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Abstract

Atomic polarization phenomena impinge upon a number of areas and processes in physics.
The dielectric constant and refractive index of any gas are examples of macroscopic properties
that are largely determined by the dipole polarizability. When it comes to microscopic
phenomena, the existence of alkaline-earth anions and the recently discovered ability of
positrons to bind to many atoms are predominantly due to the polarization interaction. An
imperfect knowledge of atomic polarizabilities is presently looming as the largest source of
uncertainty in the new generation of optical frequency standards. Accurate polarizabilities for
the group I and II atoms and ions of the periodic table have recently become available by a
variety of techniques. These include refined many-body perturbation theory and
coupled-cluster calculations sometimes combined with precise experimental data for selected
transitions, microwave spectroscopy of Rydberg atoms and ions, refractive index
measurements in microwave cavities, ab initio calculations of atomic structures using
explicitly correlated wavefunctions, interferometry with atom beams and velocity changes of
laser cooled atoms induced by an electric field. This review examines existing theoretical
methods of determining atomic and ionic polarizabilities, and discusses their relevance to
various applications with particular emphasis on cold-atom physics and the metrology of
atomic frequency standards.

1. Introduction

By the time Maxwell presented his article on a ‘dynamical
theory of the electromagnetic field’ [1], it was understood
that bulk matter had a composition of particles of opposite
electrical charge, and that an applied electric field would
rearrange the distribution of those charges in an ordinary
object. This rearrangement could be described accurately
even without a detailed microscopic understanding of matter.
For example, if a perfectly conducting sphere of radius r0 is
placed in a uniform electric field F, simple potential theory
shows that the resulting electric field at a position r outside
the sphere must be F − ∇(

F · rr3
0

/
r3

)
. This is equivalent to

replacing the sphere with a point electric dipole

d = αF, (1)

where α = r3
0 is the dipole polarizability of the sphere4.

An arbitrary applied electric field can be decomposed into
multipole fields of the form Fk

q(r) = −Fk
q ∇(

rkCk
q(r̂)

)
, where

Ck
q(r̂) is a spherical tensor [2]. Each of these will induce

a multipole moment of Fk
q r2k+1

0 in the conducting sphere,
corresponding to a multipole polarizability of αk = r2k+1

0 .

Treatment of the electrical polarizabilities of macroscopic
bodies is a standard topic of textbooks on electromagnetic
theory, and the only material properties that it requires are
dielectric constants and conductivities.

Quantum mechanics, on the other hand, offers a
fundamental description of matter, incorporating the effects

4 For notational convenience, we use the Gaussian system of electrical units,
as discussed in subsection A. In the Gaussian system, electric polarizability
has the dimensions of volume.
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of electric and magnetic fields on its elementary constituents,
and thus enables polarizabilities to be calculated from first
principles. The standard framework for such calculations,
perturbation theory, was first laid out by Schrödinger [3] in a
paper that reported his calculations of the Stark effect in atomic
hydrogen. A system of particles with positions ri and electric
charges qi exposed to a uniform electric field, (F = F F̂), is
described by the Hamiltonian

H = H0 − F F̂ · d, (2)

where H0 is the Hamiltonian in the absence of the field, and d

is the dipole moment operator

d =
∑

i

qiri . (3)

Treating the field strength, F = |F|, as a perturbation
parameter means that the energy and wavefunction can be
expanded as

|�〉 = |�0〉 + F |�1〉 + F 2|�2〉 + · · · (4)

E = E0 + FE1 + F 2E2 + · · · . (5)

The first-order energy E1 = 0 if |�0〉 is an eigenfunction
of the parity operator. In this case, |�1〉 satisfies the equation

(H0 − E0)|�1〉 = −F̂ · d|�0〉. (6)

From the solution to equation (6), we can find the expectation
value

〈�|d|�〉 = F(〈�0|d|�1〉 + 〈�1|d|�0〉)
= ᾱF, (7)

where ᾱ is a matrix. The second-order energy is given by

E2 = − 1
2 F · ᾱF. (8)

Although equation (6) can be solved directly, and in some
cases in closed form, it is often more practical to express the
solution in terms of the eigenfunctions and eigenvalues of H0,
so that equation (8) takes the form

E2 = −
∑

n

|〈�0|d · F|�n〉|2
En − E0

. (9)

This sum over all stationary states shows that calculation
of atomic polarizabilities is a demanding special case of
the calculation of atomic structure. The sum extends in
principle over the continuous spectrum, which sometimes
makes substantial contributions to the polarizability.

