then the number of the core electrons
is Nc = N − 4, while NDF = N − 2 > Nc. As a result, there
will be only a partial cancellation of the terms determined by
the potential VDF and the DF field UDF in Eq. (3).
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We designate the difference between VDF and UDF as U .
Then, for a single-electron ME:

Uij = (UDF − VDF)ij . (6)

Angular reduction for this potential and the Coulomb MEs is
given in Appendix A.

III. EFFECTIVE HAMILTONIAN FOR
MULTIVALENT ATOMS

The wave functions and energy levels of the valence
electrons can be found by solving the multiparticle relativistic
equation [34],

Heff(En)�n = En�n, (7)

where the effective Hamiltonian is defined as

Heff(E) = HFC + �(E), (8)

with HFC being the Hamiltonian in the frozen-core approx-
imation. The energy-dependent operator �(E) accounts for
virtual excitations of the core electrons. It is constructed using
the second-order MBPT in the CI + MBPT approach [34] or
linearized coupled cluster single-double (LCCSD) method in
the CI + all-order approach [12].

It is convenient to decompose the effective Hamiltonian
Heff(E) into two parts Heff(E) = H1 + H2, where H1 repre-
sents the one-body part of the Hamiltonian and H2 represents
the two-body part of the Coulomb interaction. In this work, we
disregard the Breit interaction as well as three-electron part of
the effective Hamiltonian [34].

The energy-dependent operator � is also separated into
two parts, � = �1 + �2, where �1 and �2 describe one- and
two-body parts of core-valence correlations, respectively. The
expressions for single-electron MEs of these operators, (�1)ij
and (�2)ijkl , obtained in the LCCSD method approximation
for the case U = 0 (i.e., when UDF = VDF), are given and
discussed in detail in Ref. [12].

In the case of U �= 0, we should add the terms linear in
U to the equations for the cluster amplitudes calculated in
the framework of the LCCSD approximation. The resulting
LCCSD equations derived for this more general case are
presented below:

�ma = LCCSD − Uma +
∑

b

ρmbUba −
∑

n

ρnaUmn

−
∑
bn

ρ̃mnabUbn, (9a)

�mnab = LCCSD −
∑

r

ρ̃mrabUnr +
∑

c

ρ̃mnacUcb, (9b)

�mv = LCCSD +
∑

b

�mbUbv

ε̃v − εv + εb − εm

−
∑
bn

�̃mnvbUbn

ε̃v + εb − εmn

, (9c)

�mnva = LCCSD −
∑

r

�̃mrvaUnr

ε̃v + εa − εmr

+
∑

c

�mnvcUca

ε̃v + εc − εmn

+
∑

c

�nmacUcv

ε̃v − εv + εca − εmn

, (9d)

�mnvw = LCCSD +
∑

c

(
�mnvcUcw

ε̃v + ε̃w − εw + εc − εmn

+ �nmwcUcv

ε̃w + ε̃v − εv + εc − εmn

)
, (9e)

where �ij ≡ (�1)ij , �ijkl ≡ (�2)ijkl , and εi are one-electron
DF energies and we use notation εij ≡ εi + εj . The symbol
tilde over εv,w reflects the fact that the effective Hamiltonian
(8) is energy dependent [12]. A definition of the tided energy
depends on the choice of initial approximation and is discussed
in Sec. IV.

The terms labeled “LCCSD” in �mv , �mnva , and �mnvw are
given by the right-hand sides of Eqs. (22)–(24) in Ref. [12].
The core amplitudes �ma and �mnab are obtained from the
core coefficients ρma and ρmnab (given, for example, in [35])
using simple relations

�ma = ρma(εa − εm),
(10)

�mnab = ρmnab(εa + εb − εm − εn).

It is easy to verify that the expressions for �mnva and
�mnvw remain the same when we transpose the indexes m ↔ n

and a ↔ v (or m ↔ n and w ↔ v), maintaining original
symmetry of the all-order LCCSD equations. We performed
angular reduction and obtained the formulas given in the
Appendix B.

IV. V N−2 APPROXIMATION

In this section we describe a construction of the basis set
and calculation of the low-lying energy levels, HFS constants,
E1 transition amplitudes, and E1 PNC amplitude for the
6p2 3

P0 -6p2 3
P1 transition in V N−2 approximation.

A. Basis set and energy levels

The basis set was constructed in the framework of Dirac-
Fock-Sturm (DFS) approach. We start from a solution of
the DF equations (disregarding the Breit interaction) for the
[1s2, . . . ,5d10,6s2] closed shells,

Ĥ0 ψc = εc ψc, (11)

where H0 is the relativistic DF Hamiltonian [12,34] and ψc

and εc are the single-electron wave functions and energies,
respectively. Note that both 6s electrons were included in the
initial self-consistency procedure.

