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We have calculated parity-nonconserving 7s−6d3/2 amplitude EPNC in 223Ra+ using high-precision relativ-
istic all-order method where all single and double excitations of the Dirac-Fock wave functions are included to
all orders of perturbation theory. Detailed study of the uncertainty of the parity-nonconserving amplitude is
carried out; additional calculations are performed to estimate some of the missing correlation corrections. A
systematic study of the parity-conserving atomic properties, including the calculation of the energies, transition
matrix elements, lifetimes, hyperfine constants, and quadrupole moments of the 6d states, as well as dipole and
quadrupole ground-state polarizabilities, is carried out. The results are compared with other theoretical calcu-
lations and available experimental values.
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I. INTRODUCTION

There are two separate reasons for parity violation studies
in an atom: to search for new physics beyond the standard
model of the electroweak interaction by precise evaluation of
the weak charge Qw, and to probe parity violation in the
nucleus by evaluating the nuclear anapole moment. The
atomic-physics tests of the standard model that are com-
pleted to date were carried out by comparing experimental
weak charges of atoms QW, which depend on input from
atomic theory, with predictions from the standard model �1�.
The most precise experimental study to date, a 0.35% mea-
surement in Cs was carried out by the Boulder group �2�
using a Stark interference scheme for measuring the ratio of
the parity-nonconserving �PNC� amplitude EPNC and the vec-
tor part of the Stark-induced amplitude � for transitions be-
tween states of the same nominal parity. The value of the
weak charge in Cs was ultimately found to be consistent with
the theories of the standard model. However, such compari-
sons provide important constraints on its possible extensions.
A recent analysis �3� of parity-violating electron-nucleus
scattering measurements combined with atomic PNC mea-
surements placed tight constraints on the weak neutral-
current lepton-quark interactions at low energy, improving
the lower bound on the scale of relevant new physics to
�1 TeV.

Experimental measurements of the spin-dependent contri-
bution to the PNC 6s→7s transition in 133Cs led to a value
of the cesium anapole moment that is accurate to about 14%
�2�. The analysis of this experiment, which required a calcu-
lation of the nuclear spin-dependent PNC amplitude, led to
constraints on weak nucleon-nucleon coupling constants that
are inconsistent with constraints from deep inelastic-
scattering and other nuclear experiments, as pointed out in
�4�. Therefore, new experiments �and associated theoretical
analysis� are needed to resolve the issue. Currently, a micro-
wave experiment to measure the spin-dependent PNC ampli-
tude in the 7s state of Fr �5� and an isotopic chain experiment

in Yb �6� is underway. We note that when an experimental
study is conducted in a single isotope, both theoretical and
experimental determinations of PNC amplitude are required
while the experiments conducted with isotopic chains should
allow removing the dependence on the theory. However, ac-
curate theoretical values for a number of atomic properties
are useful for this type of experiments as well.

The present work is motivated by the project that was
recently started at the Accelerator Institute �KVI� of the Uni-
versity of Groningen �7� to measure PNC amplitude in a
single trapped radium ion. Ra+ is a particularly good candi-
date for the PNC study, owing to high value of the nuclear
charge Z and, correspondingly, large expected PNC effects.
The 7s−6d3/2 transition in Ra+ is of special interest owing to
the long life of the 6d3/2 state and its sensitivity to both
spin-independent PNC and spin-dependent PNC �8�. The
7s−6d3/2 transition in Ra+ is also being considered for the
development of optical frequency standards at the same labo-
ratory �9�. The parity violation experiments are also accom-
panied by a number of measurements of parity-conserving
quantities; as a result we have included a systematical study
of such properties in this work.

In summary, we have calculated the PNC amplitude for
the 7s−6d3/2 transition in 223Ra+ together with the lifetimes
of the 7p and 6d states, energy levels for ns, np, nd, and nf
states, transition matrix elements for a number of the E1 and
E2 transitions, quadrupole moments of the 6d states, ground-
state dipole and quadrupole polarizabilities, and magnetic-
dipole hyperfine constants A for the 7s, 7p, and 6d states
using the relativistic all-order method. The all-order method
has proved to be very reliable for calculating the properties
of alkali-metal atoms and singly-ionized monovalent ions
�see, for example, Refs. �10–16��. The effect of Breit inter-
action on the PNC amplitude is also evaluated. The sensitiv-
ity of the PNC amplitude to the nuclear radius and varying
neutron distribution has been studied. Our results are com-
pared with other theoretical values and available experimen-
tal data.

PHYSICAL REVIEW A 79, 062505 �2009�

1050-2947/2009/79�6�/062505�10� ©2009 The American Physical Society062505-1

http://dx.doi.org/10.1103/PhysRevA.79.062505


II. THEORY

In this section, we briefly discuss the all-order method
which has been used to calculate the wave functions and the
matrix elements necessary to evaluate the observed proper-
ties. The all-order method relies on including all single and
double excitations of the core and valence electrons from the
lowest-order wave function,

��v� = �1 + 	
ma

�maam
† aa +

1

2 	
mnab

�mnabam
† an

†abaa

+ 	
m�v

�mvam
† av + 	

mna

�mnvaam
† an

†aaav
��v� . �1�

Here, ��v� is the lowest-order atomic wave function taken to
be the frozen-core Dirac-Fock �DF� wave function of a state
v; ai

† ,aj are single-particle creation and annihilation opera-
tors, �ma and �mv are the single core and valence excitation
coefficients, and �mnab and �mnva are double core and valence
excitation coefficients, respectively. Indices at the beginning
of the alphabet, a, b, . . ., refer to occupied core states, those
in the middle of the alphabet m, n, . . ., refer to excited states,
and index v designates the valence orbital.

To derive equations for the excitation coefficients, all-
order wave function �1� is substituted into the many-body
Schrödinger equation H��v�=E��v�, and terms on the left-
and right-hand sides are matched, based on the number and
type of operators they contain. Hamiltonian H=H0+VI is
taken to be the relativistic no-pair Hamiltonian,

H0 = 	
i=1

N

�i:ai
†ai: ,

VI =
1

2	
ijkl

gijlk:ai
†aj

†alak: , �2�

where �i are the single-particle energies, :: designate normal
ordering of the operators with respect to closed core, and gijkl
are the two-body Coulomb matrix elements. The all-order
equations are solved numerically using a finite basis set of
single-particle wave functions which are linear combinations
of B splines. We have used 70 basis set B-spline orbitals of
order 8 defined on a nonlinear grid with 500 points within a
spherical cavity of radius 80 a.u. A large spherical cavity is
needed to accommodate all the valence orbitals required for
our calculation. A sufficiently large number of grid points
were enclosed within the nucleus to accommodate the influ-
ence of the nucleus on certain atomic properties such as
parity-violating matrix elements and hyperfine constants.

