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We present a calculation of the 4d-4f energy separation in Li I using two advanced techniques in atomic
structure theory, namely, the relativistic all-order method and the multiconfiguration Hartree-Fock �MCHF�
method. The accuracy of our calculations was investigated by conducting a third-order many-body perturbation
theory calculation that allowed us to evaluate the importance of fourth- and higher-order corrections. A
large-scale MCHF calculation was performed using the active space method and the core-polarization approxi-
mation. The obtained results provide an important test of these methods against each other and are shown to
agree with the most accurate available experimental data.
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Neutral Li is one of the simplest yet nontrivial atomic
systems whose atomic properties exhibit effects due to cor-
relation in the motion of the electrons. In addition to being
an interesting atomic system itself, Li I is widely used in
plasma diagnostics. For instance, beams of lithium atoms
have been successfully implemented for charge exchange
measurements of edge ion temperature in tokamaks �see,
e.g., �1,2��. Another example is provided by the measurement
of plasma electric fields from the intensities of dipole-
forbidden lines of Li I such as the 2p-4f or 3p-4f transitions
�3–6�. For this specific method, knowledge of energy levels
and, in particular, energy splittings becomes crucial due to
strong dependence of the Stark level mixing on the latter.

The experimental energy levels of Li I are known with
high accuracy. Radziemski et al. �7� used low-current hollow
cathode sources and Fourier-transform spectrometry to deter-
mine the energies of all levels up to the principal quantum
number n=6. With the uncertainty of 0.001 cm−1 to
0.0015 cm−1 for the 4d levels and 0.003 cm−1 for the 4f
levels, the experimental value for the 4d-4f energy splitting
was found to be �4.988±0.003� cm−1 �7�. This value is de-
duced from all measured energy levels for the 4d and 4f
terms. However, the authors of Ref. �7� mention that the high
currents in the plasma source resulted in significant Stark
shift of some levels, and thus the measured energies, while
accurate, may not be those observed in field-free conditions.
This issue was discussed in detail in Ref. �5�, where another
measurement of �5.1±0.2� cm−1 was reported along with the
comprehensive overview of the existing experimental values.

As far as the theoretical methods are concerned, the Li I
energy spectrum was the subject of numerous studies. For
instance, a recent review �8� contains a large number of ref-
erences to high-precision results obtained by different com-
putational techniques. The most accurate results, obtained
using the Hylleraas-type expansion technique and taking into
account the relativistic, mass-shift, and quantum-
electrodynamic corrections, correspond to an energy splitting
of 4.7±0.7 cm−1 �8� which overlaps with the experimental
value within error bars.

The goal of this paper is to test two advanced ab initio
methods in atomic structure theory by comparing the calcu-
lated 4d-4f energy difference with the available benchmark
experimental data �7�. The primary importance of this pa-
rameter is due to its significance in the determination of the
electric field effects on forbidden lines. First, the calculation
is performed with the relativistic all-order method. A third-
order many-body perturbation theory �MBPT� is also used to
evaluate the importance of the fourth- and higher-order cor-
rections. Then, a nonrelativistic multiconfiguration Hartree-
Fock �MCHF� method is implemented in two different ap-
proximations, both involving a large number of
configurations. It will be shown that both theoretical methods
provide good agreement with the experimental results.

In the present all-order approach, all single, double, and
partially triple excitations of the single-configuration Dirac-
Fock wave function are included to all orders of perturbation
theory. The Li wave function is represented as an expansion
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where �v is the lowest-order atomic state function, which is
taken to be the frozen-core Dirac-Fock �DF� wave function
of a state v. Substituting this expression into the many-body
Schrödinger equation yields the coupled system of equations
for the excitation coefficients � and the correlation energy
�Ev. The determination of the energy is carried out by the
iterative solution of these equations. The iteration procedure
is completed when the correlation energy has converged to
the required relative accuracy, set to be 10−5 in this calcula-
tion. The triple excitation term, given in the last line of Eq.
�1�, is included partially using the perturbative approach. We
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have conducted the calculation with and without this term to
determine the significance of its contribution. We refer to the
two corresponding sets of data as SD and SDpT, respec-
tively. The SD energy value, while containing fourth and
higher MBPT orders, omits certain third-order terms. We
added these terms to the SD calculation to make it complete
through third order. The SDpT approach is intrinsically com-
plete through third order. We refer the reader to Refs. �9,10�
for further details of the SD and SDpT methods. Our third-
order energy calculation follows Ref. �11�.