As a next step, all orbitals up to the 6s were frozen
and the 7,8s, 6–8p, 6d, and 4f orbitals were constructed
in respective V N−2 potential. Higher virtual orbitals were
obtained by solving the DFS equations described in [36,37].
The resulting basis set includes the DF functions for the
occupied core and valence orbitals and the DFS functions for
virtual orbitals and contains six partial waves with the orbitals
up to 32s, 32p, 32d, 30f, 25g, and 25h.

At the stage of CI calculation we consider Pb as a
four-valence atom. We construct the set of configurations
that contains single and double excitations of the electrons
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TABLE I. V N−2 approximation. Theoretical and experimental [38] energy levels of Pb (in cm−1). Four-electron binding energies are given
in the first row for the ground state; energies in other rows are counted from the ground state. Experimental binding energy of the ground
state is calculated as a sum of four ionization potentials (IPs): IP(Pb+) + IP(Pb2+) + IP(Pb3+) + IP(Pb4+). Results of the CI, CI + MBPT, and
CI + all-order calculations are given in columns labeled “CI”, “CI + MBPT”, and “CI + all”. Corresponding relative differences of these three
calculations with the experiment are given in percentages. In the second column the electronic terms from the National Institute of Standards
and Technology (NIST) database [38] are listed. In the third column the electronic terms obtained in this calculation are given, when they differ
from the NIST’s ones. In columns 4–6 we give the Landé g factors for the present calculation, LS-coupling scheme, and the experiment.

Term g factor Differences (%)

Configuration NIST Present (calc.) LS coupling (exp.) CI CI + MBPT CI + all Experiment CI CI + MBPT CI + all

6p2 3
P0 756 855 780 823 782 396 780 092 3.0 −0.1 −0.3

6p2 3
P1 1.499 1.500 1.501 7093 7697 7710 7819 9.3 1.6 1.4

6p2 3
P2 1.277 1.500 1.269 9913 10 585 10587 10650 6.9 0.6 0.6

6p2 1
D2 1.223 1.000 1.230 19 965 21 401 21440 21458 7.0 0.3 0.1

6p2 1
S0 28 084 29 707 29 808 29467 4.7 −0.8 −1.2

6p7p 3
P1

3
D1 0.671 0.500 40 732 42 528 42 755 42 919 5.1 0.9 0.4

6p7p 3
P0 42 303 44 059 44 299 44 401 4.7 0.8 0.2

6p7p 3
D1

3
P1 1.469 1.500 42 486 44 299 44 522 44 675 4.9 0.8 0.3

6p7p 3
D2 1.173 1.167 42 630 44 438 44 657 44 809 4.9 0.8 0.3

6p7s 3
P

o
0 33 104 34 634 34 917 34 960 5.3 0.9 0.1

6p7s 3
P

o
1 1.350 1.500 1.349 33 451 34 959 35 243 35 287 5.2 0.9 0.1

6p6d 3
F

o
2 0.790 0.667 0.796 43 818 45 660 45 933 45 443 3.6 −0.5 −1.1

6p6d 3
D

o
2 1.254 1.167 1.247 44 631 46 458 46 756 46 061 3.1 −0.9 −1.5

6p6d 3
D

o
1 0.883 0.500 0.864 44 714 46 515 46 820 46 068 2.9 −1.0 −1.6

6p6d 3
F

o
3 1.122 1.083 1.116 45 187 46 824 47 134 46 329 2.5 −1.1 −1.7

6p7s 3
P

o
2 1.486 1.500 1.496 45 629 47 959 48 282 481 89 5.3 0.5 −0.2

from lowest-lying configurations (6s2 6p2, 6s2 6p 7p, and
6s2 6p 8p for even-parity states and 6s2 6p 7s, 6s2 6p 6d, and
6s2 6p 8s for odd-parity states) to the 7–22s, 6–22p, 6–17d,
4–16f , and 5–8g orbitals. We checked that triple excitations
from the low-lying configurations only slightly change the
energy levels. Then we solved the multiparticle relativistic
Schrödinger equation for four valence electrons to find the
eigenvectors and eigenvalues for the low-lying states.

To illustrate the role of core-valence correlations we
calculated the low-lying energy levels using three different
approaches of increasing accuracy: (i) the conventional CI
method, (ii) the framework of the approach combining CI with
the second order of MBPT (CI + MBPT method [34]), and (iii)
the CI method combined with LCCSD method (CI + all-order
approach [12]) modified as discussed in Sec. III.