The resulting single-double �SD� excitation coefficients
are used to calculate matrix elements of various one-body
operators represented in the second quantization as Z
=	ijzijai

†aj,

Zwv =
��w�Z��v�

���v��v���w��w�
. �3�

Substituting the expression for the wave function from Eq.
�1� in the above equation and simplifying, we get

Zwv =
zwv + Z�a� + ¯ + Z�t�

��1 + Nv��1 + Nw�
, �4�

where zwv is the lowest-order DF matrix element and
Z�a� , . . . ,Z�t� and normalization terms Ni are linear or qua-
dratic functions of the single and double excitation coeffi-
cients �10,17�. The expression in Eq. �4� does not depend on
the nature of the operator Z, only on its rank and parity.
Therefore, all matrix elements calculated in this work �E1,
M1, E2, hyperfine, and PNC matrix elements� are calculated
using the same general code.

Corrections to the all-order equations from the
dominant class of triple excitation terms are also
evaluated where needed by including the term
1
6�mnrab�mnrvabam

† an
†ar

†avabaa��v� into SD wave function �1�
and considering its effect on the energy and single valence
excitation coefficient equations perturbatively �SDpT ap-
proach�. Other classes of triple and higher excitations are
included where needed using the scaling procedure by mul-
tiplying single excitation coefficients �mv by the ratio of the
“experimental” and corresponding �SD or SDpT� correlation
energies �10�. The experimental correlation energies are de-
termined as the difference of the total experimental energy
and the DF lowest-order values. The calculation of the ma-
trix elements is then repeated with the modified excitation
coefficients. We refer the reader to the review �16� and ref-
erences therein for the detailed description of the all-order
method and its extensions. The various atomic properties cal-
culated using the all-order method described above are dis-
cussed in detail in the following sections.

III. PROPERTIES OF Ra+

A. Energies

Results of our calculations of energies for a number of
Ra+ levels are summarized in Table I. The first six columns
of Table I give the lowest-order DF energies E�0�, the all-
order SD energies ESD, the part of the third-order energies
omitted in the SD calculation Eextra

�3� , first-order Breit contri-
bution B�1�, second-order Coulomb-Breit B�2� corrections,
and Lamb shift contribution, ELS �see Ref. �20� for detail�.
We take the sum of these six contributions to be our final
all-order results, Etot

SD listed in the seventh column of Table I.
The column labeled �ESD in Table I gives differences be-

tween our ab initio results and the experimental values
�18,19�. The SD results are in good agreement with the ex-
perimental values taking into account very large size of the
high-order correlation corrections. We predict the energies of
the 9p1/2, 10p1/2, and 10p3/2 levels using our theoretical re-
sults and differences between our and experimental values
for the known np levels. The predicted values are listed in
Table I and are expected to be accurate to a few cm−1.

We compare our results for the excitation energies impor-
tant to the calculation of the 7s−6d3/2 PNC amplitude with
other theoretical calculations and experiment �19� in Table II.
The calculations in both Refs. �21,22� use high-precision all-
order methods, but represent very different approaches. The
calculations in Ref. �21� are performed using the correlation
potential method. The results of Ref. �22� are obtained using
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coupled-cluster method including single, double, and partial
triple excitations. The results of Ref. �21� are in better agree-
ment with experiment for the 7s−7p transitions and the re-
sults from the present work are in better agreement with
experiment for the 6d3/2−7p transitions. Large discrepancies
of the coupled-cluster results from Ref. �22� for the 6d−7p
transitions with experiment are somewhat surprising and
may indicate insufficient number of higher partial wave
functions in the basis set. In our calculations, all partial wave
up to lmax=6 are explicitly included in all calculations and

extrapolation for higher number of partial waves is carried
out for the dominant second-order correlation energy contri-
bution.

B. Electric-dipole matrix elements

We calculate all allowed reduced electric-dipole matrix
elements between ns, np, and n1d states, where n=7–10 and
n1=6–10 using the method described above. The subset of
these matrix elements is compared with the correlation po-
tential calculations of Ref. �21� and coupled-cluster calcula-
tions of Refs. �9,22� in Table III. Absolute values of the
reduced matrix elements in atomic units are listed in the
table. All present values with the exception of the 7p1/2−8s,
7p3/2−8s, 8p1/2−7s, and 8p3/2−7s transitions are ab initio
SD values. For these four transitions, we used scaling proce-
dure described above to provide recommended values as we
expect the scaled values to be more accurate based on Cs
“best set” data �23�. The calculations of Ref. �21� are carried
out using fitted Brueckner orbitals �i.e., include semiempir-
ical correction to the correlation operator� and include core
polarization, structure radiation, and normalization correc-
tions. We note that Ref. �21� quotes radial integrals rather

TABLE I. Contributions to the energies of Ra II: lowest-order �DF� E�0�, single-double Coulomb all-order correlation energy ESD,
third-order terms not included in the SD value Eextra

�3� , first-order Breit and second-order Coulomb-Breit corrections B�n�, and Lamb shift ELS.
The total energies Etot

SD are compared with experimental energies Eexpt. �18,19�, �E=Etot
SD−Eexpt.. Our predicted energy values are listed for the

9p1/2 and 10pj energy levels. Units: cm−1.

nlj E�0� ESD Eextra
�3� B�1� B�2� ELS Etot

SD Eexpt. �ESD

7s1/2 −75898 −6692 1152 147 −250 33 −81508 −81842 334

6d3/2 −62356 −8042 1152 155 −398 0 −69488 −69758 270

6d5/2 −61592 −7034 926 114 −360 0 −67947 −68099 152

7p1/2 −56878 −4027 587 102 −109 0 −60326 −60491 165

7p3/2 −52906 −3020 433 63 −90 0 −55519 −55633 114

8s1/2 −36860 −1745 316 46 −74 7 −38311 −38437 126

7d3/2 −31575 −1590 245 39 −92 0 −32973 −33098 125

7d5/2 −31204 −1456 204 29 −84 0 −32509 −32602 93

5f5/2 −28660 −4438 371 11 −63 0 −32780 −32854 74

5f7/2 −28705 −4159 353 8 −61 0 −32564 −32570 6

8p1/2 −30053 −1298 201 39 −42 0 −31152 −31236 84

8p3/2 −28502 −1034 156 25 −36 0 −29391 −29450 59

9s1/2 −22004 −741 136 21 −33 2 −22618 −22677 59

9p1/2 −18748 −605 96 20 −21 0 −19259, −19305 a

9p3/2 −17975 −495 76 13 −18 0 −18399 −18432 33

8d3/2 −19451 −683 105 18 −40 0 −20051 −20107 56

8d5/2 −19261 −634 90 13 −37 0 −19829 −19868 39

10s1/2 −14651 −388 72 11 −18 1 −14972 −15004 32

10p1/2 −12838 −335 53 11 −11 0 −13120, −13144 a

10p3/2 −12397 −278 43 7 −10 0 −12635, −12653 a

9d3/2 −13226 −366 56 10 −22 0 −13548 −13578 30

9d5/2 −13118 −342 49 7 −20 0 −13424 −13447 23

10d3/2 −9587 −221 34 6 −13 0 −9780

10d5/2 −9519 −207 30 4 −12 0 −9704

aOur predicted values.