The results of our calculation are summarized in Table I.
The lowest- and second-order contributions are listed in rows
labeled DF and II�SD�, respectively. The third-order contri-
bution is separated into the parts originating from the single-
double excitations, III�SD�, and triple excitations, III�pT�.
The contribution of fourth and higher orders obtained using
the SD all-order approach is listed in the next row. It is
calculated as the difference of the SD all-order value, with
the full restored third-order contributions, and the sum of the
second- and third-order values. The correction to this value
due to the partial inclusion of the triple term beyond the
third-order contribution is given in the row labeled IV+�pT�.
We note that there is no contribution from triple excitations
into the second order. The totals are listed for both SD cal-
culation, excluding all triple excitations, and SDpT calcula-
tion for comparison and to illustrate the discussion below.
The total SD values are the sums of the DF, II�SD�, III�SD�,
and IV+�SD� and are listed in the row labeled Total�SD�. The
total SDpT values listed in the row labeled Total�SDpT� are
the sums of all contributions listed in the first six rows of the
table. The experimental data are obtained by subtracting the
ionization energy given in Ref. �12� from Ref. �7� values. We
find that the dominant contribution to the 4d-4f energy sepa-

ration comes from the second order. The third-order contri-
bution is on the order of the DF contribution, while the
fourth- and higher-order corrections are small but significant
for an accurate calculation. We investigated other possible
small corrections, such as the effect of the Breit interaction
and the contribution of higher-partial waves �we truncated all
sums over excited states in Eq. �1� at lmax=7 in the third-
order and the all-order calculations�. In second quantization,
the Breit interaction can be separated into the “one-body”
part, that can be incorporated into the calculations on the
same footing as the DF potential, and the “two-body” part,
that can be evaluated perturbatively �see Ref. �13� for de-
tails�. We evaluated the “one-body” part of the Breit interac-
tion using this approach by rerunning the all-order calcula-
tion with the modified basis set; its contribution was found to
be 0.0005 cm−1. The “two-body” part of the Breit interaction
was evaluated in the second order and found to contribute at
the level below 0.01 cm−1.

To evaluate the contribution of the higher partial waves
with l� lmax, we studied the convergence of the all-order
values with l. The l=6 contribution is only 0.003 cm−1 and
the l=7 contribution is 0.001 cm−1. Since the correlation is
dominated by the second-order contribution, we extrapolated
the contribution of higher partial waves with l�7 in second
order and found it to be 0.002 cm−1. It is included in the
present results.

The contribution from the mass-polarization corrections
was estimated to be below 0.01 cm−1. Our calculation is
intrinsically relativistic, and we listed 4f5/2-4d3/2 as the dif-
ference in Table I. We also conducted the same calculation
for the 4f7/2 and 4d5/2 levels. We found no correlation cor-
rection contribution to 4d and 4f level fine structure at the
0.001 cm−1 level. The weighted average DF 4f-4d value dif-
fers from the 4f5/2-4d3/2 value by 0.005 cm−1. Therefore, all
corrections except for the missing terms in the Coulomb cor-
relation were found to be negligible at the level of
0.01 cm−1.

In order to clarify the discussion of the omitted Coulomb
correlation corrections, we separated out contributions origi-
nating from the single-double and triple excitations in Table
I. Only two types of contributions are missing from the cal-
culation: triple contributions that are omitted in the perturba-
tive approach discussed above and all nonlinear terms, such
as S1�S2, where S1 and S2 designate single and double ex-
citations, respectively. We concluded that the SD nonlinear
terms contribute −0.06 cm−1 to the 4f-4d difference using
the method described in Ref. �14�. At the present time, we
cannot evaluate missing triple terms �including nonlinear
terms� for these states. However, such calculation was con-
ducted for Na in Ref. �15�. It was found that nonlinear terms
strongly cancel total contribution from the triple excitations
�including the one from the third order�. The case of Li dif-
fers from Na by the lack of the core triple contribution,
which was omitted in Ref. �15�. However, it was found to be
negligible in the latter work �14�. As a result, such cancella-
tion may explain better agreement of our SD value for the
splitting with experiment in comparison to our SDpT value.

The nonrelativistic MCHF method �for a detailed descrip-
tion see Ref. �16�� has been successfully applied to the cal-
culation of atomic characteristics and spectroscopic proper-

TABLE I. Contributions to the energies of the 4d3/2 and 4f5/2

states in Li I �with respect to the ground state of Li II�. The lowest-
and second-order contributions are listed in rows labeled DF and
II�SD�, respectively. The third-order contribution is separated into
the parts originating from the single-double excitations, III�SD�,
and triple excitations, III�pT�. The contributions from the fourth and
higher orders obtained using SD all-order method are listed in the
next row. The correction of this value due to the partial inclusion of
the triple term beyond the third-order contribution is given in the
row labeled IV+�pT�. The experimental data are obtained by sub-
tracting the ionization energy given in Ref. �12� from Ref. �7� val-
ues. All data are given in cm−1.