Calculations at the CI + MBPT and CI + all-order stages
require knowledge of MEs of the operator �. We emphasize
that for the V N−2 approximation NDF > Nc and U �= 0 and
the modified equations (B1) should be used. These equations
include tilded one-electron energies ε̃v of valence orbitals,
which still have to be defined. When we are interested only
in the low-lying energy levels, an energy dependence of the
effective Hamiltonian (8) can be usually neglected for the
properly chosen ε̃v . The recipe of Ref. [12] is to put ε̃v = εv0 ,
where v0 is the lowest valence orbital for the particular partial
wave. Here we found that the best choice is

ε̃v = εv0 − Uv0v0 , (12)

where Uv0v0 can be obtained from Eq. (5). Effectively, this
means that we choose ε̃v to be the DF energy of the lowest
valence orbital for the given partial wave in the V N−4 potential.

The results of the energy-level calculations are presented in
Table I. We find that the accuracy of the CI + MBPT energies
was improved by a factor of 2.5 to 30 in comparison with
the CI results for all energy levels. We note that a number
of energy levels were reproduced with an accuracy of a few
tenths of a percent at the CI + MBPT stage. For such a heavy
multivalent atom as Pb, it looks unexpectedly good and is
probably accidental. For this reason further improvement of an
agreement between the theoretical and the experimental energy
levels at the CI + all-order stage is difficult. Both methods
underestimate transition energies to the levels of the 6p 6d

configuration, but the results obtained at the CI + MBPT stage
are slightly closer to the experimental values. For almost all
other energy levels the CI + all-order approach gives better
agreement with the experiment, with the average difference
with experiment being 0.6%.

Our calculation of g factors for the low-lying states revealed
a discrepancy with the NIST database [38] for two electronic
terms. In the second column we present the electronic terms
provided by NIST [38]. In the third column we give our
assignment when it differs from the NIST terms. In columns
4–6 we present g factors obtained in our calculation, the values
corresponding to the LS-coupling scheme, and the experimen-
tal numbers. We see rather good agreement between theory
and experiment for all cases where experimental g factors
are known. For the 6p7p configuration, the experimental
g factors are unknown. Calculated g factors indicate some
mixing between LS terms and support new assignments. We
note that for the less-than-half-filled p shell one should expect
“normal” order of levels of the 3

PJ triplet, when the levels
with smaller J are lying lower (see, e.g., the book of Sobelman
[39]). Our term assignments are in agreement with this rule.
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TABLE II. V N−2 approximation. The breakdown of different contributions to the magnetic dipole HFS constants A (in MHz). The
CI + MBPT and CI + all-order values are presented in the third and fourth columns, correspondingly. The remaining columns give various
corrections described in the text. Values labeled “Total” are obtained as A(CI + all) + RPA + Sbt + σ + SR + Norm. The recommended
values, labeled as “Recomm.”, are obtained as A(CI + all) + RPA + Sbt + σ + (1/2)SR + Norm (see an explanation in the text). The last three
columns are the experimental results available in the literature.

CI CI + MBPT CI + all RPA Sbt σ SR Norm Total Recomm. Refs. [41,42] Ref. [43] Ref. [40]

6p2 3
P1 −2184 −2545 −2513 46 −28 118 −116 45 −2449 −2392 −2416(36) −2389.4(0.7)

6p2 3
P2 2067 2335 2369 341 9 −96 −122 −48 2453 2513 2739(10) 2600.8(0.9)

6p2 1
D2 481 499 519 139 −2 −7 −121 −11 518 577 620(6) 609.820(8)

6p7p 3
P1 5914 6635 6649 434 −24 −271 −83 −92 6614 6654

6p7p 3
D1 −2536 −2886 −2888 −181 11 122 27 39 −2868 −2882

6p7p 3
D2 2811 3144 3154 227 −9 −128 −47 −44 3153 3176

6p7s 3
P

o
1 7785 8536 8528 632 121 −329 −74 −123 8753 8790 8819(14) 8802.0(1.6)

6p6d 3
F

o
2 2633 2989 2998 205 −5 −120 −42 −45 2990 3011 3094(9)

6p6d 3
D

o
2 −827 −1482 −1482 −94 13 65 17 33 −1448 −1456

6p6d 3
D

o
1 −2462 −2808 −2816 −156 −68 120 −10 41 −2889 −2884

6p6d 3
F

o
3 1779 1993 2000 140 81 −82 −27 −44 2066 2079 2072(8)

6p7s 3
P

o
2 1336 1593 1604 287 −40 −43 −94 −26 1688 1734

B. Hyperfine structure constants

Our goal is to calculate the E1 PNC amplitude, which is
sensitive to the behavior of the wave functions at the nucleus.
To test the quality of the wave functions in the vicinity of
the nucleus, we carried out calculation of the magnetic dipole
HFS constants A for the even- and odd-parity low-lying states.
We calculate the E1 PNC amplitude for the zero-spin isotope
208Pb, which was used in the experiments [25,27]. Our results
for the HFS constants correspond to the 207Pb isotope that
has nuclear spin I = 1/2 and the magnetic moment μ/μN ≈
0.5783 [40], where μN is the nuclear magneton.