TABLE II. Comparison of the excitation energies important to
the calculation of the 7s−6d3/2 PNC amplitude. All results are in
cm−1.

Transition Present Ref. �21� Ref. �22� Expt.

7s−7p1/2 21182 21279 21509 21351

7s−7p3/2 25989 26226 26440 26209

6d3/2−7p1/2 9162 9468 9734 9267

6d3/2−7p3/2 13969 14415 14665 14125
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than reduced matrix elements, so we have multiplied their
results by the appropriate angular factors for the purpose of
comparison. The calculations of the Refs. �9,22� are carried
out using the coupled-cluster method.

We have also listed the lowest-order DF values in the first
column of the table to illustrate the size of the correlation
corrections for various transitions. Negative sign of the DF
value for the 8p1/2−7s1/2 transition indicates that the lowest-
order value is of the opposite sign with the final result. The
correlation corrections for the primary 7s−7p and 7p−6d
transitions are quite large, 18–25 %. The correlation correc-
tions for the remaining strong transitions are generally
smaller, 2–10 %. All theoretical values are in good agree-
ment for these transitions. Our values for 7s−7p and 7p
−6d are in better agreement with results of Ref. �21� than

those of Refs. �9,22�. The agreement is generally poorer for
the transitions with small values of the matrix elements as
expected, owing to very large size of the correlation correc-
tions. Since different methods omit or include somewhat dif-
ferent classes of the high-order corrections, discrepancies are
expected when such corrections are large. The issue of the
very small matrix elements, such as 8p−7s, is also discussed
in Ref. �21�.

C. Polarizabilities

We calculate the static dipole and quadrupole polarizabil-
ities of the Ra+ ion in its ground 7s state. The static polariz-
ability is calculated as the sum of three terms representing
contributions from the ionic core �c, a small counteracting
term to compensate for the excitations from the core states to
the valence state �vc, and valence polarizability �v,

� = �c + �vc + �v. �5�

1. Dipole polarizability

The valence polarizability contributes over 90% of the
total value of the electric-dipole polarizability and is calcu-
lated using sum-over-states approach,

�v�E1� =
1

3	
n
 ��7s��D��np1/2��2

Enp1/2
− E7s

+
��7s��D��np3/2��2

Enp3/2
− E7s

� .

�6�

The sum over n in Eq. �6� converges extremely fast. In fact,
the first term with n=7 contributes 99.8% of the total value.
As a result, we calculate the first few terms �with n=7–10�
using our all-order matrix elements from Table III and ex-
perimental energies �18,19� where available. The remainder
�v

tail is calculated in the DF approximation without loss of
accuracy. The ionic core contribution �c and term �vc are
calculated in the random-phase approximation �RPA�. The
RPA core value is expected to be accurate to better than 5%
�see Ref. �24� and references therein�. All contributions to
the dipole polarizability are listed in Table IV. The contribu-
tions from n=7–10 are given together as �v

main.
The value of the ground-state Ba+ polarizability calcu-

lated by the same approach �24� is in near perfect agreement
with the experiment �25� �to 0.2%�. Moreover, the theoretical
SD 6p lifetimes in Ba+ are also in excellent agreement with
experimental values �24�. We note that lifetime experiments
are conducted entirely differently from the polarizability
measurement of �25�. There are two differences between the
Ba+ and Ra+ dipole polarizability calculations: increased
ionic core contribution and increased size of the correlation
corrections. The core contribution increases from 8% in Ba+

to 13% in Ra+, and the correlation correction contribution to
the 7s−7p matrix elements increases by about 3% �from
16.6% to 19.1% for the 7s−7p1/2 transition�. Neither of these
changes is expected to significantly decrease the accuracy of
the Ra+ ground-state dipole polarizability in comparison with
the Ba+ one. Therefore, we expect our value to be accurate to
better than 1%. Our result is in agreement with the coupled-
cluster calculation of Ref. �9�.

TABLE III. Comparison of the present results for the absolute
values of the electric-dipole reduced matrix elements in Ra II with
other theoretical calculations. All results are in atomic units. The
lowest-order DF values are listed in the column labeled “DF” to
illustrate the size of the correlation correction. Negative sign of the
DF value for the 8p1/2−7s1/2 transition indicates that the lowest-
order value is of the opposite sign with the final result.

Transition DF Present Ref. �21� Ref. �9� Ref. �22�

7p1/2−7s1/2 3.877 3.254 3.224 3.28 3.31

7p1/2−8s1/2 2.637 2.517 2.534

7p1/2−9s1/2 0.716 0.702 0.708

7p1/2−6d3/2 4.446 3.566 3.550 3.64 3.68

7p1/2−7d3/2 4.527 4.290 4.358

7p1/2−8d3/2 1.584 1.445 1.432

7p3/2−7s1/2 5.339 4.511 4.477 4.54 4.58

7p3/2−8s1/2 4.810 4.644 4.663

7p3/2−9s1/2 1.078 1.035 1.036

7p3/2−6d3/2 1.881 1.512 1.504 1.54 1.56

7p3/2−7d3/2 2.488 2.384 2.407

7p3/2−8d3/2 0.733 0.652 0.641

7p3/2−6d5/2 5.862 4.823 4.816 4.92

7p3/2−7d5/2 7.249 6.921 6.995

7p3/2−8d5/2 2.227 2.011 1.954

8p1/2−7s1/2 −0.125 0.047 0.088 0.04

8p1/2−8s1/2 7.371 6.949 6.959

8p1/2−9s1/2 5.227 5.012 5.035

8p1/2−6d3/2 0.105 0.049 0.013 0.07

8p1/2−7d3/2 10.21 9.553 9.540

8p1/2−8d3/2 7.184 7.010 7.104

8p3/2−7s1/2 0.625 0.395 0.339 0.50

8p3/2−8s1/2 9.880 9.294 9.320

8p3/2−9s1/2 9.244 9.022 9.036

8p3/2−6d3/2 0.168 0.144 0.127 0.15

8p3/2−7d3/2 4.331 4.035 4.028

8p3/2−8d3/2 4.047 4.002 4.034

8p3/2−6d5/2 0.462 0.378 0.347 0.40

8p3/2−7d5/2 13.37 12.55 12.53

8p3/2−8d5/2 11.68 11.49 11.58
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2. Quadrupole polarizability

The valence part of the quadrupole polarizability is calcu-
lated using the sum-over-states approach as

�v�E2� =
1

5	
n
 ��7s��Q��nd3/2��2

End3/2
− E7s

+
��7s��Q��nd5/2��2

End5/2
− E7s

� . �7�

All contributions to the quadrupole polarizability are
listed in Table V. The correlation correction to the E2 matrix
elements is dominated by a single term among twenty terms
in the numerator of Eq. �4�. As described in detail in Ref.

