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Atomic properties of Lu+
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Singly ionized lutetium has recently been suggested as a potential clock candidate. Here we report a joint
experimental and theoretical investigation of Lu+. Measurements relevant to practical clock operation are made
and compared to atomic structure calculations. Calculations of scalar and tensor polarizabilities for clock states
over a range of wavelengths are also given. These results will be useful for future work with this clock candidate.
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I. INTRODUCTION

The development of atomic clocks has played an important
role in today’s society with applications in many different
technologies, most notably the Global Positioning System and
navigation. Increased levels of performance have allowed tests
of fundamental physics [1] and new avenues of exploration in
quantum many-body physics [2,3]. Increasing levels of accu-
racy and stability continue to be made with atomic clocks based
on optical transitions in isolated atoms [4–12]. By now a num-
ber of groups have demonstrated superior performance over
the current cesium frequency standards with the best clocks
to date having inaccuracy at the 1 × 10−18 level [4,5,13]. For
ion-based clocks, a significant bottleneck to improved levels of
accuracy is the relatively low stability achieved with a single
ion. Recently singly ionized lutetium has been proposed as a
possible candidate to overcome this hurdle [14,15].

The clock transition in singly ionized lutetium is a highly
forbidden M1 1S0-to-3D1 transition [14,16]. This ion has a
number of fortuitous properties that are almost ideally suited
for clock applications [14,15]. The 2.45-MHz linewidth of the
3D1-to-3P o

0 detection transition provides the possibility of a
very low Doppler cooling limit and yet is sufficiently large
for practical detection. A novel averaging scheme eliminates
shifts associated with the J = 1 level placing it on an equal
footing with J = 0 to J = 0 candidates [14]. A very large
hyperfine and fine structure splitting results in a very low
magnetic field dependence of both the average frequency and
the component transitions contributing to the average. Finally,
initial estimates of the differential scalar polarizability indicate
that it is sufficiently small to allow practical room-temperature
operation, with a sign that allows micromotion shifts to be
eliminated. This latter property has kindled the idea of clock
operation on large ion crystals [15].

All of the available low-lying D states in Lu+ are potentially
long lived. These spectator states could in principle be used as
clock states themselves. However, insofar as clock operation
with the 3D1 state is concerned, the remaining D levels
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could potentially complicate clock operation via the need
for a more complicated laser system. In this paper we give
a detailed investigation of these potential issues using 175Lu+.
Measurements of lifetimes and branching ratios relevant to
practical clock operation are made and compared to atomic
structure calculations. In addition we provide calculations of
scalar and tensor polarizabilities for clock states over a range
of wavelengths. This work provides the first step in evaluating
the potential of this clock candidate and the calculations given
will provide a useful reference for future experimental work.

II. EXPERIMENT SETUP

A. Apparatus

The experiments are performed in a four-rod linear Paul
trap with axial end caps, similar to the ones described in
Refs. [17,18]. The trap consists of four stainless steel rods
of diameter 1.0 mm whose centers are arranged on the
vertices of a square with 3.6-mm-length sides. A 3.6-MHz rf
potential is applied via a step-up transformer to two diagonally
opposing electrodes. A small dc voltage applied to the other
two electrodes ensures a splitting of the transverse trapping
frequencies. Axial confinement is provided by two axial pins
separated by 7 mm. Using this configuration, the measured
trapping frequencies are (ωx,ωy,ωz)/2π ≈ (350,300,80) kHz.
These frequencies were measured using 138Ba+, which is used
throughout for continuous sympathetic cooling.

The level structure for Lu+ is given in Fig. 1 showing the
1S0-to-3D1 clock transition, and the 3D1-to-3P o

0 transition for
detection and cooling. Optical pumping and state preparation
are achieved via the 3P o

1 level. The experiments reported here
use 175Lu+, which has a nuclear spin I = 7/2. The 350-nm
laser is a frequency-doubled diode and addresses the transition
from 1S0 F = 7/2 to 3P o

1 F ′ = 7/2. It propagates orthogonal to
a 0.5-mT B field and is linearly polarized along the direction
of the field. The measured optical pumping time out of the
1S0 level is 2 μs, which is the 1/e decay time of the 1S0

population. The 598-nm laser is also a frequency-doubled
diode laser and addresses the transition from 3D1 F = 9/2 to
3P o

1 F ′ = 9/2. Optical pumping out of the 3D1 level is achieved
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FIG. 1. Lu+ level structure showing (a) the 848-nm clock and
646-nm detection transitions and (b) the repumping lasers used to
optically pump into and out of the 3D1 level.

in conjunction with the 646-nm laser and the measured optical
pumping time is 6 μs. The 622-nm laser is a multimode laser
which is sufficiently broad to address all hyperfine states of the
3D2-to-3P o

1 transition and the measured optical pumping time
is 10 μs. Both the 598- and 622-nm laser are linearly polarized
and propagate along the B field.

B. Detection

As shown in Fig. 1, detection is achieved via scattering on
the 3D1 to 3P o

0 levels. To address the three separate hyperfine
levels, a wideband electro-optic modulator (EOM) generates
sidebands of approximately 8 GHz which are separated from
the carrier using a cavity. The carrier is frequency shifted via
an acousto-optic modulator (AOM) before being recombined
with the sidebands. This provides independent frequency
control of all three beams. All beams are linearly polarized
and propagate along the 0.5-mT B field.

Fluorescence at 646 nm is collected onto an avalanche
photodiode (APD). A narrow-band filter eliminates scattered
light from all other light sources including the 650-nm light
used for cooling 138Ba+. This allows continuous sympathetic
cooling throughout the 175Lu+ detection window. Since the ion
is continuously cooled, we can operate at near full saturation
for optimum detection efficiency and we typically achieve a
mean photon count rate of �5 photons/ms.