For an accurate calculation of the HFS constants we take
into account not only random-phase approximation (RPA)
corrections but also the corrections beyond RPA, including
one- and two-particle subtraction contributions (their sum is
labeled as “Sbt”), the core-Brueckner (σ ), structural radiation
(SR), and normalization (Norm) corrections [44]. The results
of the calculation are presented in Table II.

The values in the column labeled “Total” were found as the
sum of the values obtained at the CI + all-order stage plus the
corrections listed in Table II, i.e., A(Total) = A(CI + all) +
RPA + Sbt + σ + SR + Norm. We find that the corrections
(beyond RPA) are sufficiently large, as demonstrated in Table
II. In particular, they are very significant for the even-parity
states belonging to the 6p2 configuration. For example, the
absolute value of the RPA correction is 2.5 times smaller than
the SR correction for the 6p2 3

P1 state. We can explain it as fol-
lows. The main configuration, contributing 94% in probability
to this state, is 6p1/2 6p3/2. Single-electron contributions of
the 6p1/2 and 6p3/2 electrons to the HFS constant A(6p2 3

P1),
are such that they tend to cancel each other. This holds for the
“bare” Hhfs operator and when we include the RPA corrections.
As a result, the total RPA correction is not large. The SR
corrections to the single-electron contributions of the 6p1/2

and 6p3/2 electrons, in contrast, are added, resulting in a large
contribution to the HFS constant.

It is worth noting that we calculate the SR corrections only
in the second order of the MBPT. Usually the second order
of the MBPT overestimates the respective contribution. We

assume that an inclusion of higher orders (beyond second
order) will reduce the absolute value of the SR contribution.
Our values in the column labeled “Recomm.” were obtained as
described above, with the SR corrections reduced by a factor
of two; i.e., A(Recomm.) = A(CI + all) + RPA + Sbt + σ +
(1/2)SR + Norm. The difference between calculated and
recommended values does not exceed 4% except for the level
6p2 1

D2. The 1
D2 HFS constant is a few times smaller than the

other, but the SR correction is of comparable size, contributing
at the level of 20%. It leads to a slightly larger difference (5.4%)
between our value and the most accurate experimental result
[43].

Our recommended values for the HFS constants show better
agreement with the experimental results [40,43]. Note that the
experimental values [41,42] are less accurate. Moreover, their
value for the 6p2 3

P2 level disagrees both with the experiment
[40] and with our calculation. Therefore, we do not rely on this
experimental result in estimating the accuracy of our value for
the HFS 6p2 3

P2 constant. Using remaining experimental data
and considering the difference between the CI + MBPT and
CI + all-order results, as well as the size of the SR correction,
we estimate the theoretical uncertainties of the HFS constants
to be at the level of 4%.

C. E1 transition amplitudes and polarizability

The expression for the E1 PNC amplitude (in the second
order of the perturbation theory) involves also the MEs of
the electric-dipole operator. As a result, it is sensitive to the
behavior of the wave functions at long distances. To test it we
calculated a number of E1 transition amplitudes relevant to
the E1 PNC amplitude of the 6p2 3

P0 → 6p2 3
P1 transition.

We also calculated the value of the 6p2 3
P0 ground-state static

polarizability.
For the E1 MEs, all corrections beyond RPA (in con-

trast with the HFS constants) are relatively small and
we present only the final values of a few most impor-
tant MEs. These values are obtained in the same way
as above: D(Total) = D(CI + all) + RPA + Sbt + σ + SR +
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TABLE III. V N−2 approximation. The reduced MEs |〈f ||d||i〉|
(in a.u.) for the electric-dipole transitions, obtained in the CI+all-order
approximation and including RPA, Sbt, σ , SR, and normalization
corrections. In last column the MEs extracted from the experimental
transition probabilities are presented. The value of the ground-state
static polarizability is given in the last line.

Transition This work Experiment

6p2 3
P1 -6p7s 3

P
o
0 1.89 2.04(7)a

2.05(10)b

6p2 3
P0 -6p7s 3

P
o
1 1.32 1.37(4)a

1.20(5)c

6p2 3
P0 -6p6d 3

D
o
1 2.01 1.62(4)a

1.67(8)b

α(6p2 3
P0) 46.5 47(7)d

aReference [45].
bReference [48].
cReference [46].
dReference [47].

Norm, where D ≡ |〈γ ′||d||γ 〉| and d = −r is the electric
dipole operator.

The calculated MEs are presented in Table III and
compared with the values extracted from the experimental
transition probabilities. Unfortunately, the accuracy of the
available experimental data is not very high. For example,
the difference between results of [45] and [46] for the
〈6p2 3

P0 ||d||6p7s 3
P

o
1 〉 ME is about 12%. For two transitions

our calculated values agree with the experiment, taking
into account their error bars. However, for the transition
6p2 3

P0 -6p6d 3
D

o
1 our result differs from the experiment by

20%. We do not see an obvious reason for this discrepancy.
To further test the accuracy of the E1 transition amplitudes

from the ground-state 6p2 3
P0, we calculated its static polariz-

ability. Our value, 46.5 a.u., is in a very good agreement with
the central value of the experimental result, 47(7) a.u. [47].