�24�, additional omitted correlation correction to this term
may be estimated by the scaling procedure described above.
The scaling modifies the SD results by 0.7 to 2.3% depend-
ing on the transition. We have also carried out the ab initio
all-order calculation with inclusion of the triple valence ex-
citation coefficients as described in the Sec. II �SDpT ap-
proach�. The scaling procedure was repeated starting from
the SDpT approximation for the dominant 7s−6d3/2 and 7s
−6d5/2 transitions. These additional calculations allow us to
directly evaluate the uncertainty in our calculations since
they produce different evaluations of the omitted correlation
correction. We take the uncertainty in the calculation of the
7s−6d3/2 and 7s−6d5/2 matrix elements to be the maximum
of the difference of final SD scaled results with ab initio and
scaled SDpT data. We note that SD approach generally un-
derestimates the correlation energy and SDpT approach gen-
erally overestimates the correlation energy used in the scal-
ing procedure. The scaled SD and SDpT results are rather
close, further confirming the validity of this procedure and of
our uncertainty estimate. Therefore, we take the uncertainty
of the remaining transitions to be the difference of the final
SD scaled and ab initio SDpT values. The resulting final
matrix elements and their uncertainties are listed in Table V
in column labeled “E2.” The relative uncertainty of the cor-
responding polarizability values is twice the relative uncer-
tainty of the matrix elements since we assume the experi-
mental energies be accurate to all figures quoted. The sum
over n converges far slower than in the case of the dipole
polarizability so calculating a first few terms to high preci-
sion is essential to obtain an accurate final value. The tail
contribution, while small, is significant and has to be treated
with care. We estimated that DF value for the main �n
=6–10� term is larger than our final all-order result by 22%.
Therefore, we decrease the DF tail of 45 a.u. by 22% and
take the difference of the DF tail and the final adjusted value
to be its uncertainty. The core contribution is calculated in
the RPA approximation; we take the difference between DF
and RPA core values to be the uncertainty of the core con-
tribution. Our final value is in agreement with the result of
Ref. �9�.

D. Lifetimes of the 7p and 6d states

The lifetimes 	 of the 7p and 6d states in Ra+ are calcu-
lated as the inverse of the sum of the transition probabilities
A. The 7p states decay via strong electric-dipole transitions.
Total of five E1 transitions contribute to the lifetimes of these
two states: 7p1/2−7s, 7p1/2−6d3/2, 7p3/2−7s, 7p3/2−6d3/2,
and 7p3/2−6d5/2. The electric-dipole transition rates are cal-
culated using formula

Aif
E1 =

2.026 13 
 1018

�3

��i��D��f��2

2ji + 1
s−1, �8�

where � is the wavelength of the transition in Å and �i��D��f�
is the electric-dipole reduced matrix element in atomic units.
We use the experimental wavelength �18,19� and our all-
order matrix elements listed in Table III when evaluating the
transition rates. The results are summarized in Table VI. We
find that while the contributions of the 7s−7p transitions to

TABLE IV. Contributions to the ground-state dipole polarizabil-
ity of Ra+. The contributions from the �7–10�p states are given
separately. Our result is compared with calculation from Ref. �9�.
All results are in a.u.

Contribution �E1

7p1/2−7s 36.29

7p3/2−7s 56.79

8p1/2−7s 0.00

8p3/2−7s 0.23

�9–10�p−7s 0.04

�v
main 93.35

�c 13.74

�v
tail 0.11

�vc −0.98

Total 106.22

Theorya 106.12

aReference �9�.

TABLE V. Contributions to the ground-state quadrupole polar-
izability and the E2 reduced matrix elements of Ra+ in a.u. The
comparison of our result with other theoretical calculation �9� is
also presented.

Contribution E2 �E2

6d3/2−7s 14.74�15� 789�13�
6d5/2−7s 18.86�17� 1136�16�
7d3/2−7s 14.21�30� 182�3�
7d5/2−7s 16.49�38� 243�4�
8d3/2−7s 5.63�4� 22.6�2�
8d5/2−7s 6.79�6� 32.6�2�
9d3/2−7s 3.30�3� 7.0�1�
9d5/2−7s 4.03�3� 10.4�1�
10d3/2−7s 2.27�3� 3.1

10d5/2−7s 2.79�3� 4.7

�v
main 2430�21�

�v
tail 35�10�

�c 68�12�
Total 2533�26�
Theorya 2547.5

aReference �9�.
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the 7p lifetimes are dominant, the contributions of the 7p
−6d transitions are significant �over 10%�. Our values are in
agreement with the results of Ref. �26� within the uncertain-
ties quoted in �26� but are about 1% larger.

Only one transition, 6d3/2−7s, has to be considered for
the calculation of the 6d3/2 lifetime. The corresponding tran-
sition rate is calculated as

Aif
E2 =

1.119 95 
 1018

�5

��i��Q��f��2

2ji + 1
s−1, �9�

where � is the wavelength of the transition in Å and �i��Q��f�
is the electric-quadrupole reduced matrix element in atomic
units.

Two transitions have to be considered in the calculation of
the 6d5/2 lifetime: E2 6d5/2−7s transition and M1 6d5/2
−6d3/2 transition. The M1 transition rate is calculated as

Aif
M1 =

2.697 35 
 1013

�3

��i��M1��f��2

2ji + 1
s−1. �10�

We use the experimental wavelengths �18,19� and our all-
order matrix elements listed in Table V when evaluating the
E2 transition rates. Our result for the reduced M1 6d5/2
−6d3/2 matrix element is 1.55 a.u. The E2 and M1 transition
rates contributing to the 6d5/2 lifetime are 3.255 s−1 and
0.049 s−1. We verified that the contribution of the 6d5/2
−6d3/2 E2 transition is negligible.