For the experiments reported here, we desire a detection
scheme to determine when the ion goes bright (dark) with high
detection efficiency. To do this we use a Bayesian detection
scheme similar to that reported in Ref. [19]. From the number
of photons collected in a given detection time step, we update
the probability that the ion is in a bright state via

P (b|n) = P (n|b)P (b)

P (n|b)P (b) + P (n|d)P (d)
, (1)

where P (b|n) [P (d|n)] is the conditional probability the ion is
in a bright (dark) state given n photons, P (n|b) [P (n|d)] is the
conditional probability of getting n photons given the ion is in
a bright (dark) state, and P (b) [P (d)] is the current probability
the ion is in the bright (dark) state. The probability P (b) is

updated in real time via a field programmable gate array with
the conditional probabilities P (n|b) and P (n|d) stored on a
chip. Detection is initiated with P (b) = 0.5 and terminated
when P (b) reaches preprogrammed thresholds for bright and
dark states. We note that the performance of this scheme is
insensitive to the choice of time step.

When continuously monitoring for a state change, P (b) is
initialized to 0.5 and updated in subsequent detection windows
to P (b|n) according to Eq. (1). If P (b) falls below (above) 0.5,
the ion is assumed to have gone dark (bright) and detection
continues until the appropriate threshold is reached, in which
case the state change is deemed verified. Alternatively, if
P (b) subsequently falls above (below) 0.5, the state change
is deemed in error, and P (b) is reinitialized to 0.5. The error
rate for determining the ion is in the bright state is limited
by hyperfine induced decay from 3P o

0 to states other than 3D1.
Thus P (b) cannot achieve values arbitrarily close to one before
the ion decays to a dark state. Similarly, determination of the
3D2 dark state is limited by possible decay to the 3D1 state.

For the experiments reported in Sec. III D, we also require
an accurate estimate of the total collection efficiency. This is
achieved using 138Ba+ by repeated cycles of optical pumping
between the S1/2 and D3/2 levels. Optically pumping from
S1/2 to D3/2 produces precisely one 650-nm photon. From
the photons collected over several million cycles we infer a
collection efficiency of 0.00326(2).

III. MEASUREMENTS

A. 3Po
1 branching ratios

Optical pumping via the 3P o
1 level results in an undesired

population of the 1D2 metastable level. The 3P o
1 level decays to

1S0, 3D1, 3D2, and 1D2 with respective decay rates W0, W1, W2,
and W3 and branching ratios Bk = Wk/

∑
Wk . Since

∑
Bk =

1 we need three more equations to uniquely determine Wk . This
is achieved via three separate optical pumping experiments.

We first prepare the ion in 3D1 by optically pumping with
the 350-, 622-, and 646-nm lasers until the ion is bright. For
this step, we set the threshold count rate to a high value to
ensure the initial state is bright with high probability. We then
optically pump the ion into 1S0 (3D2) using the 646-, 598-,
and 622-nm (350-nm) lasers. The ion is then pumped out of
the 1S0 (3D2) level using the 350-nm (622-nm) laser and the
population, P0 (P1), in 3D1 is measured. Neglecting any decay
of population appearing in 1D2 we have

P0 = B0

B0 + B3

B1

1 − B0
, P1 = B2

B2 + B3

B1

1 − B2
. (2)

Similarly, optical pumping to 3D2, followed by optical pump-
ing with both the 350- and 622-nm lasers, gives a population,
P2, in the 3D1 level of

P2 = B2

B2 + B3

B1

1 − B0 − B2
. (3)

For each Pk , 2 × 104 measurements were made giving P0 =
0.3027(32), P1 = 0.3166(33), and P2 = 0.9669(13). The in-
ferred branching ratios from these measurements are given in
Table I along with theoretical estimates from Sec. IV B. The
error bars given are the statistical error. The main systematic
is due to decay of the 1D2 during optical pumping. Since the
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TABLE I. Branching ratios for decay from 3P o
1 . Theoretical values

are from calculations given in Sec. IV B.

Lower level Expt. Theory

6s2 1S0 0.3915(44) 0.376
6s5d 3D1 0.1862(17) 0.186
6s5d 3D2 0.4178(45) 0.435
6s5d 1D2 0.00438(18) 0.0036

measured optical pumping time for each laser is ∼10 μs, which
is much less than the 1D2 lifetime as discussed in the next
section, the effect of the decay is less than the statistical error.

There is fair agreement between the experimental and
theoretical results with the three main decay channels being
within 4%. The larger discrepancy of ∼18% for decay to 1D2

can be expected given the significantly smaller decay rate.

B. 1D2 Lifetime

To measure the 1D2 lifetime, we first optically pump to
this level using the 350-, 598-, 622-, and 646-nm lasers.
After (10 ms), we switch off the 598-nm laser and monitor
fluorescence of the 646-nm light. The 1D2 lifetime is due
to an E2 decay to 1S0. However, spin mixing gives a small
contribution from M1 transitions to 3D2 as discussed in
Sec. IV B and values of relevant transitions are tabulated in
Table V. Decay to 3D3 occurs with a branching ratio ∼1% and
the lifetime of this state is > 10 s. Hence, these decays are
infrequent and result in very long dark periods. Decay to 3D2

or 1S0 occurs with probability qS . These levels are optically
pumped to the detection level, 3D1, with a small probability,
pS , of being repumped back to 1D2. Neglecting effects of
decays to 3D3 and optical pumping times, the distribution of
dark times is exponential with a rate W

(m)
S = (1 − pSqS)WS ,

where WS is the total linewidth of the 1D2 level. In Fig. 2, we
give the measured distribution of dark times from which we
infer W

(m)
S = 5.41(12) s−1. For these data we have eliminated

all times less than 200 ms or greater than 1 s with 200 ms
subtracted of the remaining times. Eliminating times less than
200 ms removes any data points resulting from imperfect
optical pumping to the 1D2 level, and eliminating all times
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FIG. 2. Histogram of dark times associated with the 1D2 decay.
We have omitted all times less than 200 ms or greater than 1 s with
200 ms subtracted of the remaining times.

0 50 100 150 200 250 300
time (s)

0

20

40

60

80

100

O
cc

ur
an

ce
s

FIG. 3. Histogram of dark times associated with the 3D2 decay.

greater than 1 s eliminates a small number of events associated
with decay into 3D3.