Interest in the subject of polarizabilities of atomic states
has recently been elevated by the appreciation that the accuracy
of next-generation atomic time and frequency standards, based
on optical transitions [4–9], is significantly limited by the
displacement of atomic energy levels due to universal ambient
thermal fluctuations of the electromagnetic field: blackbody
radiation (BBR) shifts [10–13]. This phenomenon brings the
most promising approach to a more accurate definition of the
unit of time, the second, into contact with deep understanding
of the thermodynamics of the electromagnetic radiation field.

Description of the interplay between these two
fundamental phenomena is a major focus of this review, which
in earlier times might have seemed a pedestrian discourse

on atomic polarizabilities. The precise calculation of atomic
polarizabilities also has implications for quantum information
processing and optical cooling and trapping schemes. Modern
requirements for precision and accuracy have elicited renewed
attention to methods of accurate first-principles calculations of
atomic structure, which recently have been increased in scope
and precision by developments in methodology, algorithms,
and raw computational power. It is expected that the future
will lead to an increased reliance on theoretical treatments
to describe the details of atomic polarization. Indeed, at
the present time, many of the best estimates of atomic
polarizabilities are derived from a composite analysis which
integrates experimental measurements with first principles
calculations of atomic properties.

There have been a number of reviews and tabulations
of atomic and ionic polarizabilities [14–25]. Some of these
reviews, e.g. [16, 17, 22, 23], have largely focused on
experimental developments while others [19, 21, 25] have
given theory more attention.

In this review, the strengths and limitations of different
theoretical techniques are discussed in detail given their
expected importance in the future. The discussion of
the experimental work is mainly confined to presenting a
compilation of existing results and very brief overviews of the
various methods. The exception to this is the interpretation
of resonance excitation Stark ionization spectroscopy [23]
since issues pertaining to the convergence of the perturbation
analysis of the polarization interaction are important here. This
review is confined to discussing the polarizabilities of low
lying atomic and ionic states despite the existence of a body of
research on Rydberg states [26]. High-order polarizabilities
are not considered except in those circumstances where they
are specifically relevant to ordinary polarization phenomenon.
The influence of external electric fields on energy levels
comprises part of this review as does the nature of the
polarization interaction between charged particles with atoms
and ions. The focus of this review is on developments related
to contemporary topics such as the development of optical
frequency standards, quantum computing and the study of
fundamental symmetries. Major emphasis of this review is to
provide critically evaluated data on atomic polarizabilities.
Table 1 summarizes the data presented in this review to
facilitate the search for particular information.

1.1. Systems of units

Dipole polarizabilities are given in a variety of units,
depending on the context in which they are determined. The
most widely used unit for theoretical atomic physics is atomic
units (au), in which, e, me, 4πε0 and the reduced Planck
constant h̄ have the numerical value 1. The polarizability in
au has the dimension of volume, and its numerical values
presented here are thus expressed in units of a3

0 , where
a0 ≈ 0.052 918 nm is the Bohr radius. The preferred unit
systems for polarizabilities determined by experiment are Å3,
kHz (kV cm−1)−2, cm3 mol−1 or C m2 N−1 where C m2 N−1 is
the SI unit. In this review, almost all polarizabilities are given
in au with uncertainties in the last digits (if appropriate) given

2



J. Phys. B: At. Mol. Opt. Phys. 43 (2010) 202001 Topical Review

Table 1. List of data tables.

Table System Atoms and Ions States Data

Table 4 Noble gases He, Ne, Ar, Kr, Xe, Rn, Li+, Na+, K+, Rb+, Cs+, Fr+ Ground α0

Be2+, Mg2+, Ca2+, Sr2+, Ba2+, Ra2+

Table 5 Alkali atoms Li, Na, K, Rb, Cs, Fr Ground ns, np α0, α2

Table 6 Alkali ions Be+, Mg+, Ca+, Sr+, Ba+, Ra+ Ground α0

Table 8 Monovalent Li, Na, K, Ca+, Rb, Sr+ Excited α0, α2

Table 7 Alkali atoms Resonance transition: Li, Na, K, Rb, Cs ns, np �α0

Table 9 Alkali atom Na Ground α0

Table 10 Alkali atom Cs 26 states α0, α2

Table 11 Group II type Be, Mg, Ca, Sr, Ba, Ra, Al+, Si2+, Zn, Cd, Hg, Yb Ground, nsnp 3P0 α0