Our results for the 6d3/2 and 6d5/2 lifetimes are presented
in Table VII together with other theoretical values. Our val-
ues for the lifetimes of the 6d states are in better agreement
with those published by Dzuba et al. �21� than with the re-
sults of Sahoo et al. �9�; however, the discrepancies with Ref.
�9� are small. We also list the uncertainties of our values in

Table VII. The relative uncertainties in our values of the 6d
lifetimes are twice the relative uncertainties in the values of
the E2 matrix elements listed in Table V. We note that the
estimated uncertainties quoted in Ref. �9� are obtained by
carrying out calculations with different bases; i.e., they are
numerical uncertainties resulting from the particular choice
of the basis set and do not include estimation of the missing
correlation effects. In our calculations, the basis set is com-
plete �70 splines for each partial wave� and increasing its size
does not change the result. Our uncertainties include estima-
tion of the terms beyond triple contributions as described
above as well as uncertainty owing to truncation of the par-
tial waves above l�6. Therefore, while our uncertainty is
higher for 6d3/2 state than the one quoted in Ref. �9�, it rep-
resents an attempt to provide an actual boundary for the rec-
ommended value of this lifetime.

E. Quadrupole moments of the 6d states

We also calculated the values of the quadrupole moments
of the 6d3/2 and 6d5/2 states since these properties are of
interest to the investigation of possible use of Ra+ for the
development of optical frequency standard �9�. The quadru-
pole moment ��J� can be expressed via the reduced matrix
element of the quadrupole operator Q as

��J� =
�2J�!

��2J − 2� ! �2J + 3�!
����J���Q�����J�� . �11�

The calculation follows that of the E2 matrix elements. As in
the case of the E2 7s−nd matrix elements, a single correla-
tion correction term is dominant, and the omitted correlation
contributions may be estimated via the scaling procedure. We
have conducted four different calculations: ab initio SD and
SDpT, and scaled SD and SDpT ones to evaluate the uncer-
tainty in the final values. The results are summarized in Table
VIII. The correlation correction to the quadrupole moments
is on the order of 20%. Our values are compared with
coupled-cluster calculation of Ref. �9�. Our results are lower
than that of Ref. �9�. This issue has been discussed in detail
in Ref. �27�, where we have demonstrated that CCSD�T�
method may overestimate quadrupole moments by a few per-
cent owing to the cancellation of various terms. Omission of
orbitals with l�4 from the basis set may also lead to higher
values.

F. Magnetic-dipole hyperfine constants

Our results for the magnetic-dipole hyperfine constants
A�MHz� in 223Ra+ are compared with theory �9,22� and ex-
periment �28,29� in Table IX. The gyromagnetic ratio gI for

TABLE VI. Contributions to the lifetimes of the 7p1/2 and 7p3/2
states. The transitions rates A are given in 106 s−1 and the lifetimes
are given in ns.

7p1/2 7p3/2

A�7p1/2−7s� 104.4 A�7p3/2−7s� 185.5

A�7p1/2−6d3/2� 10.3 A�7p3/2−6d3/2� 3.3

	A 114.7 A�7p3/2−6d5/2� 22.8

	�7p1/2� 8.72 ns 	A 211.6

	�7p3/2� 4.73 ns

Ref. �26� 8.57�12� 4.67�5�

TABLE VII. Lifetimes of the 6d3/2 and 6d5/2 states of Ra+ in
seconds. Comparison of our results with other theoretical calcula-
tions is presented.

Term 	�6d3/2� 	�6d5/2�

Present 0.638�10� 0.303�4�
Theorya 0.627�4� 0.297�4�
Theoryb 0.641 0.302

aReference �9�.
bReference �21�.

TABLE VIII. Quadrupole moments of the 6d3/2 and 6d5/2
states in Ra+ in a.u.

State SD SDpT SDsc SDpTsc Final Ref. �9�

6d3/2 2.814 2.868 2.839 2.829 2.84�3� 2.90�2�
6d5/2 4.311 4.380 4.342 4.329 4.34�4� 4.45�9�
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223Ra is taken to be gI=0.1803 and corresponds to the value
�I=0.2705�19��N from Ref. �30�. We note that the magnetic
moment of 223Ra have not been directly measured but recal-
culated from measurements of 213Ra and 225Ra nuclear mag-
netic moments in Ref. �30�. The magnetization distribution is
modeled by a Fermi distribution with the same parameters as
our charge distribution �c=6.862 fm and 10–90 % thickness
parameter is taken to be t=2.3 fm�. The lowest-order values
are also listed to demonstrate the size of the correlation cor-
rections for various states. The triple contributions are im-
portant for the hyperfine constants and are partially included
as described in Sec. II. These values are listed in column
labeled “SDpT.” The SD values are also listed for compari-
son in column labeled “SD.”

The value gI=0.180 67 that corresponds to the rounded
off value �I=0.271�2��N from �30� was used in Ref. �9�. The
values for A /gI were quoted in Ref. �22�, so we multiplied
their values by 0.180 67 for comparison. The differences be-
tween our results and experimental values are 1.3%, 0.7%,
and 4% for 7s, 7p1/2, and 7p3/2 states, respectively. We note
that the uncertainty in the value of the nuclear magnetic mo-
ment is 0.7%. Larger difference of the A�7p3/2� SDpT value
with the experiment is similar to that one in Cs �11�, where
the difference of the SDpT value for the 6p3/2 magnetic-
dipole hyperfine constant with experiment is 3.5%. Interest-
ingly, the Cs SDpT values are below the experimental ones
while the Ra+ SDpT results are above the experimental val-
ues. This can be explained by the uncertainty in the treatment
of the finite-size correction, uncertainty in the value of Ra
nuclear magnetic moment, and the difference in the size and
distribution of the correlation corrections in Cs and Ra+.

IV. PARITY NONCONSERVATION

Nuclear-spin-independent PNC effects in atoms are
caused by the exchange of a virtual Z0 boson between an
electron of the atom and a quark in the nucleus, or between
two atomic electrons �31�. The second effect is extremely
small and will not be considered in this work. The dominant
PNC interaction between an atomic electron and the nucleus
is described by a Hamiltonian AeVN, which is the product of
axial-vector electron current Ae and vector nucleon current
VN. The PNC interaction leads to a nonzero amplitude for

transitions otherwise forbidden by the parity selection rule,
such as the 6d3/2−7s transition in singly ionized radium.
Combining experimental measurements and theoretical cal-
culations of the PNC amplitude permits one to infer the
value of the weak charge QW for precise atomic-physics tests
of the standard model.