D. PNC amplitude

The PNC nuclear spin-independent part of electron-nuclear
interaction can be written as

HPNC = − GF

2
√

2
QWγ5ρ(r), (13)

where GF ≈ 2.2225 × 10−14 a.u. is the Fermi constant of the
weak interaction, QW is the nuclear weak charge given by
Eq. (1), γ5 is the Dirac matrix, and ρ(r) is the nuclear density
distribution.

We assume that the nucleus is a uniformly charged ball,

ρ(r) = 3

4πR3
(R − r),

where (R − r) is the Heaviside step function. The root-
mean-square (rms) charge radius for 208Pb was measured to
be Rrms = 5.5010 fm [49]. Using the formula R = √

5/3 Rrms,

we find R ≈ 7.1108 fm.
If |i〉 and |f 〉 are the initial and final atomic states of the

same nominal parity then, to the lowest nonvanishing order,

the electric-dipole transition ME is equal to

〈f |dq,PNC|i〉 =
∑

n

[ 〈f |dq |n〉〈n|HPNC|i〉
Ei − En

+ 〈f |HPNC|n〉〈n|dq |i〉
Ef − En

]
, (14)

where Ei , Ef , and En are the energies of the initial, final,
and intermediate states, respectively, q = 0,±1, and |a〉 ≡
|Ja,Ma〉, with Ja and Ma being the total angular momentum
and its projection.

Taking into account that HPNC is a pseudoscalar operator,
i.e., its ME is nonzero only for the states with the same J and
M , we can determine the spin-independent PNC amplitude of
the 6p2 3

P0 → 6p2 3
P1 transition, E1PNC, as the reduced ME

of the operator dq,PNC:

E1PNC ≡ 〈f ||dPNC||i〉 =
∑

n

(
〈 3

P1 ||d||n〉〈n|HPNC| 3
P0〉

E 3
P0

− En

+ 〈 3
P1 |HPNC|n〉〈n||d|| 3

P0〉
E 3

P1
− En

)

≡ E1(1)
PNC + E1(2)

PNC. (15)

Introducing notations

|δψ1〉 =
∑

n

|n〉〈n|HPNC| 3
P0〉

E 3
P0

− En

, (16a)

〈δψ2| =
∑

n

〈 3
P1 |HPNC|n〉〈n|
E 3

P1
− En

, (16b)

we express E1(1)
PNC and E1(2)

PNC as

E1(1)
PNC = 〈 3

P1 ||d||δψ1〉, (17a)

E1(2)
PNC = 〈δψ2||d|| 3

P0〉. (17b)

The E1PNC amplitude is sensitive to the MEs of the weak
interaction HPNC, E1 transition amplitudes, and the energy
spectrum. The weak interaction depends on the wave function
in the vicinity of the nucleus and, in this respect, is similar
to the MEs of the hyperfine interaction. Thus, we are able to
estimate the accuracy of the calculation of the PNC amplitude
analyzing the accuracy of the HFS constants and E1 transition
amplitudes.

In calculating the PNC amplitude we included the RPA
corrections, one- and two-particle subtraction contributions,
the core-Brueckner, SR, and normalization corrections, as we
did when calculated the HFS constants.

When the E1PNC transition amplitude is obtained, we are
able to find the quantity

R = Im(E1PNC)

M1
, (18)

where we take into account that E1PNC is imaginary and
designate the reduced ME of the magnetic dipole opera-
tor μ: M1 ≡ 〈6p2 3

P1 ||μ||6p2 3
P0〉. The quantity R was

experimentally determined in [25–27], so we are able to
compare theory and experiment.
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TABLE IV. V N−2 approximation. The breakdown of different
contributions to the terms E1(1)

PNC and E1(2)
PNC determined by Eq. (15)

(in a.u.). The values of M1 ≡ 〈6p2 3
P1 ||μ||6p2 3

P0〉 are in the Bohr
magnetons. The values of R are given in units 10−8(−QW/N ).
The first, second, and third lines give the CI, CI + MBPT, and
CI + all-order values, respectively. The following lines give var-
ious corrections described in the text. Numbers labeled “Total”
are obtained as (CI + all) + RPA + σ + SR + Sbt + Norm. Num-
bers labeled “Recomm.” are obtained as (CI + all) + RPA + σ +
(1/2)SR + Sbt + Norm (see the explanation in the text).