Contribution 4d 4f 4f-4d

DF −6859.399 −6858.594 0.804

II�SD� −4.178 −0.642 3.536

III�SD� −0.621 −0.113 0.508

III�pT� 0.060 0.010 −0.050

IV+�SD� −0.166 −0.027 0.139

IV+�pT� 0.018 0.003 −0.015

Total�SD� −6864.363 −6859.376 4.987

Total�SDpT� −6864.285 −6859.362 4.922

Expt. −6863.823 −6858.830 4.993
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ties of many low-Z elements, including neutral Li I �17�.
However, in Ref. �17� the 4d and 4f states were not included
in the calculations. In the MCHF approach, the atomic state
is represented by an expansion over configuration state func-
tions �CSFs�

���LS	� = �
i

ci���iLS	�,�
i

ci
2 = 1, �2�

where �i, L, S, and 	 denote, respectively, the configuration
and its additional quantum numbers, the total orbital and spin
momenta, and the parity. The CSFs are built from a basis of
one-electron spin orbitals
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The orbital radial functions Pnl�r� along with the mixing co-
efficients of Eq. �2� are optimized together for a stationary
solution. The ensuing expansions and orbitals are then used
in a configuration interaction calculation that accounts for all
contributions to the Breit-Pauli �BP� Hamiltonian.

In this paper, two strategies for calculation of the 4d-4f
splitting are implemented. The first one �method A� is close
to the approach of Ref. �17� while the second one �method
B� emphasizes core-polarization effects. A short description
of both approaches is given in the following.

Method A. This approach is close to that used in �17� and
therefore only the main ideas of the calculational method
will be presented here. Two principal features of this ap-
proximation are �i� use of the MCHF active space method
�16� and �ii� equivalent core correlation for the 4d and 4f
electrons. The active one-electron orbitals were unrestricted
up to n=8, that is, all l �n−1� orbitals were included in
CSF expansions. For the larger n values up to nmax=11, the
angular momentum was limited to l7. Furthermore, three
atomic electrons were allowed to occupy all active orbitals
with n11 provided at least one of the electrons has the
principal quantum number n4. This approach results in a
large number of included configurations, reaching 21 307
and 25 245 for the 4d and 4f cases, respectively.

The optimization was performed in two stages. First, for
the CSFs with n4 all orbitals up to 4f were simultaneously
optimized on the 3d 2D, 4d 2D, and 4f 2F terms. The latter
three orbitals as well as 1s were kept spectroscopic, i.e., the
number of nodes N was fixed to be N=n− l−1. In order to
enhance the 4d state, the 3d term was given a lower relative
weight of 0.3. In the second step, when n�5 shells were
added, the optimization of the 4d and 4f states was per-
formed separately using the fixed n4 orbitals from the first
step. This method guarantees equivalence of the core corre-
lation for both 4d and 4f electrons. On each subsequent step
determined by addition of the next shell, all n�4 orbitals
were varied until reaching the prescribed convergence while
keeping all other orbitals fixed. These results are referred to
below as the MCHF. Then the Breit-Pauli interaction matrix
with contributions from mass-polarization corrections was
computed and diagonalized, thereby producing the BP eigen-
functions and eigenvalues.

The calculated energy difference vs the highest principal
quantum number included in the calculations is shown in
Fig. 1. Although the results demonstrate a reasonably fast
convergence, this approach does not reproduce the experi-
mental 4d-4f energy difference: The value extrapolated to
n=� is �EBP�A�
4.15 cm−1 which is about 0.8 cm−1 be-
low the data of Ref. �7�. It is also interesting to note that for
n=6 and 7, the 4f term has lower energy than 4d, and thus
only the introduction of higher-n orbitals produces a correct
level order. Finally, the relativistic corrections are found to
contribute about 0.15 cm−1 to the energy difference.