Denoting the M1 decay rates from 1D2 to 3D2 by WS,J and
the E2 decay rate from 1D2 to 1S0 by WS,0, we can express the
total linewidth, WS , by

WS,0 = W
(m)
S − (WS,1 + WS,3)

1 − pS

− WS,2, (4)

and

WS = W
(m)
S

1 − pS

− pS

1 − pS

(WS,1 + WS,3), (5)

where we have used the fact that

qS = WS,0 + WS,2

WS

. (6)

In terms of the branching ratios, Bk , from Sec. III A, we have

pS = B3

B1 + B3
. (7)

This may be determined from the measurements, Pk , made
in Sec. III A and we infer pS = 0.02297(88). From the
calculated M1 transition rates given in Table V we infer
decay rates 5.20(12) s−1 and 5.53(12) s−1 for WS,0 and WS ,
respectively. The errors given include only the statistical
uncertainty from the experimental measurements. We note
that the measured rates are ∼30% larger than the theoretical
estimates given in Sec. IV B.

C. 3D2 Lifetime

We measure the 3D2 lifetime similarly to the 1D2 case. We
first optically pump to 3D2 using the 350-, 598-, and 646-nm
lasers. After (10 ms), we switch off the 598-nm laser and
monitor fluorescence of the 646-nm light. The 3D2 lifetime
is due to a spin-forbidden E2 decay to 1S0 with a small
contribution from an M1 decay to 3D1. Decays to 1S0 result
in optical pumping to 3D1 and repumping to 3D2. Neglecting
optical pumping times, the distribution of dark times is also
exponential with a rate W

(m)
T = (1 − pT qT )WT , where pT is

the probability of being repumped from 1S0 to 3D2 and qT is
the branching ratio for decay from 3D2 to 1S0. In Fig. 3, we give
the measured distribution of dark times from which we infer
W

(m)
T = 0.022(1) s−1. Note that, for each dark cycle, optically

pumping to 3P o
1 can result in a population of 1D2 which extends
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the optical pumping time. Since the probability that this occurs
is small and the lifetime of this state is much less than the
measured mean dark time we may neglect this effect.

We can express the E2 decay rate, WT,0, and total linewidth
WT as

WT,0 = 1

1 − pT

(
W

(m)
T − W2,1

)
(8)

and

WT = W
(m)
T

1 − pT

− pT

1 − pT

W2,1, (9)

where W2,1 is the M1 decay rate for the 3D2-to-3D1 transition
and we have used the fact that

qT = WT,0

WT

. (10)

In terms of the branching ratios, Bk , from Sec. III A, we have

pT = B2

1 − B0
. (11)

This may be determined from the measurements, Pk , made
in Sec. III A and we infer pT = 0.6917(33). Together with
the calculated M1 transition rates given in Table V we infer
decay rates 0.0519(33) and 0.0579(33) for WT,0 and WT ,
respectively. The errors given include only the statistical
uncertainty from the experimental measurements. We note
that the measured rates are ∼25% larger than the theoretical
estimates given in Sec. IV B.

Given that the measured lifetime is very long, measure-
ments could potentially be compromised by off-resonant
scattering out of 3D2 by the barium cooling lasers, the 350-nm
repump laser or the 646-nm detection beam. Of these, the most
significant scattering rate is from coupling to the 5d5p3F2 level
by the 350-nm laser. From dipole matrix elements given in
Table II and a measured intensity of ∼500/cm2, the scattering
rate from 3D2 to 3D1 averaged over all possible 3D2 states is
∼3.5 × 10−5 s−1. This less than 1% of the calculated M1 decay
rate between these states and so contributes much less than
the statistical error to the overall decay rates. We can expect
scattering rates to 3D3 and 1D2 to be of a similar magnitude
and thus equally negligible.

D. Hyperfine quenching of 3Po
0

Decay from 3P o
0 to 3D1 is the only dipole allowed transition

from 3P o
0 . However, the hyperfine interaction induces a low

multipole electromagnetic decay to other states. In the case
of Lu+, this results in a quenching of the fluorescence rate for
the 3D1-to-3P o

0 detection channel. When fluorescing on this
transition, the rate of scattering out of the detection channel
is given by

λ = wρee = w

W

〈n〉
qτD

, (12)

where W is the linewidth of the upper state, w is the total
decay rate from 3P o

0 to states other than 3D1, 〈n〉 is the
background subtracted mean number of photons collected in a
time τD, and q is the overall detection efficiency of the imaging
system. Measuring λ involves determining when the ion goes
dark and so the measured rate must also include the error
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FIG. 4. Histogram of bright times when fluorescing on the 3D1-
to-3P o

0 transition.

rate in that determination. Even an error rate of 1 × 10−3 in a
1-ms detection time would result in a significant contribution
to the measured rate. Since there is negligible probability of
repumping from the dark state back to the bright state, we can
repeatedly test a dark-state event to confirm the measurement
similar to the approach reported in Ref. [19].

To measure λ, we first optically pump using 350-, 622-, and
646-nm lasers until the ion is bright. For this step, we set the
threshold count rate to a high value to ensure the initial state
is bright with high probability. We then switch off the repump
lasers and monitor the time the ion remains fluorescent. The
distribution of bright times is given in Fig. 4, which gives
a fitted value of λ = 0.624(5). Using measured count rates
for the bright and dark states of 6.290(5) and 0.560(3) per
millisecond, respectively, together with the measured detection
efficiency of 0.00326(2) we infer a ratio w/W = 3.55(6) ×
10−7. We used an artificial background to match the photon
count rate of a bright ion to determine the contribution of the
measured rate from detection errors. Out of 1 × 105 events
we obtained an average detection time of 6 ms with no errors
found. This bounds the contribution to <0.0016/s, which is
well below the statistical uncertainty.

Decay out of the detection channel is dominated by decays
from 3P o

0 to 1S0 and 3D2. In two separate experiments, we
determine the contribution from each of these decays by
repumping using either the 350- or the 622-nm laser after
the ion is confirmed dark and measure the fraction returning to
the bright state. From these measurements and the branching
ratios determined in Sec. III A the percentage of decays going
to 1S0 and 3D2 are 0.497(19) and 0.562(30), respectively. These
values are in reasonable agreement with theoretical values
given in Table VIII.