Table 12 Miscellaneous Al, Ga, In, Tl, Si, Sn, Pb, Ir, U, Cu, Ag, Au, Ground α0

Al+, Si3+, P3+, Kr6+, Cu+, Ag+, Hg+, Yb+, Zn+

Table 13 Miscellaneous Ca, Sr, Ba, Zn, Cd, Hg, Yb, Al, Tl, Yb+ Excited α0, α2

Table 14 Miscellaneous Li, Na, Cs, Mg, Ca, Ba, Hg, Ga, Tl, Yb+ �α0

Table 16 Miscellaneous Mg, Ca, Sr, Yb, Zn, Cd, Hg, Clock �νBBR

Ca+, Sr+, Hg+, Yb+, Al+, In+ transition
Table 18 Monovalent Li, Na, K, Rb, Cs, Ba+, Yb+, Hg+ Ground hyperfine BBR
Table 19 Alkali atoms Li, Na, K, Rb, Cs, Fr Ground C6

Table 2. Factors for converting polarizabilities between different unit systems. The table entries give the multiplying factor needed to
convert the row entry to the corresponding column entry. The last column in the table is the polarizability per mole and is often called the
molar polarizability. The conversion factors from SI units to other units are given in the last line. Here, h is Planck’s constant, ε0 is the
electric constant, a0 is the Bohr radius and NA is the Avogadro constant.

au Å3 kHz (kV cm−1)−2 C m2 V−1 cm3 mol−1

au 1 0.148 1847 0.248 8319 1.648 773 × 10−41 0.373 8032
Å

3
6.748 335 1 1.679 201 1.112 650 × 10−40 2.522 549

kHz (kV cm−1)−2 4.018 778 0.595 5214 1 1.509 190×1040 1.502 232
Cm2 V−1 6.065 100×1040 8.987 552×1039 6.626 069×10−39 1 2.267 154×1040

cm3 mol−1 2.675 205 0.396 4244 0.665 6762 4.410 816×10−41 1
Conversion from SI 1/(4πε0a

3
0) 1030/(4πε0) 10−7h 1 106NA/(3ε0)

in parentheses. Conversion factors between the different units
are listed in table 2. The last line of the table gives conversion
factors from SI units to the other units. For example, the
atomic units for α can be converted to SI units by multiplying
by 0.248 832.

Stark shift experiments which measure the change in the
photon frequency of an atomic transition as a function of
electric field strength are usually reported as a Stark shift
coefficient in units of kHz (kV cm−1)−2. The polarizability
difference is twice the size of the Stark shift coefficient, as in
equation (8).

2. Atomic polarizabilities and field–atom
interactions

2.1. Static electric polarizabilities

2.1.1. Definitions of scalar and tensor polarizabilities. The
overall change in the energy of the atom can be evaluated
within the framework of second-order perturbation theory.
Upon reduction, the perturbation theory expression given by
equation (9) leads to a sum-over-states formula for the static

scalar electric-dipole polarizability which is expressed most
compactly in terms of oscillator strengths as

α0 =
∑

n

fgn

(�Eng)2
. (10)

In this expression, fgn is the absorption oscillator strength for
a dipole transition from level g to level n, defined in a J-
representation as [27]

fgn = 2|〈ψg ‖ rC1(r̂) ‖ ψn〉|2�Eng

3(2Jg + 1)
, (11)

where �Eng = En − Eg and C1(r̂) is the spherical tensor
of rank 1 [2]. The definition of the oscillator strength in
LS coupling is transparently obtained from equation (11) by
replacing the total angular momentum by the orbital angular
momentum.

The polarizability for a state with non-zero angular
momentum J depends on the magnetic projection M:

α = α0 + α2
3M2 − J (J + 1)

J (2J − 1)
. (12)

The quantity α0 is called the scalar polarizability while α2 is
the tensor polarizability in J representation.