E1(1)
PNC E1(2)

PNC M1 R

CI 2.619 2.109 −1.297 −9.99
CI + MBPT 2.768 2.495 −1.292 −11.16
CI + all 2.718 2.488 −1.293 −11.03
RPA 0.344 −0.312 −0.07
σ −0.099 −0.077 0.37
SR −0.032 0.086 −0.11
Sbt −0.007 0.021 −0.03
Norm −0.055 −0.042 0.21
Total 2.869 2.164 1.293 −10.66
Recomm. 2.885 2.121 1.293 −10.6(4)
Other −10.4(8)a

−11.4b

−13c

aReference [31].
bReference [30].
cReference [29].

The results of calculation of both E1(1)
PNC and E1(2)

PNC terms,
determined by Eq. (15), are presented in Table IV. Our analysis
shows that the intermediate state 6p7s 3

P
o
0 gives a dominating

(∼86%) contribution to E1(1)
PNC. Thus, the contribution of

higher-lying states is rather small.
For the E1(2)

PNC part of the E1PNC amplitude the situation is
quite different. Two lowest-lying odd-parity states with J = 1
listed in Table I contribute to E1(2)

PNC with different signs and
their total contribution is negative; i.e., it has a different sign in
comparison with the total value of E1(2)

PNC. As a result, higher-
lying states give a very large contribution to this amplitude.

Such anomalously large contribution comes from the
high-lying odd-parity states belonging to the configuration
6s 6p3. According to our calculation the lowest state with
J = 1, belonging to this configuration, is lying ∼74 000 cm−1

above the ground state. The MEs of the electric-dipole and
HPNC operators are large: 〈6s26p2 3

P0 ||D||6s6p3 J = 1〉 =
1.91 a.u. and 〈6s6p3 J = 1|HPNC|6s26p2 3

P1〉 = 476 a.u.. As
a result, the contribution of this odd-parity state to E1(2)

PNC is
large and positive.

It is worth noting that, for the reason discussed above, a
direct summation over intermediate states is not applicable for
the calculation of E1(2)

PNC. Instead, we solve an inhomogeneous
equation [50] which accounts for contribution from all discrete
states and a continuum.

Analyzing the RPA and other corrections to E1(1)
PNC and

E1(2)
PNC, we see that large RPA corrections have different signs

for these two amplitudes. Accidentally, these contributions
turned out to be close in their absolute values and essentially

cancel each other in the sum E1(1)
PNC + E1(2)

PNC. For this reason
the role of smaller corrections (σ , Sbt, etc.) is enhanced.

A procedure of including the RPA, σ , and SR corrections
in calculating E1PNC is reduced to “dressing” the HPNC

and d operators, as described in detail in [44]. To find the
subtraction and normalization corrections, following the recipe
of Ref. [44], we obtained |δψ1〉 and |δψ2〉, given by Eq. (16),
for the effective operator H eff

PNC and then calculated the MEs in
(17) for the effective electric-dipole operator deff .

The values listed in the row labeled “Total” of Table IV
were obtained as the sum of the CI + all values plus different
corrections including RPA, σ , SR, Sbt, and Norm. As we
discussed above, the SR corrections turn out to be overesti-
mated in the second order of the MBPT. We had reduced these
corrections by a factor of 2 to obtain the recommended values
of the HFS constants. We assume that the same procedure
should be used for the PNC amplitude as well, though in this
case the SR corrections are not so significant as for the HFS
constants. The results listed in the row labeled “Recomm.” are
obtained as the “Total” values but we add only a half of the
SR correction. According to our estimate, the excitations of
the core electrons contribute to E1PNC less than 0.1% and we
neglect this contribution.

The RPA and other similar corrections are very small for the
M1 ME 〈6p2 3

P1 ||μ||6p2 3
P0〉 and can be neglected without

loss of accuracy. We present the values of the quantity R [given
by Eq. (18)] obtained in different approximations in the last
column of the table. Various corrections to R are listed as well.
Our recommended value is R = −10.6(4) × 10−8 (−QW/N ).
Based on the calculation accuracy of the HFS constants, E1
transition amplitudes, and the ground state polarizability, we
assign to the quantity R the uncertainty ∼4%. Our result is
in a good agreement with earlier calculations [29–31] but the
accuracy is two times higher.

Using our recommended value of R and the most accurate
experimental value (−9.86 ± 0.12) × 10−8 [25,26], we find
the weak nuclear charge for 208Pb to be QW = −117(5). This
value is in good agreement with the SM prediction QSM

W =
−118.79(5) [28]. Note that our theoretical error (4%) is more
than three times larger than the experimental error (1.2%).
Therefore, we need further improvement of the theory for
more accurate calculations. A next step in improving accuracy
would be to treat SR corrections to all orders.

V. V N−4 APPROXIMATION

It is worth noting that, due to importance of the 6s6p3

configuration for the E1PNC amplitude discussed above, a
two-electron calculation of Pb using the V N−2 approximation
gives poor results. In this section, as earlier, we consider
Pb as the four-valence-atom using V N−4 approximation and
compare results with those obtained previously in the V N−2

approximation. Both calculations are similar, so we focus here
only on the points where these two approaches differ from
each other.