IV. THEORY

In this section we give details of atomic structure calcu-
lations. We start with polarizabilities of relevant clock states,
namely the 6s2 1S0, 5d6s 3D1, and 5d6s 3D2 levels. We then de-
termine lifetimes and branching ratios for low-lying levels, fol-
lowed by a determination of the quenching rate of the 3P o

0 level.

A. Polarizabilities

We evaluated the scalar static and dynamic polarizabilities
of the 6s2 1S0, 5d6s 3D1, and 5d6s 3D2 states of Lu+ using the
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TABLE II. Contributions to the 6s2 1S0, 5d6s 3D1, and 5d6s 3D2 scalar static polarizabilities of Lu+ in atomic units. The contributions to the
valence polarizabilities of several lowest-lying intermediate states are listed separately with the corresponding absolute values of electric-dipole
reduced matrix elements given in the column labeled “D”. The theoretical and experimental [26] transition energies are given in columns
�Eth and �Eexpt. The remaining valence contributions to the 1S0 polarizability are given in the row labeled “Other.” For the 3D1 and 3D2

polarizabilities we present the contribution of other (not explicitly listed in the table) intermediate states with fixed total angular momentum
Jn in rows labeled “Other (Jn = 0,1,2,3).” In rows labeled “Total (Jn = 0,1,2,3)” we give total contribution of all intermediate states with
fixed total angular momentum Jn. In rows “Total val.” we present the total values of αv . The contributions from the αc and αvc terms are listed
together in rows labeled “Core + Vc.” The dominant contributions to the polarizabilities, listed in columns α[A] and α[B], are calculated with
the experimental [26] and theoretical energies, respectively.

State Contribution �Eth �Eexpt Da α[A] α[B]

6s2 1S0 6s2 1S0–6s6p 3P o
1 29 073 28 503 0.820 3.45 3.39

6s2 1S0–6s6p 1P o
1 38 862 38 223 3.518 47.38 46.60

6s2 1S0–5d6p 3Do
1 46 593 45 532 0.811 2.11 2.07

6s2 1S0–5d6p 3P o
1 51 285 50 049 0.447 0.59 0.57

6s2 1S0–5d6p 1P o
1 60 214 59 122 1.354 4.54 4.46

Other 2.03 2.03
Total val. 60.10 59.11
Core + Vc 3.92 3.92
Total 64.02 63.03
Recommended 63.0

5d6s 3D1 5d6s 3D1–6s6p 3P o
0 15 297 15 468 1.480 6.91 6.99

5d6s 3D1–5d6p 3P o
0 38 664 38 167 1.892 4.57 4.52

Other (Jn = 0) 0.33 0.33
Total (Jn = 0) 11.82 11.83
5d6s 3D1–6s6p 3P o

1 16 521 16 707 1.287 4.83 4.89
5d6s 3D1–5d6p 3Do

1 34 041 33 736 2.391 8.26 8.19
5d6s 3D1–5d6p 3P o

1 38 733 38 253 2.089 5.56 5.49
Other (Jn = 1) 0.59 0.59
Total (Jn = 1) 19.25 19.16
5d6s 3D1–6s6p 3P o

2 20 510 20 657 0.351 0.29 0.29
5d6s 3D1–5d6p 3F o

2 29 925 29 429 2.741 12.46 12.25
5d6s 3D1–5d6p 1Do

2 34 094 33 662 1.716 4.27 4.21
5d6s 3D1–5d6p 3Do

2 35 488 35 108 2.259 7.09 7.01
5d6s 3D1–5d6p 3P o

2 39 899 39 405 0.555 0.38 0.38
Other (Jn = 2) 4.50 4.50
Total (Jn = 2) 28.99 28.65
Total val. 60.05 59.64
Core + Vc 3.84 3.84
Total 63.89 63.48
Recommended 63.5

5d6s 3D2 5d6s 3D2–6s6p 3P o
1 15 867 16 068 2.084 7.91 8.01

5d6s 3D2–6s6p 1P o
1 25 656 25 788 0.814 0.75 0.76

5d6s 3D2–5d6p 3Do
1 33 387 33 097 1.986 3.49 3.46

Other (Jn = 1) 5.26 5.26
Total (Jn = 1) 17.41 17.49
5d6s 3D2–6s6p 3P o

2 19 857 20 018 1.220 2.18 2.19
5d6s 3D2–5d6p 3F o

2 29 271 28 790 2.552 6.62 6.51
5d6s 3D2–5d6p 1Do

2 33 440 33 023 0.098 0.01 0.01
5d6s 3D2–5d6p 3Do

2 34 834 34 469 2.653 5.97 5.91
Other (Jn = 2) 3.71 3.71
Total (Jn = 2) 18.49 18.34
5d6s 3D2–5d6p 3F o

3 33 052 32 483 3.727 12.52 12.30
5d6s 3D2–5d6p 3Do

3 36 720 36 298 2.748 6.09 6.02
Other (Jn = 3) 4.13 4.13
Total (Jn = 3) 22.73 22.45
Total val. 58.63 58.27
Core + Vc 3.84 3.84
Total 62.47 62.10
Recommended 62.1

aThe values are obtained in the CI+all-order approximation and include RPA, σ , SR, and normalization corrections.

042112-5



EDUARDO PAEZ et al. PHYSICAL REVIEW A 93, 042112 (2016)

high-precision relativistic method that combines configuration
interaction (CI) and the linearized coupled-cluster (all-order)
method [20]. In this CI+all-order method, the energies and
wave functions are determined from the time-independent
multiparticle Schrödinger equation

Heff(En)
n = En
n, (13)

where the effective Hamiltonian is defined as

Heff(E) = HFC + �(E). (14)

Here HFC is the Hamiltonian in the frozen core approximation
and � is the energy-dependent correction, which takes into
account virtual core excitations in all orders. To establish the
importance of the higher-order corrections, we also carried out
the calculations constructing the effective Hamiltonian using
second-order many-body perturbation theory (CI+MBPT
method) [21].

We separate the scalar dynamic polarizability α(ω) into
three parts:

α(ω) = αv(ω) + αc(ω) + αvc(ω), (15)

where αv is the valence polarizability, αc is the ionic core
polarizability, and αvc is a small term that corrects ionic core
polarizability for the Pauli-principle-violating excitations to
occupied valence shells.