The scalar part of the polarizability can be determined
using equation (10). In terms of the reduced matrix elements
of the electric-dipole operator, the scalar polarizability α0 of

3
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an atom in a state ψ with total angular momentum J and energy
E is also written as

α0 = 2

3(2J + 1)

∑
n

|〈ψ‖rC1(r̂)‖ψn〉|2
En − E

. (13)

The tensor polarizability α2 is defined as

α2 = 4

(
5J (2J − 1)

6(J + 1)(2J + 1)(2J + 3)

)1/2

×
∑

n

(−1)J+Jn

{
J 1 Jn

1 J 2

} |〈ψ‖rC1(r̂)‖ψn|〉2

En − E
. (14)

It is useful in some cases to calculate polarizabilities in strict
LS coupling. In such cases [28], the tensor polarizability α2,L

for a state with orbital angular momentum L is given by

α2,L =
∑

n

[(
L 1 Ln

−L 0 L

)
2 − 1

3(2L + 1)

]

×2|〈ψ ‖ rC1(r̂) ‖ ψn〉|2
E − En

. (15)

The tensor polarizabilities α2 and α2,L in the J and L
representations, respectively, are related by

α2 = α2,L(−1)S+L+J+2(2J + 1)

{
S L J

2 J L

}
×

(
J 2 J

−J 0 J

) (
L 2 L

−L 0 L

)−1

. (16)

For L = 1 and J = 3/2, equation (16) gives α2 = α2,L. For
L = 1, S = 1 and J = 1, equation (16) gives α2 = −α2,L/2.
For L = 2, α2 = (7/10)α2,L for J = 3/2 and α2 =
α2,L for J = 5/2. We use the shorter 〈ψ‖D‖ψn〉 designation
for the reduced electric-dipole matrix elements instead of
〈ψ‖rC1(r̂)‖ψn〉 below.

Equation (14) indicates that spherically symmetric levels
(such as the 6s1/2 and 6p1/2 levels of cesium) only have a
scalar polarizability. However, the hyperfine states of these
levels can have polarizabilities that depend upon the hyperfine
quantum numbers F and MF . The relationship between F and
J polarizabilities is discussed in [29]. This issue is discussed
in more detail in the section on BBR shifts.

There are two distinctly different broad approaches to the
calculation of atomic polarizabilities. The ‘sum-over-states’
approach uses a straightforward interpretation of equation (9)
with the contribution from each state �n being determined
individually, either from a first principles calculation or from
the interpretation of experimental data. A second class of
approaches solves inhomogeneous equation (6) directly. We
refer to this class of approaches as direct methods, but note
that there are many different implementations of this strategy.

2.1.2. The sum-over-states method. The sum-over-states
method utilizes the expression such as equations (10), (13)–
(15) to determine the polarizability. This approach is widely
used for systems with one or two valence electrons since the
polarizability is often dominated by transitions to a few low-
lying excited states. The sum-over-states approach can be used
with oscillator strengths (or electric-dipole matrix elements)
derived from experiment or atomic structure calculations. It

is also possible to insert high-precision experimental values
of these quantities into an otherwise theoretical determination
of the total polarizability. For such monovalent or divalent
systems, it is computationally feasible to explicitly construct a
set of intermediate states that is effectively complete. Such an
approach is computationally more difficult to apply for atoms
near the right-hand side of the periodic table since the larger
dimensions involved would preclude an explicit computation
of the entire set of intermediate state wavefunctions.

For monovalent atoms, it is convenient to separate the
total polarizability of an atom into the core polarizability
αcore and the valence part defined by equation (13). The core
contribution actually has two components, the polarizability
of the ionic core and a small change due to the presence of the
valence electron [30]. For the alkali atoms, the valence part
of the ground state polarizability is completely dominated by
the contribution from the lowest excited state. For example,
the 5s–5p1/2 and 5s–5p3/2 transitions contribute more than
99% of the Rb valence polarizability [31]. The Rb+ core
polarizability contributes about 3%. Therefore, precision
experimental measurements of the transition rates for the
dominant transitions can also be used to deduce accurate values
of the ground state polarizability. However, this is not the case
for some excited states where several transitions may have
large contributions and the continuum contribution may be not
negligible.