The 7s−6d3/2 PNC amplitude in Ra+ can be evaluated as
a sum over states,

EPNC = 	
n=2

� �6d3/2�D�np1/2��np1/2�HPNC�7s�
E7s − Enp1/2

+ 	
n=2

� �6d3/2�HPNC�np3/2��np3/2�D�7s�
E6d3/2

− Enp3/2

, �12�

where D is the dipole transition operator. The values of mj
are customary taken to be mj =1 /2 for all states. The PNC
Hamiltonian HPNC is given by

HPNC =
GF

2�2
QW�5��r� , �13�

where GF is the universal Fermi coupling constant, QW is the
weak charge, and �5 is the Dirac matrix associated with
pseudoscalars. The quantity ��r� is a nuclear density func-
tion, which is approximately the neutron density. In our cal-
culations, we model ��r� by the charge form factor, which is
taken to be a Fermi distribution with 50% radius cPNC
=ccharge=6.8617 fm �32� and 10–90 % thickness parameter
t=2.3 fm for 223Ra+, i.e., we take ��r� to be the same distri-
bution as the charge distribution used our entire all-order
calculation of the Ra+ wave functions and corresponding
properties. We also investigate how the PNC amplitude vary
with changes in both cPNC and ccharge.

The sum over n in Eq. �12� converges very fast in our
case, and only first few terms need to be calculated accu-
rately. Therefore, we divide our calculation of EPNC into
three parts: a main term EPNC

main that consists of the sum over
states with n=7–10, a tail EPNC

tail which is the sum over states
with n=11, . . . ,�, and the contribution EPNC

auto from autoioniz-
ing states given by the terms with n=2–6. The calculation of
the main term is illustrated in Table X, where we list the best
set of the dipole and PNC matrix elements used in our cal-
culation as well as relevant energy differences. The final
electric-dipole matrix elements are taken to be ab initio
single-double all-order results �following the comparison of
the similar Cs and Ba+ results with experiment �11,24��. Re-
duced electric-dipole matrix elements are listed for consis-
tency with previous tables; they need to be multiplied by
1 /�6 to obtain relevant values of �i�D�j� �mj =1 /2 for all
states�. The final PNC matrix elements for the 6d3/2−7p1/2
and 6d3/2−8p1/2 transitions are taken to be SD all-order
scaled values since the contribution that can be accounted for
by scaling is the dominant one for these cases; remaining
PNC matrix elements are taken to be ab initio SD values.
Experimental energies are used where they are available; our
predicted energy values from Table I are used for the 9p1/2,
10p1/2, and 10p3/2 levels. Our results are compared with re-
sults of Ref. �21� calculated using the correlation potential

TABLE IX. Magnetic-dipole hyperfine constants A �MHz� for
the 7s, 7p1/2, 7p3/2, 6d3/2, and 6d5/2 states in 223Ra+ calculated
using SD and SDpT all-order approaches. Lowest-order �DF� val-
ues are also listed to illustrate the size of the correlation correc-
tions. The present values are compared with other theoretical
�9,22� and experimental values from Refs. �28,29�.

State DF SD SDpT Ref. �22� Ref. �9� Expt.

7s 2614 3577 3450 3557 3567 3404�2�
6d3/2 52.92 81.51 79.56 79.80 77.08

6d5/2 19.24 −23.98 −24.08 −23.90

7p1/2 444.5 699.5 671.5 671.0 666.9 667�2�
7p3/2 33.91 56.62 54.40 56.53 56.75 56.5�8�
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method. The main part of the PNC amplitude is overwhelm-
ingly dominated by a single term listed in the first row of
Table X. Our result for this term slightly differs from the
calculation in Ref. �21� �by 2.2%�. However, the Ref. �21�
does not list the Ra+ isotope for which the calculation has
been conducted. Since the value of the PNC amplitude is
multiplied by the neutron number in the present commonly
accepted units of 10−11i�e�a0�−QW /N�, the difference be-
tween values for the PNC amplitudes for 223Ra+ and 226Ra+

is 2% just owing to 138/135 neutron number ratio. There-
fore, the difference may be either explained by the simple
isotope rescaling, difference in the choice of the nuclear den-
sity function parameters, or differences in the treatment of
the correlation correction. The only significant discrepancy
between our calculation and that of Ref. �21� is in the other
term with n=7 �−1.35 vs −2.33�. This difference has to result
from the differences in the treatment of the correlation cor-
rection since this entire value comes from the correlation
effects. Taking into account that the DF value for this term is
consistent with zero and RPA result, −4.08, is larger than the
all-order value by nearly a factor of 3, such discrepancy is
not very surprising.

To provide some estimate of the uncertainty in the calcu-
lation of the main term, we conduct the “scatter” analysis of
the data following the calculation of the Cs PNC amplitude
�33�. In such analysis, sets of data for dipole matrix ele-
ments, PNC matrix elements, and energies are varied �i.e.,
taken to be SD, SDpT, expt.� and the scatter in the final PNC
values is analyzed. The results are summarized in Table XI.
Our final value �corresponding to data in Table X� is listed in
the last row of Table XI. We note that essentially the entire
difference in the results comes from the dominant term �first
row of Table X� and the variation in all other terms is insig-
nificant. Therefore, the possible uncertainty in the next term
�−1.35�, which is bound to be substantial, cannot be evalu-
ated by this approach. While we have included the values
with SDpT dipole matrix elements, there is no reason to
expect these data to be more accurate than SD values. This
conclusion is based on the breakdown of the correlation cor-
rection contributions and comparisons of the similar calcula-

tions in other monovalent systems that demonstrate cancel-
lation of some missing effects in SD approximation but not
in SDpT one. As a result, we conclude that the uncertainty in
the dominant term owing to the Coulomb correlation correc-
tion is probably on the order of 2%. We note that completely
ab initio SD value is in good agreement with our final value.
Measurement of the 6d3/2−7p1/2 oscillator strength would
help to reduce this uncertainty.