The valence part of the ac electric dipole polarizability of
the |0〉 state is

αv(ω) = 2
∑

k

(Ek − E0)|〈
0|D0|
k〉|2
(Ek − E0)2 − ω2

=
∑

k

[ |〈
0|D0|
k〉|2
Ek − E0 + ω

+ |〈
0|D0|
k〉|2
Ek − E0 − ω

]
, (16)

where D0 is the z component of the effective electric dipole
operator D, defined in atomic units (� = m = |e| = 1) as
D = −r. The effective (or “dressed”) electric dipole operator
includes random-phase approximation (RPA), core-Brueckner
(σ ), structural radiation (SR), and normalization corrections
which are described in detail in Ref. [22]. In order to accurately
account for highly excited discrete states and a continuum
we calculated αv(ω) using an inhomogeneous equation in
valence space rather than the sum-over-states formula given by
Eq. (16). We use the Sternheimer [23] or Dalgarno-Lewis [24]
method implemented in the framework of the CI+all-order
approach following Ref. [25]. Given the 
0 wave function and
energy E0 of the |0〉 state, we find intermediate-state wave
functions δψ± from the inhomogeneous equation,

|δψ±〉 = 1

Heff − E0 ± ω

∑
k

|
k〉〈
k|D0|
0〉

= 1

Heff − E0 ± ω
D0|
0〉. (17)

Using Eq. (16) and δψ± introduced above, we obtain

αv(ω) = 〈
0|D0|δψ+〉 + 〈
0|D0|δψ−〉, (18)

where superscript v emphasizes that only excitations of the
valence electrons are included in the intermediate-state wave
functions δψ± due to the presence of Heff .

1. Static polarizabilities

In the case of static polarizabilities, ω = 0, Eq. (16) is
written as

αv(0) = 2
∑

k

|〈
0|D0|
k〉|2
Ek − E0

. (19)

While we do not use the sum-over-states approach in
the calculation of the polarizabilities, it is important to
establish the dominant contributions to the final values
for the purpose of estimating theoretical uncertainties. We
combine the electric-dipole matrix elements and energies
according to the sum-over-states formula, Eq. (19), for the
valence polarizability to calculate the contributions of specific
transitions between low-lying states, and these are given in
Table II. Remaining valence contributions of higher-lying
states are given in rows labeled “Other.”

We have carried out two calculations of the dominant
contributions of the intermediate states to the polarizabilities.
In the first calculation (column α [B] in Table II) we used
our theoretical values of the energy levels in the denominator
of Eq. (19). In the second calculation (column α [A] in
Table II) we used experimental energies, where available.
Corresponding theoretical and experimental [26] transition
energies are given in columns �Eth and �Eexpt in cm−1.
The difference between the results is −1.6% for the 1S0

polarizability and −0.6% for the 3D1 and 3D2 polarizabilities,
demonstrating that deviation of our theoretical energies from
the experimental values does not significantly affect the
overall accuracy of the polarizabilities. The absolute values
of the corresponding reduced electric-dipole matrix elements
in atomic units are listed in columns labeled “D”. These are
calculated using the CI + all-order method and include RPA,
σ , SR, and normalization corrections. Calculation of the RPA,
σ , and SR corrections is discussed in Ref. [22].

The contributions from αc and αvc terms evaluated in
the RPA are listed together in rows labeled “Core +Vc.”
Taking into account that the main contribution to the 3D1

and 3D2 levels comes from the 5d3/26s configuration (99%
and 80%, respectively), we determined αvc terms for the
3D1,2 polarizabilities as αvc(5d3/2) + αvc(6s). In rows labeled
“Total” we present the total values of the scalar static 1S0, 3D1,
and 3D2 polarizabilities. Our final values are given in rows
labeled “Recommended.”

To determine uncertainties of the polarizabilities we have
also calculated them using two other approximations: the
CI+MBPT+RPA and CI+all-order+RPA. In both cases
only RPA corrections were included. The CI+MBPT method
omits higher-order core-valence correlations. The results
obtained in the CI+MBPT+RPA, CI+all-order+RPA,
and CI+all-order+AC approximations (where abbreviation
“AC” means all corrections, including RPA, σ , SR, and
normalization) are presented in Table III in columns (1), (2),
and (3), correspondingly.

We consider the results obtained in the CI+all-order+AC
approximation as the final values according to the Sr study
[27]. Comparison of the data in columns (2) and (3) in
Table III illustrates that the corrections beyond RPA only
slightly change the values of the 1S0 and 3D1,2 polarizabilities.
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TABLE III. The scalar (α0) and tensor (α2) polarizabilities,
obtained in the CI+MBPT+RPA, CI+all-order+RPA, and CI+all-
order+AC approximations (where “AC” means all corrections) are
presented (in a.u.) in columns (1), (2), and (3), correspondingly. Final
(recommended) values are given in the last column. The uncertainties
are given in parentheses.

Polarizability (1) (2) (3) Final

α0(6s2 1S0) 62.5 63.3 63.0 63.0(0.8)

α0(5d6s 3D1) 61.5 64.3 63.5 63.5(2.8)
α2(5d6s 3D1) − 4.8 − 5.2 − 5.1 − 5.1(4)

α0(5d6s 3D2) 60.3 62.9 62.1 62.1(2.6)
α2(5d6s 3D2) − 5.1 − 5.7 − 5.6 − 5.6(6)

α0(3D1) − α0(1S0) −1.0 1.0 0.5 0.5
α0(3D2) − α0(1S0) −2.2 −0.4 −0.9 −0.9

We estimate the polarizability uncertainties as the spread of
the results in columns (1)–(3).

2. Dynamic polarizabilities

We have also calculated the dynamic scalar and tensor
polarizabilities for the 1S0, 3D1, and 3D2 states for the
wavelengths of experimental interest. The results, presented
in Table IV, are obtained in the framework of the CI+all-
order+AC approximation; i.e., all corrections to the matrix
elements are included.

In Fig. 5 we plot differential scalar polarizabilities α(3D1) −
α(1S0) and α(3D2) − α(1S0) represented by red solid and blue
dashed lines, respectively, vs the wavelength λ. The vertical
dotted lines correspond to λ = 1064 and 1560 nm.