This issue is illustrated using the polarizability of the 5p1/2

state of the Rb atom [30], which is given by

α0(5p1/2) = 1

3

∑
n

|〈ns‖D‖5p1/2〉|2
Ens − E5p1/2

+
1

3

∑
n

|〈nd3/2‖D‖5p1/2〉|2
End3/2 − E5p1/2

+ αcore. (17)

We present a solution to equation (17) that combines
first principles calculations with experimental data. The
strategy to produce a high-quality recommended value with
this approach is to calculate as many terms as realistic or
feasible using the high-precision atomic structure methods.
Where experimental high-precision data are available (for
example, for the 5s–5p transitions) they are used in place
of theory, assuming that the expected theory uncertainty is
higher than that of the experimental values. The remainder
that contains contributions from highly excited states is
generally evaluated using (Dirac–Hartree–Fock) DHF or
random-phase approximation (RPA) methods. In our example,
the contribution from the very high discrete (n > 10) and
continuum states is about 1.5% and cannot be omitted in
a precision calculation. Table 3 lists the dipole matrix
elements and energy differences required for evaluation of
equation (17) as well as the individual contributions to the
polarizability. Experimental values from [32] are used for
the 5s–5pj matrix elements, otherwise the matrix elements
are obtained from the all-order calculations of [30] described
in section 4.6. Absolute values of the matrix elements
are given. Experimental energies from [33, 34] are used.
Several transitions give significant contributions. The final
polarizability value agrees with the experimental measurement
within the uncertainty. The comparison with experiment is
discussed in section 5.
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Table 3. The contributions (in au) to the scalar polarizability of the
Rb atom in the 5p1/2 state [30]. The uncertainties in each term are
enclosed in parenthesis. The corresponding energy differences
�E = En − E5p1/2 [34] are given in cm−1, which can be converted
to atomic units by division by 219 474.6. Experimental values from
[32] are used for absolute values of the 5s–5pj matrix elements,
otherwise the matrix elements are obtained from all-order
calculations of [30].

Contribution |〈n‖D‖5p1/2〉| �E α0(5p1/2)

5p1/2–5s 4.231 −12579 −104.11(15)
5p1/2–6s 4.146 7554 166.5(2.2)
5p1/2–7s 0.953 13733 4.835 (16)
5p1/2–8s 0.502 16468 1.120(7)
5p1/2–9s 0.331 17920 0.448(3)
5p1/2–10s 0.243 18783 0.230(2)
5p1/2–11s 0.189 19338 0.135 (1)
5p1/2–(12 − ∞)s 1.9(0.2)

5p1/2–4d3/2 8.017 6777 694(30)
5p1/2–5d3/2 1.352 13122 10.2(9)
5p1/2–6d3/2 1.067 16108 5.2(1.1)
5p1/2–7d3/2 0.787 17701 2.6(4)
5p1/2–8d3/2 0.605 18643 1.4(2)
5p1/2–9d3/2 0.483 19243 0.89(10)
5p1/2–(10 − ∞)d3/2 10.5(10.5)
αcore 9.08(45)
Total 805(31)

2.1.3. Direct methods. From a conceptual viewpoint, the
finite-field method represents one of the simplest ways to
compute the polarizability. In this approach, one solves
the Schrödinger equation using standard techniques for the
perturbed Hamiltonian given by equation (2) for a variety
of values of F. The polarizability is then extracted from the
dipole moment or the energy eigenvalues of the perturbed
Hamiltonian. This usually entails doing a number of
calculations at different discrete field strengths. This approach
is generally used to obtain polarizabilities in coupled-cluster
calculations (see, for example, [35, 36]). We note that some
linearized coupled-cluster calculations are implemented very
differently, and sum-over-states is used for the polarizability
calculations [37]. These differences between coupled-cluster
calculations are discussed in section 4.

Another direct approach to calculating polarizability is
the perturbation-variation method [38]. The perturbation-
variation approach has been outlined in the introduction as
equations (5)–(7). The unperturbed state, |�0〉, and perturbed
state, |�1〉, would be written as a linear combinations of basis
states. Equations (6) and (7) then reduce to sets of matrix
equations. A general technique for solving the inhomogeneous
equation (6) has been described by Dalgarno and Lewis in [39].