We calculate remaining terms EPNC
tail and EPNC

auto in both DF
and RPA approximations. The RPA results are listed in Table
XII together with our total value for the PNC amplitude. The
corresponding DF results are EPNC

auto =4.8 and EPNC
tail =1.2. The

relative correction due to Breit interaction is taken from so-
phisticated all-order calculation of Ref. �34� �−1.27%� and
rescaled for the present calculation. Our final value is com-
pared with other calculations from Refs. �21,22�. Our result
for the terms with n�7 and n�9 �6.8� is in reasonably good
agreement with the value from Ref. �21� �7.5�. The notable
feature of Table XII is an excellent agreement of all rather
different high-precision calculations �with the exception of
the mixed-states result �21�� despite relatively large possible

TABLE X. Contributions to the EPNC
main in 223Ra+ in units of 10−11i�e�a0�−QW /N�. D and HPNC are dipole

and PNC matrix elements, respectively. Reduced electric-dipole matrix elements are listed for consistency
with previous tables; they need to be multiplied by 1 /�6 to obtain relevant values of �i�D�j� �mj =1 /2 for all
states�. All values are in a.u. Our results are compared with calculations of Ref. �21�.

n �6d3/2��D��np1/2� �np1/2�HPNC�7s� E7s−Enp1/2
EPNC Ref. �21�

7 3.566 −2.665 −0.0973 39.882 40.69

8 0.049 −1.590 −0.2306 0.137 0.11

9 0.017 −1.124 −0.2849 0.027 0.02

10 0.008 −0.841 −0.3130 0.009

n �6d3/2�HPNC�np3/2� �np3/2��D��7s� E6d3/2
−Enp3/2

EPNC Ref. �21�

7 −0.047 −4.551 −0.0644 −1.348 −2.33

8 −0.040 −0.405 −0.1837 −0.036 −0.05

9 −0.032 −0.140 −0.2339 −0.008 −0.01

10 −0.026 −0.069 −0.2602 −0.003

TABLE XI. “Scatter” analysis of the main part of the PNC
amplitude �n=7–10� in 223Ra+. Lowest-order DF and random-
phase RPA values are listed for reference. SD labels single-double
all-order values, SDpT values include partial triple contributions.

Energies �i�D�j� �i�HPNC�j� EPNC
main

DF DF DF 38.95

DF RPA RPA 37.10

SD SD SD 39.05

Expt. SD SD 39.65

Expt. SDpT SD 40.22

Expt. SD SDpT 38.09

Expt. SDpT SDpT 38.65

Expt. SD SD
sc

a 38.66

aScaled values are used for the 7p1/2−7s and 8p1/2−7s matrix ele-
ments only, remaining data are taken to be SD.
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uncertainties in various terms and inclusion of different high-
order terms by different methods. We note, however, that
Ref. �21� does not specify the isotope for which the calcula-
tion was carried out, leading to intrinsic 2% uncertainty in
the comparison. The calculation of Ref. �21� also omits
structure radiation and normalization corrections that are in-
cluded in the present work. Our calculation of PNC ampli-
tude includes some triple excitations and estimates of higher-
order effects that were not included by previous coupled-
cluster calculations of Ref. �22�. We omit some nonlinear
terms present in calculation of �22�. However, it has been
demonstrated �35� that inclusion of the nonlinear terms with-
out the inclusion of the higher-order triples omitted in the
CCSD�T� method of Ref. �22� may lead to less accurate val-
ues for electric-dipole matrix elements than linearized SD
values. We also include contributions from higher partial
waves and Breit interaction. The latter contribution was
omitted in both Refs. �21,22� and is quite substantial
�−1.3%�. Moreover, our implementation of coupled-cluster
method is very different from that of Ref. �22� �for example,
we use complete basis set of orbitals that are generated using
B splines, leading to essentially zero numerical basis set er-
ror, and carry out sum over states�. Further calculations as
well as experimental measurements will be necessary to
achieve 1% accuracy in the PNC amplitude.

We also investigated the dependence of the PNC ampli-
tude on the values of the nuclear distribution parameters
ccharge and cPNC. As we described in the beginning of this
section, the parameter ccharge is used in the charge distribu-
tion in the all-order wave-function calculations. The param-
eter cPNC is used in the modeling of the nuclear density func-
tion ��r� in the PNC Hamiltonian given by Eq. �13�. Both are
modeled by the Fermi distributions; the all-order calculation
is carried with both half-density parameters being equal to
6.8617 fm �32�. Since the DF result is rather close to the final
value owing to various cancellations, it is sufficient to carry

out this study using DF data. The results are summarized in
Table XIII, where we list EPNC

DF calculated with varying val-
ues or either one or both parameters. The variation in the
given parameter is listed in % for convenience. The results
show that possible uncertainty in the PNC amplitude owing
to the uncertainty in the value of the charge radius �that is
unlikely to be large� is negligible in comparison with the
uncertainty in the correlation correction. For example, differ-
ence in the rms radii for A=223 and A=226 isotopes corre-
sponds to the change in ccharge that is on the order of 0.5%
resulting in only 0.2% change in the PNC amplitude. Pos-
sible variance in the density ��r� in Eq. �13� which is ap-
proximately neutron density is higher, but even 5% change in
cPNC with the fixed value of the ccharge leads to 0.85% change
in the PNC amplitude value. Table XIII may be used to re-
calculate the values of the PNC amplitude between different
isotopes since the change in EPNC with the nuclear param-
eters is essentially linear.

V. CONCLUSION

We have calculated the energies, transition matrix ele-
ments, lifetimes, hyperfine constants, and quadrupole mo-
ments of the 6d states, as well as dipole and quadrupole
ground-state polarizabilities and PNC amplitude in 223Ra+

using high-precision all-order method. The energies of the
9p1/2, 10p1/2, and 10p3/2 levels are predicted. The results for
atomic properties are compared with available theoretical
and experimental data. The PNC amplitude for the 7s
−6d3/2 transition is found to be 44.9
10−11i�e�a0�−QW /N�.
The dependence of the PNC amplitude on the choice of

TABLE XII. Contribution to the EPNC in 223Ra+ and comparison
with other theory. Our value for 226Ra+ is obtained by reducing our
223 value by 0.2%, owing to the correction for the different nuclear
parameters and multiplying by 138/135 neutron number ratio. All
results are in units of 10−11i�e�a0�−QW /N�. The Breit contribution is
taken from Ref. �34� and rescaled for the present calculation.

Isotope Term Value

223 EPNC
main 38.66

223 EPNC
tail −0.02

223 EPNC
auto 6.83

223 Breit −0.58

223 Total 44.89

226 Total 45.89

Mixed statesa 42.9

Sum over statesa 45.9

226 CCSDb 46.1

226 CCSD�T�b 46.4

aReference �21�.
bReference �22�.