B. Lifetimes of the low-lying states

In Table V, we list the lifetimes τ of the low-lying
6s6p 3,1P o

J and 5d6s 3,1DJ states together with most important
reduced matrix elements, and relevant transition rates and
branching ratios.

The E1, E2, and M1 transition probabilities (in s−1)
are obtained in terms of reduced matrix elements (MEs) of
the electric-dipole, electric-quadrupole, and magnetic-dipole
operators, and transition frequencies ω as

WE1(γ J → γ ′J ′) = 2.02613 × 10−6 ω3 〈γ ′J ′||D||γ J 〉2

2J + 1
,

TABLE IV. The dynamic scalar (α0), tensor (α2), and differential
�1,2 ≡ α0(3D1,2) − α0(1S0) polarizabilities (in a.u.), obtained in the
CI+all-order+AC approximation, are calculated for the wavelengths
(frequencies) given in the first (second) row.

λ (nm) 847.7 1064 1560 1760 10600
ω (a.u.) 0.05375 0.04282 0.02921 0.02589 0.00430

6s2 1S0 α0 68.9 66.6 64.6 64.3 63.0

5d6s 3D1 α0 85.4 73.9 67.6 66.6 63.6
α2 −13.0 −8.3 −6.2 −5.9 −5.1

5d6s 3D2 α0 79.6 70.9 65.6 64.8 62.2
α2 −14.1 −9.1 −6.8 −6.5 −5.6

�1 16.5 7.3 2.9 2.3 0.5
�2 10.7 4.3 1.0 0.5 −0.9

α(
3 D

1,
2)

 - 
α(

1 S 0
) (

a.
u.

)
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FIG. 5. Differential scalar polarizabilities α(3D1) − α(1S0) and
α(3D2) − α(1S0) represented by red solid and blue dashed lines,
respectively, vs the wavelength λ. The vertical dotted lines correspond
to λ = 1064 and 1560 nm.

WE2(γ J → γ ′J ′) = 1.11995 × 10−22 ω5 〈γ ′J ′||QE||γ J 〉2

2J + 1
,

WM1(γ J → γ ′J ′) = 2.69735 × 10−11 ω3 〈γ ′J ′||μ||γ J 〉2

2J + 1
.

In these equations, MEs of the E1 and E2 operators are
expressed in a.u., MEs of the M1 operator in Bohr magnetons
(μ0), and the decay rates ω are expressed in cm−1.

We determine the lifetimes, listed in the last column of
Table V, as τ = 1/Wtot with Wtot ≡ ∑

k Wk , where Wk are
the individual decay rates. The branching ratios, Bk , are
determined as Bk = Wk/Wtot.

To estimate the uncertainty of theoretical values, we
calculate the decay rates

W0 ≡ W
(
6s6p 3P o

1 → 6s2 1S0
)
,

W1 ≡ W
(
6s6p 3P o

1 → 5d6s 3D1
)
,

W2 ≡ W
(
6s6p 3P o

1 → 5d6s 3D2
)
,

W3 ≡ W
(
6s6p 3P o

1 → 5d6s 1D2
)
, (20)

using three different methods: (1) CI+MBPT+RPA, (2)
CI+all-order+RPA, and (3) CI+all-order+AC approxima-
tions. These results are given in Table VI. The spread of the
values calculated in these approximations (1)–(3) gives an
estimate of the uncertainties in the final results. Comparing the
results obtained in the (2) CI+all-order+RPA and (3) CI+all-
order+AC approximations, we find that the corrections beyond
RPA play a very insignificant role and we take the results
presented in columns labeled (3) as final.
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TABLE V. The energies (in cm−1) are counted from the ground 6s2 1S0 state. The fifth column gives the type of transition. The reduced
MEs of E1 and E2 operators (in a.u.) and M1 operator (in μ0) are presented in sixth column. The individual decay rates, Wk (in s−1), branching
ratios (Bk), and lifetimes (τ ) are listed in columns 7–9. These quantities are evaluated in the CI+all-order+AC approximation. The numbers
in brackets represent powers of 10.

Upper level Lower level Wk

Term Energy Term Energy Transition ME s−1 Bk τ

Transitions from the even-parity states
6s5d 3D1 11 796 6s2 1S0 0 M1 0.0006 5.14[−6] 1.00 1.95[+5] (s)

6s5d 3D2 12 435 6s2 1S0 0 E2 2.509 4.19[−2] 0.88 20.9 (s)
6s5d 3D1 11 796 E2 4.523 4.88[−8] 0.00

11 796 M1 2.055 5.94[−3] 0.12

6s5d 3D3 14 199 6s5d 3D1 11 796 E2 1.601 3.29[−6] 0.00 10.8 (s)
6s5d 3D2 12 435 E2 4.969 6.74[−6] 0.00

12 435 M1 2.094 9.27[−2] 1.00

6s5d 1D2 17 333 6s2 1S0 0 E2 10.63 3.96 0.92 0.23 (s)
6s5d 3D1 11 796 E2 1.018 1.21[−4] 0.00

11 796 M1 0.524 2.51[−1] 0.06
6s5d 3D2 12 435 E2 1.319 1.10[−4] 0.00

12 435 M1 0.218 3.01[−2] 0.01
6s5d 3D3 14 199 E2 1.327 1.19[−5] 0.00

14 199 M1 0.531 4.68[−2] 0.01

Transitions from the odd-parity states
6s6p 3P o

0 27 264 5d6s 3D1 11 796 E1 1.480 1.64[+7] 1.00 61.0 (ns)

6s6p 3P o
1 28 503 6s2 1S0 0 E1 0.820 1.05[+7] 0.38 35.7 (ns)

5d6s 3D1 11 796 E1 1.287 5.22[+6] 0.19
5d6s 3D2 12 435 E1 2.084 1.22[+7] 0.43
5d6s 1D2 17 333 E1 0.329 1.00[+5] <0.01

6s6p 3P o
2 32 453 5d6s 3D1 11 796 E1 0.351 4.40[+5] 0.02 35.8 (ns)