The basis set was constructed using the DFS approach,
but the DF equations were solved for the [1s2, . . . ,5d10]
closed core; i.e., the 6s electrons were excluded from the
self-consistency procedure. Next, the 6–8s, 6–8p, 6d, and
4f orbitals were constructed in the field of the frozen-
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TABLE V. The energy levels (in cm−1) obtained using the CI +
all-order method in V N−2 and V N−4 approximations are compared
with the experiment [38]. Four-electron binding energies are given in
the first row for the ground state; energies in other rows are counted
from the ground state. Corresponding relative differences of these two
calculations with the experiment are given in percentages. Electronic
terms in the second column correspond to the new assignment
discussed in text.

CI + all Diff. (%)

Configuration Term V N−4 V N−2 Experiment V N−4 V N−2

6p2 3
P0 781 122 782 396 780 092 −0.1 −0.3

6p2 3
P1 7576 7710 7819 3.1 1.4

6p2 3
P2 10 434 10 587 10 650 2.0 0.6

6p2 1
D2 21 228 21 440 21 458 1.1 0.1

6p2 1
S0 29 779 29 808 29 467 −1.1 −1.2

6p7p 3
D1 42 384 42 755 42 919 1.2 0.4

6p7p 3
P0 44 017 44 299 44 401 0.9 0.2

6p7p 3
P1 44 219 44 522 44 675 1.0 0.3

6p7p 3
D2 44 364 44 657 44 809 1.0 0.3

6p7s 3
P

o
0 34 444 34 917 34 960 0.9 0.1

6p7s 3
P

o
1 34 778 35 243 35 287 0.9 0.1

6p6d 3
F

o
2 46 603 45 933 45 443 −0.5 −1.1

6p6d 3
D

o
2 47 176 46 756 46 061 −0.9 −1.5

6p6d 3
D

o
1 47 052 46 820 46 068 −1.0 −1.6

6p6d 3
F

o
3 47 715 47 134 46 329 −1.1 −1.7

6p7s 3
P

o
2 47 884 48 282 48 189 0.5 −0.2

core V N−4 potential. The virtual orbitals were obtained by
solving DFS equations [36,37]. The constructed basis set
included, in total, six partial waves with the orbitals up
to 32s, 32p, 32d, 30f, 25g, and 25h just as in the V N−2

case.
We used exactly the same sets of configurations for

even- and odd-parity states as for the calculations in the
V N−2 approximation discussed in previous sections. The CI +
MBPT and CI + all-order methods were used as discussed in
Refs. [34] and [12,51].

In Table V we compare the results obtained using the CI +
all-order methods in the framework of the V N−2 and V N−4

approximations. We find that the low-lying levels belonging
to the 6p2, 6p7p, and 6p7s configurations were reproduced
better in the V N−2 approximation. The V N−4 approximation
gives slightly better agreement with the experiment only for
the states of the 6p6d configuration.

We also calculated the HFS constants in the V N−4 ap-
proximation following the procedure described in Sec. IV B.
There are no subtraction diagrams in this case. Account-
ing for poor initial approximation, we expect that certain
corrections to the HFS constants to be large. In particular,
the normalization corrections are about 6% for all HFS
constants.

A comparison of the HFS constants obtained in V N−2

and V N−4 approximations using the CI + all-order method
and including the RPA and other corrections, mentioned in
Sec. IV B, is given in Table VI. The available experimental
values are also presented. The results obtained in the V N−2

TABLE VI. The magnetic dipole HFS constants (in MHz)
obtained in V N−2 and V N−4 approximations are compared with the
experimental values, where available. The recommended values for
the V N−2 approximation are listed. Corresponding relative differences
of these two calculations with the experimental results are given in
percentages.

CI + all Diff. (%)

Configuration Term V N−4 V N−2 Experiment V N−4 V N−2

6p2 3
P1 −2265 −2392 −2389.4(0.7) [40] 5.2 −0.1

6p2 3
P2 2187 2513 2600.8(0.9) [40] 16 3.4

6p2 1
D2 453 577 609.820(8) [43] 26 5.4

6p7p 3
D1 6062 6654

6p7p 3
P1 −2612 −2882

6p7p 3
D2 2873 3176

6p7s 3
P

o
1 7969 8790 8802.0(1.6) [40] 10 0.14

6p6d 3
F

o
2 2678 3011 3094(9) [41] 13 2.7

6p6d 3
D

o
2 −381 −1456

6p6d 3
D

o
1 −2388 −2884

6p6d 3
F

o
3 1829 2079 2072(8) [41] 12 −0.4

6p7s 3
P

o
2 715 1734

approximation agree with the experiment significantly better.
In total, as is seen from Tables V and VI, the results obtained
in the V N−4 approximation are generally less accurate and this
method of calculation is less reliable.