TABLE XIII. Dependence of the lowest-order Ra+ PNC ampli-
tude on the parameters of the nuclear distributions ccharge�fm� and
cPNC�fm�. The parameter ccharge is used in the charge distribution in
the all-order wave-function calculations. The parameter cPNC is
used in the modeling the nuclear density function in the PNC
Hamiltonian. The variation in the given parameter is listed in % for
convenience. The units for the PNC amplitude is 10−11i�e�a0�
−QW /N�.

ccharge

�ccharge

�%� cPNC

�cPNC

�%� EPNC
DF

�EPNC
DF

�%�

6.8617 0 6.8617 44.913

6.8960 0.5 6.8617 44.853 −0.13

6.9303 1 6.8617 44.792 −0.27

6.9989 2 6.8617 44.671 −0.54

7.2048 5 6.8617 44.310 −1.34

6.8617 6.8960 0.5 44.875 −0.08

6.8617 6.9303 1 44.837 −0.17

6.8617 6.9989 2 44.761 −0.34

6.8617 7.2048 5 44.531 −0.85

6.8960 0.5 6.8960 0.5 44.815 −0.22

6.9303 1 6.9303 1 44.717 −0.44

6.9989 2 6.9989 2 44.523 −0.87

7.2048 5 7.2048 5 43.954 −2.14
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nuclear parameters ccharge and cPNC is studied. The parameter
ccharge is used in the charge distribution in the all-order wave-
function calculations. The parameter cPNC is used in the mod-
eling of the nuclear density function in the PNC Hamil-
tonian. Our study establishes the dependence of the PNC
amplitude on the choice of isotope which is particularly im-
portant in the case of Ra+ where the availability of various
isotopes may allow conducting the experimental PNC study
with isotopic chains. Our calculation also established pos-

sible uncertainty in the PNC amplitude that may be caused
by the uncertainty in the nuclear parameters. This work also
provides a number of recommended values for yet unmea-
sured properties of Ra+.

ACKNOWLEDGMENT

This work was supported in part by National Science
Foundation under Grant No. PHY-07-58088.

�1� Particle Data Group, S. Eidelman et al., Phys. Lett. B 592, 1
�2004�.

�2� C. S. Wood, S. C. Bennett, D. Cho, B. P. Masterson, J. L.
Roberts, C. E. Tanner, and C. E. Wieman, Science 275, 1759
�1997�.

�3� R. D. Young, R. D. Carlini, A. W. Thomas, and J. Roche, Phys.
Rev. Lett. 99, 122003 �2007�.

�4� W. C. Haxton and C. E. Wieman, Annu. Rev. Nucl. Part. Sci.
51, 261 �2001�.

�5� G. Gwinner et al., Hyperfine Interact. 172, 45 �2006�.
�6� http://socrates.berkeley.edu/~budker/
�7� http://www.kvi.nl/~radiumion
�8� K. P. Geetha, A. D. Singh, B. P. Das, and C. S. Unnikrishnan,

Phys. Rev. A 58, R16 �1998�.
�9� B. K. Sahoo, B. P. Das, R. K. Chaudhuri, D. Mukherjee, R. G.

E. Timmermans, and K. Jungmann, Phys. Rev. A 76,
040504�R� �2007�.

�10� S. A. Blundell, W. R. Johnson, and J. Sapirstein, Phys. Rev. A
43, 3407 �1991�.

�11� M. S. Safronova, W. R. Johnson, and A. Derevianko, Phys.
Rev. A 60, 4476 �1999�.

�12� M. S. Safronova, A. Derevianko, and W. R. Johnson, Phys.
Rev. A 58, 1016 �1998�.

�13� M. S. Safronova, C. J. Williams, and C. W. Clark, Phys. Rev. A
69, 022509 �2004�.

�14� M. S. Safronova and W. R. Johnson, Phys. Rev. A 62, 022112
�2000�.

�15� A. Derevianko, W. R. Johnson, M. S. Safronova, and J. F.
Babb, Phys. Rev. Lett. 82, 3589 �1999�.

�16� M. S. Safronova and W. R. Johnson, Adv. At., Mol., Opt. Phys.
55, 191 �2008�.

�17� S. A. Blundell, W. R. Johnson, Z. W. Liu, and J. Sapirstein,
Phys. Rev. A 40, 2233 �1989�.

�18� Handbook of Basic Atomic Spectroscopic Data �http://
physics.nist.gov/PhysRefData/Handbook/index.html�.

�19� C. E. Moore, Atomic Energy Levels, National Bureau of Stan-
dard Reference Data Series Vol. 3 �U.S. GPO, Washington,

DC, 1971�.
�20� U. I. Safronova, W. R. Johnson, and M. S. Safronova, Phys.

Rev. A 76, 042504 �2007�.
�21� V. A. Dzuba, V. V. Flambaum, and J. S. M. Ginges, Phys. Rev.

A 63, 062101 �2001�.
�22� L. W. Wansbeek, B. K. Sahoo, R. G. E. Timmermans, K. Jung-

mann, B. P. Das, and D. Mukherjee, Phys. Rev. A 78,
050501�R� �2008�.

�23� A. A. Vasilyev, I. M. Savukov, M. S. Safronova, and H. G.
Berry, Phys. Rev. A 66, 020101�R� �2002�.

�24� E. Iskrenova-Tchoukova and M. S. Safronova, Phys. Rev. A
78, 012508 �2008�.

�25� E. L. Snow and S. R. Lundeen, Phys. Rev. A 76, 052505
�2007�.

�26� B. K. Sahoo, R. G. E. Timmermans, and K. Jungmann, e-print
arXiv:0809.5167.

�27� D. Jiang, B. Arora, and M. S. Safronova, Phys. Rev. A 78,
022514 �2008�.

�28� K. Wendt, S. A. Ahmad, W. Klempt, R. Neugart, E. W. Otten,
and H. H. Stroke, Z. Phys. D 4, 227 �1987�.

�29� W. Neu, R. Neugart, E.-W. Otten, G. Passler, K. Wendt, B.
Fricke, E. Arnold, H. J. Kluge, and G. Ulm, Z. Phys. D 11, 105
�1989�.

�30� E. Arnold, W. Borchers, M. Carre, H. T. Duong, P. Juncar, J.
Lerme, S. Liberman, W. Neu, R. Neugart, E. W. Otten, M.
Pellarin, J. Pinard, G. Ulm, J. L. Vialle, and K. Wendt, Phys.
Rev. Lett. 59, 771 �1987�.

�31� I. B. Khriplovich, CP Violation Without Strangeness �Springer-
Verlag, Berlin, 1997�.

�32� I. Angeli, At. Data Nucl. Data Tables 87, 185 �2004�.
�33� S. A. Blundell, J. Sapirstein, and W. R. Johnson, Phys. Rev. D

45, 1602 �1992�.
�34� V. A. Dzuba, V. V. Flambaum, and M. S. Safronova, Phys. Rev.

A 73, 022112 �2006�.
�35� R. Pal, M. S. Safronova, W. R. Johnson, A. Derevianko, and S.

G. Porsev, Phys. Rev. A 75, 042515 �2007�.

PAL et al. PHYSICAL REVIEW A 79, 062505 �2009�

062505-10