5d6s 3D2 12 435 E1 1.220 4.84[+6] 0.17
5d6s 3D3 14 199 E1 3.015 2.24[+7] 0.80
5d6s 1D2 17 333 E1 0.445 2.77[+5] 0.01

6s6p 1P o
1 38 224 6s2 1S0 0 E1 3.518 4.67[+8] 0.95 20.8 (ns)

5d6s 3D2 12 435 E1 0.814 7.67[+6] 0.02
5d6s 1D2 17 333 E1 0.994 6.08[+6] 0.01

C. Hyperfine quenching of a state with J = 0

The hyperfine quenching rate of a state with total angular
momentum J = 0 is given by

W (γ J = 0 → γ ′J ′) = 4α3ω3

3

1

(2J + 1)(2I + 1)

×
∑

k

〈I ||N (k)||I 〉2

3(2k + 1)
|Sk|2, (21)

where ω is the (γ J = 0 → γ ′J ′) transition frequency and

Sk ≡
√

3

2k + 1

∑
γn

〈γ ′J ′||D||γnJn〉〈γnJn||T (k)||γ J = 0〉
En − EγJ

+
∑

γmJm 	=γ ′J ′

〈γ ′J ′||T (k)||γ
m
J

m
〉〈γ

m
J

m
||D||γ J = 0〉

E
m

− Eγ ′J ′
, (22)

TABLE VI. The decay rates Wk determined by Eq. (20) (in s−1) and branching ratios, obtained in (1) CI+MBPT+RPA, (2) CI+all-
order+RPA, and (3) CI+all-order+AC approximations. The experimental values from Sec. III A are given in the last column. The numbers in
brackets represent powers of 10.

Probabilities Branching ratios

(1) (2) (3) (1) (2) (3) Expt.

W0 1.24[+7] 1.07[+7] 1.05[+7] B0 0.408 0.375 0.376 0.392
W1 5.33[+6] 5.33[+6] 5.22[+6] B1 0.176 0.186 0.186 0.186
W2 1.25[+7] 1.25[+7] 1.22[+7] B2 0.413 0.435 0.434 0.418
W3 9.59[+4] 1.02[+5] 1.00[+5] B3 0.00316 0.00357 0.00357 0.00436
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TABLE VII. The absolute values of MEs of the T (1) and T (2)

operators (in MHz) obtained in (1) CI+MBPT+RPA, (2) CI+all-
order+RPA, and (3) CI+all-order+AC approximations presented in
columns labeled (1), (2), and (3), correspondingly. The final values
and assigned uncertainties (in parentheses) are given in the last
column.

ME (1) (2) (3) Final

〈6s6p 3P o
1 || T (1)||6s6p 3P o

0 〉 12 427 11 964 10 833 11 960(1000)
〈6s6p 1P o

1 || T (1)||6s6p 3P o
0 〉 4 324 4 352 3 965 4 350(400)

〈5d6s 3D1|| T (1)||5d6s 3D2〉 19 465 18 682 16 780 18 680(1900)
〈6s6p 3P o

2 || T (2)||6s6p 3P o
0 〉 1 789 1 780 1 672 1 780(110)

〈5d6s 3D1|| T (2)||5d6s 3D3〉 200 198 250 200(50)
〈5d6s 3D1|| T (1)||5d6s 1D2〉 10 718 10 618 9 750 10 620(870)
〈5d6s 3D1|| T (2)||5d6s 1D2〉 76 70 116 70(45)

where Q, μ, and T (k) are defined in the Appendix. The 175Lu
+

ion has the nuclear spin I = 7/2. Its nuclear magnetic moment
μ, expressed in nuclear magnetons μN , is μ/μN = 2.2323(11)
[28] and the nuclear quadrupole moment is Q = 3.49(2) b
[29].

In Table VII we list absolute values of the reduced matrix
elements of T (1) and T (2) operators. To illustrate the role of dif-
ferent corrections, we carried out three calculations and found
the MEs in (1) CI+MBPT+RPA, (2) CI+all-order+RPA, and
(3) CI+all-order+AC approximations. Respective values are
listed in the table in columns labeled (1), (2), and (3).

In contrast with the MEs of the electric-dipole operator,
the corrections beyond RPA (σ , SR, and normalization) are
large for the matrix elements of T (1) and T (2) operators.
They contribute to large MEs at the level of 10% and
even more to smaller MEs. In particular, it was essential
to account for the SR corrections for calculating the MEs
of the T (2) operator between DJ states. The SR contribu-
tions are ∼20% to 〈5d6s 3D1||T (2)||5d6s 3D2,3〉 and 40% to
〈5d6s 3D1||T (2)||5d6s 1D2〉.

We note that while the RPA corrections were calculated
to all orders, the corrections beyond RPA were obtained
only in the second order of MBPT, which usually over-
estimates respective contribution. For this reason our final
(recommended) values are based on the results obtained in
the CI+all-order+RPA approximation while the assigned
uncertainties are determined as the differences between the
CI+all-order+RPA and CI+all-order+AC values.

We determined the hyperfine quenching rates for the
6s6p 3P o

0 state. We present the results obtained in (1)
CI+MBPT+RPA, (2) CI+all-order+RPA, and (3) CI+all-
order+AC approximations in Table VIII. The probability of
the main E1 (6s6p 3P o

0 5d6s 3D1) transition, W (0), is given
in the first row. The quenching rates of the 6s6p 3P o

0 –
6s2 1S0,5d6s 3D2,3, and 5d6s 1D2 transitions, calculated using
Eqs. (21) and (22), are listed in rows 2–5, correspondingly. We
sum all listed hyperfine quenching rates and present in the last
row of the table the branching ratio of this sum to W (0).

As we discussed above we consider the results obtained
at the CI+all-order+RPA stage as the final (recommended)
values as the calculations of other corrections beyond RPA are
unreliable for the matrix elements of of the T (k) operators. The

TABLE VIII. The 6s6p 3P o
0 –5d6s 3D1 transition probability,

W (0), is given in the first row (in s−1). The quenching rates of
the 6s6p 3P o

0 –6s2 1S0, 5d6s 3D2,3, and 5d6s 1D2 transitions, obtained
in (1) CI+MBPT+RPA, (2) CI+all-order+RPA, and (3) CI+all-
order+AC approximations, are listed (in s−1) in rows 2–5, corre-
spondingly. The branching ratios (BR) of the hyperfine quenching
rates to W (0) are presented in the last row. The uncertainties are given
in parentheses. The numbers in brackets represent powers of 10.