Method B. In method A, the orbitals 4ln�l�n�l� with
n� ,n��5 in the CSF expansion are in fact the core-core
correlation orbitals that interact with 1s2 in the case of 1s24l.
Their contribution, however, cancels in the energy differ-
ence, at least to the first order, and therefore their importance
for the present calculation is largely reduced. In order to
accentuate those effects that contribute most to the energy
splitting, with core polarization being the most prominent,
we carried out another large-scale calculation of the 4d-4f
separation. Hence, the correlation orbitals for the 1s2 core are
first generated using the “natural orbital expansion” �18�

��1s2 1S� = c1��1s2 1S� + c2��2s2 1S� + c3��2p2 1S�

+ c4��3s2 1S� + c5��3p2 1S� .

With this correlated core, the 3d, 4d, and 4f orbitals were
added to form ��1s2 1S�nl and were optimized on the 2D
and 2F terms. Then the 4s, 4p, and n=5–7, l6 orbitals
entered the expansion only as core-polarization orbitals, i.e.,
at least one nl orbital with n3, l1 was present in the
CFS’s. During the optimization, the core orbitals were kept
fixed. Finally, to check the effect of core-core correlations,
the n=8,9, l6 orbitals were added with all three excita-
tions included; however, only n=8,9 orbitals were allowed
to vary here. In this calculation, the total number of included
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FIG. 1. �Color online� Theoretical 4d-4f energy difference vs
the maximum principal quantum number of the orbital set n. The
active space method results are shown by squares; the core-
polarization results are shown by circles. The experimental value of
�E=4.988 cm−1 �7� is shown by the horizontal dashed line.
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configurations was 26 580 for the 4d case and 32 346 for the
4f case.

Although the final number of configurations included in
this approach is larger than that in method A, the energy
difference between the 4d and 4f terms converges much
faster than in method A which is obviously due to the prin-
cipal contribution from the core-polarization effects. As seen
in Fig. 1, for n=6 the calculated energy difference is already
very close to the experimental value, while for method A the
theoretical result at the same n has a wrong sign. Addition of
the n=8–9 CFS’s, which were included to test the core-core
correlation contribution, lowers the total energy of the 4d
and 4f states by about 500 cm−1 for n=8 and about
100 cm−1 for n=9. The energy difference, however, remains
essentially unaffected for both n=8 and n=9 with the value
of �E�MCHF�=4.95 cm−1. This clearly confirms a negli-
gible effect of the core-core correlations compared to the
core-polarization contribution on energy difference in this
approach. The Breit-Pauli corrections that were determined
similar to method A do not noticeably change the MCHF
result, slightly increasing the energy difference to a value of
�E=4.98 cm−1.

The 4d and 4f electrons are well outside the 1s2 core and
the change in the core from replacing the 4d electron by a 4f
electron will be a minor perturbation at best. As a result, the
energy from the core �including both correlation and relativ-
istic effects� will cancel to first order in the calculation of the
energy difference, and the relativistic effects on this differ-
ence will be of low importance for such a light atom as Li I.
The problem facing method A is cancellation. This was ad-
dressed to some extent by using the same n=4 orbital basis
for both the 4d 2D and 4d 2F wave functions. With this ba-
sis, the nonrelativistic energy difference was only 0.63 cm−1

with the relativistic and mass-polarization corrections in-
creasing this by 0.01 cm−1. The subsequent calculations had
a different orbital basis for 4d and 4f , each optimized for the
nonrelativistic energy. This improved the contribution to cor-

relation to 4.30 cm−1 but the relativistic and mass-
polarization correction now reduced the energy difference by
0.15 cm−1. This basis set dependence is due to the fact that
the relativistic and mass-polarization corrections are not
computed as perturbative corrections as done by Pekeris
�19�, for example, but rather are included in the interaction
matrix. Method B addresses this issue by limiting the contri-
bution from correlation in the core to the n=3 orbital set and
then optimizes the orbitals for 4d 2D and 4f 2F indepen-
dently �as in method A� but limiting correlation to core-
valence correlation thus concentrating more directly on the
difference in energy and the wave function coming from the
outer regions of the atom. Clearly in this case, for method A,
the relativistic and mass-polarization corrections are better
computed perturbatively but at issue also is the fact that
variational methods optimize the total energy. Since so little
of the total energy in the present case comes from the relax-
ation of the core and core polarization, an exceedingly large
basis would be needed before the optimization process
would target these contributions. Method B does so directly.

The calculated relativistic all-order perturbation theory
values of �E�SD�=4.99 cm−1, �E�SDpT�=4.92 cm−1,
and MCHF �method B� value of �E�MCHF�=4.98 cm−1

agree well with the best experimental value of
�4.988±0.003� cm−1 �7�. We discussed the importance of
different contributions in the all-order theory approach and
showed that the account of the core-polarization effects pro-
vides both higher accuracy and faster convergence in the
MCHF method.
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