VI. CONCLUSION

In this paper we have developed and generalized the
CI + all-order method for a more flexible choice of the initial
approximation. Previously, using the CI + all-order method,
it was needed to construct basis sets corresponding to the
self-consistent field of the core. Such basis sets are not very
good for the systems with several valence electrons. Here
we derived coupled-cluster equations for the potential which
may include (some of) valence electrons and updated our
package of programs. We used this package to calculate atomic
lead as a four-electron system in the V N−2 approximation.
We studied different properties, including the energy levels,
HFS constants, E1 transition amplitudes, and the ground-state
polarizability.

For comparison we also calculated a number of Pb proper-
ties in the V N−4 approximation, i.e., using the self-consistent
field of the core. Results of this calculation appeared to
be less accurate. We conclude that for such a heavy and
multivalent atom as Pb our new version of the method
gives better accuracy for different observables and is more
reliable.

We used this developed variant of the CI + all-
order method to calculate the PNC transition amplitude
E1PNC (6p2 3

P0 -6p2 3
P1). The theoretical accuracy for E1PNC

was improved by a factor of two compared to the most accurate
previous calculation [31]. Using the value obtained for this
amplitude and the experimental result [25,26], we found the
nuclear weak charge for 208Pb to be QW = −117(5), which
agrees with the SM prediction. Note that our theoretical error
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(4%) is sill more than three times larger than the experimental
error (1.2%). Therefore, to calculate more accurately different
properties of such a heavy multivalent atom as Pb, we need
further improvement of the theory. A next step in improving
accuracy would be to treat SR corrections to all orders.
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APPENDIX A

The angular reduction for Uij = (UDF − VDF)ij yields

Uij = δ�i�j
δmimj

U (ij ),

where

U (ij ) = δ�i�j

NDF∑
b=Nc+1

[√
2jb + 1

2ji + 1
X0(ibjb)

+
∑
L

(−1)ji+jb+L

(2ji + 1)
XL(bijb)

]
. (A1)

Here the sum over index b means the sums over principal
quantum number nb and relativistic quantum number �b =
(lb − jb)(2jb + 1), where lb and jb are the orbital and total
angular momenta. We use notation

XL(mnab) = (−1)L〈�m||CL||�a〉〈�n||CL||�b〉RL(mnab),

(A2)

where RL(mnab) is relativistic Slater integral and
〈�m||CL||�a〉 is the reduced ME of a normalized spherical
harmonic given by

〈�m||CL||�a〉
= ξ (lm + la + 1)(−1)jm+1/2

×
√

(2jm + 1)(2ja + 1)

(
jm ja L

−1/2 1/2 0

)
, (A3)

where

ξ (x) =
{

1, if x is even,

0, if x is odd.

APPENDIX B

Using the formulas

�li = δ�l�i
δmlmi

�(li),

�lnib =
∑
kq

1√
[jl][jb]

C
jlml

jimi kqC
jbmb

kq jnmn
�k(lnib)

=
∑
kq

(−1)ji−jn+mi+mn

(
ji k jl

mi q −ml

)

×
(

jb jn k

mb −mn −q

)
�k(lnib),

we performed angular reduction in Eq. (9), arriving at

�(ma) = LCCSD − U (ma) + δ�m�b

∑
nb

U (ba)ρ(mb)

− δ�n�a

∑
nn

U (mn)ρ(na)

− δ�n�b

∑
nnnb�b

√
[jb]

[ja]
U (bn)ρ̃0(mnab),

�k(mnab) = LCCSD − δ�n�r

∑
nr

U (nr)ρ̃k(mrab)

+ δ�c�b

∑
nc

U (cb)ρ̃k(mnac),

�(mv) = LCCSD + δ�m�b

∑
nb

U (bv)�(mb)

ε̃v − εv + εb − εm

− δ�n�b

∑
nnnb�b

√
[jb]

[jv]

U (bn)�̃0(mnvb)

ε̃v + εb − εmn

, (B1)

�k(mnvb) = LCCSD − δ�n�r

∑
nr

U (nr)�̃k(mrvb)

ε̃v + εb − εmr

+ δ�c�b

∑
nc

U (cb)�k(mnvc)

ε̃v + εc − εmn

+ δ�c�v

∑
nc

U (cv)�k(nmbc)

ε̃v − εv + εcb − εmn

,

�k(mnvw) = LCCSD + δ�c�w

∑
nc

U (cw) �k(mnvc)

ε̃v + ε̃w − εw + εc − εmn

+ δ�c�v

∑
nc

U (cv) �k(nmwc)

ε̃w + ε̃v − εv + εc − εmn

,

where we use notation [x] ≡ 2x + 1.
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