(1) (2) (3) Final

3P o
0 - 3D1 1.69[+7] 1.68[+7] 1.64[+7] 1.68(4)[+7]

3P o
0 - 1S0 3.55 2.96 2.38 2.96(59)

3P o
0 - 3D2 3.26 2.96 2.31 2.96(65)

3P o
0 - 3D3 0.0011 0.0010 0.0008 0.0010(2)

3P o
0 - 1D2 0.051 0.050 0.041 0.050(9)

BR 4.05[−7] 3.55[−7] 2.88[−7] 3.55(65)[−7]

uncertainties were estimated as the largest difference between
the CI+all-order+RPA results and the CI+MBPT+RPA and
CI+all-order+AC values.

V. DISCUSSION

We have measured several key properties of 175Lu+ that are
relevant to practical clock operation with this ion. Hyperfine
induced mixing results in a small decay rate out of the
detection channel which is dominated by decay into the 1S0

and 3D2 levels. This rate provides a fundamental limit to the
detection error rate given by w/(Wq) which is the probability
the ion is pumped dark with zero photons detected. For our
current collection efficiency this gives a limit of 1.0 × 10−4.
The measured decay rate does not impose any limitations on
cooling as most decays are to 1S0 and 3D2 which can be quickly
repumped.

During clock operation occupation of the 1D2 level would
mostly occur due to repumping to 3D1. This occurs with a
probability of approximately 2%. In typical clock operation,
occupation is split between ground and excited states. So,
on average, 1% of the cycles will be compromised provided
the cycle time is large enough for the ion to decay from
1D2 with reasonable probability before the next cycle begins.
Occupation of the 3D3 would result in significant dead
time. However, based on the analysis here, these events are
infrequent, happening only once every 1 × 104 clock cycles. In
a multi-ion clock [15] these considerations would only result in
a very small number fluctuations such that additional repump
lasers would not be necessary.

Calculation of polarizabilities given in Sec. IV A indicate
that the differential scalar polarizability, �α, for the 1S0 to
3D1 transition may not be as reported in Ref. [16] and this
would have immediate consequences for the proposal given
in Ref. [15]. It is therefore essential to obtain an experimental
value for this quantity. We have given calculations of �α at
a number of wavelengths that are readily accessible to us.
Measurement of �α at these wavelengths would serve as a
useful benchmark for the calculations given here.

Intuitively we can expect �α to be more negative for
the 1S0-to-3D2 transition and we have also given associated
calculations for this case. Measurements and calculations
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here demonstrate a suitable lifetime for clock operation.
Although this transition would be more technically difficult
to implement, systematic shifts would be significantly lower
than for the 1S0-to-3D2 case. Contributions from the 3D1 and
3D3 levels have opposite sign resulting in a partial cancellation
of the residual magnetic field shift for the average frequency.
Furthermore, due to the reduced lifetime relative to the 3D1

level, much less intensity is needed to drive the 1S0-to-3D2

transition, resulting in a substantial reduction in the ac Stark
shift from the probe beam itself.
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APPENDIX: THE HYPERFINE INTERACTION

The hyperfine structure (hfs) coupling due to nuclear
multipole moments may be represented as a scalar product
of two tensors of rank k,

Hhfs =
∑

k

Hhfs,k =
∑

k

(N(k) · T(k)),

where N(k) and T(k) act in the space of nuclear and electronic
coordinates, respectively. Using this expression we write the
Hhfs matrix element as

〈γ ′IJ ′; FMF |Hhfs|γ IJ ; FMF 〉
= (−1)I+J ′+F

∑
k

〈I ||N (k)||I 〉〈γ ′J ′||T (k)||γ J 〉

×
{
I I k

J J ′ F

}
,

where I is the nuclear spin, J is the total angular momentum
of the electrons, F = J + I, MF is the projection of the total
momentum F to the quantization axis, and γ encapsulates all
other atomic quantum numbers.

Below, we restrict the treatment of Hhfs to the first two
terms in the sum over k; i.e., we consider only the interaction
of magnetic dipole and electric quadrupole nuclear moments

with the electrons. Thus,

Hhfs ≈ N(1) · T(1) + N(2) · T(2).

It is convenient to express the matrix elements 〈I ||N (1)||I 〉
and 〈I ||N (2)||I 〉 through the nuclear magnetic dipole moment
μ and nuclear electric quadrupole moment Q, respectively.
They are defined as follows:

μ = 〈IMI = I |μz|IMI = I 〉 =
(

I 1 I

−I 0 I

)
〈I ||μ||I 〉

=
√

I

(2I + 1)(I + 1)
〈I ||μ||I 〉,

Q = 2〈IMI = I |Q(2)
0 |IMI = I 〉

= 2

(
I 2 I

−I 0 I

)
〈I ||Q||I 〉

= 2

√
I (2I − 1)

(2I + 3)(2I + 1)(I + 1)
〈I ||Q||I 〉.

We define N(1) and N (2)
q in dimensionless form as

N(1) = μ/μN,

N (2)
q = Q(2)

q /[1 b],

where μN is the nuclear magneton (μN = |e|�
2mpc

, with mp being
the proton mass), and the reduced matrix elements are given
by

〈I ||N (1)||I 〉 =
√

(2I + 1)(I + 1)

I

μ

μN

,

〈I ||N (2)||I 〉 = 1

2

√
(2I + 3)(2I + 1)(I + 1)

I (2I − 1)

[
Q

1 b

]
.

We define one-particle electronic tensors (in a.u.) as

T (1)
q = − iα

√
2
(
γ0γ · C(0)

1q (r̂)
)

r2
μN,

T (2)
q = −C(2)

q (r̂)

r3
× [1 b].

Here α is the fine-structure constant, C(0)
1q is a normalized

spherical harmonic, γ0 and γ are the Dirac matrices, and C(2)
q

is a normalized spherical function.
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