Exact solutions to equations (5)–(7) are possible for
atomic hydrogen and hydrogenic ions. The non-relativistic
solutions were first obtained independently in 1926 by
Epstein [40], Waller [41] and Wentzel [42]; the relativistic
case remains a subject of current research interest [43–46].
The nonrelativistic equations are separable in parabolic
coordinates, and the polarizability of a hydrogenic ion of
nuclear charge Z in the state |n1n2m〉 is (in au)

α = n4

8Z4
[17n2 − 3(n1 − n2)

2 − 9m2 + 19]a3
0, (18)

Figure 1. Solid line: histogram representation of the
sum-over-states contributions to the polarizability of H 1s.
Following [48], the contributions of discrete states (e.g. 2p) are
spread over the inverse density of states, to show continuity with the
continuum contributions near energy E = 0. The polarizability, α,
is equal to the area under this curve. Dashed line: the same
construction, for an electron bound to a one-dimensional
delta-function potential with energy E = −1/2 au. From [49].

where n1, n2 are parabolic quantum numbers [47], m is the
projection of the orbital angular momentum onto the direction
of the electric field, and n = n1 + n2 + |m| + 1 is the principal
quantum number. A convenient special case is n = |m| + 1,
which corresponds to the familiar circular states of hydrogen
in spherical coordinates, with orbital angular momentum
l = |m| = n − 1; for these states, α = (|m| + 2)(|m| + 9/4)a3

0 .
For the H 1s ground state exposed to an electric field

F = F ẑ, the solution to equation (6) is (in au)

�0 = e−r/
√

π, (19)

�1 = −z(1 + r/2)�0, (20)

from which α = (9/2)a3
0 . Note that although �1 of

equation (20) is a p state, it is much more compact than any of
the discrete np eigenstates of H. Thus, building up �1 by the
sum-over-states approach requires a significant contribution
from the continuous spectrum of H. This is depicted in
figure 1, which employs the histogram construction of Fano
and Cooper [48] to show the connection between discrete and
continuum contributions to the sum over states. About 20%
of the polarizability of H 1s comes from the continuum.

Clearly, the direct solution of the Schrödinger equation
for an atom in the presence of an electric field and subsequent
determination of the polarizability is formally equivalent to the
sum-over-states approach described in the previous subsection.
However, it is useful to comment on how this equivalence
is actually seen in calculations for many-electron atoms.
For example, random-phase-approximation (RPA) results for
polarizabilities of closed-shell atoms [50] that were obtained
by direct solution of the inhomogeneous equation are the same
(up to numerical uncertainty of the calculations) as sum-over-
state RPA results obtained using formula

αcore = 2

3

∑
ma

|〈ψa‖DDHF‖ψm〉〈ψa‖DRPA‖ψm〉|
Em − Ea

, (21)
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where 〈ψa‖DDHF‖ψm〉 is the reduced matrix element of the
dipole operator obtained in the DHF approximation and the
〈ψa‖DRPA‖ψm〉 matrix elements include RPA terms using
many-body perturbation theory as discussed, for example,
in [51]. The index a refers to all core orbitals, while
the m includes all other orbitals. The sum-over-states can
be calculated with a finite basis set [52], and such an
approach intrinsically includes the continuum states when a
complete sum over the entire basis set is carried out. When
the contributions from highly excited states are significant,
it becomes difficult to account for these terms accurately
within the framework of the sum-over-states approach. The
direct method automatically accounts for these states and this
problem does not arise. However, it becomes difficult and
cumbersome to include corrections to the dipole operator
beyond RPA. The method implemented in [50] is different
from the finite field approach and does not involve performing
a number of calculations at different discrete field strengths.

In most high-precision calculations, the determination of
polarizabilities follows the calculation of wavefunctions or
quantities that represent the wavefunctions (such as excitation
coefficients). The type of approach used for this initial
calculation generally determines whether polarizabilities are
determined by equations (6) or by the sum-over-states method.
For example, a relativistic linearized coupled-cluster approach
used in [37] is formulated in a way that does not explicitly
generate numerical wavefunctions on a radial grid, and all
quantities are expressed in terms of excitation coefficients.
Therefore, the polarizabilities are calculated by the sum-
over-states method using resulting high-quality dipole matrix
elements and energies. In the case of methods that combine
relativistic configuration interaction and perturbation theory
[CI+MBPT], it is natural to determine polarizabilities by
directly solving the inhomogeneous equation. In this case,
it is solved in the valence space with the effective operators
that are determined using MBPT [53]. The ionic core
polarizability is calculated separately in this approach. The
effective dipole operator generally includes RPA corrections,
with other corrections calculated independently.

The direct and sum-over-states approaches can also be
merged in a hybrid approach. One strategy is to perform a
direct calculation using the best available techniques, and then
replace the transition matrix elements for the most important
low-lying states with those from a higher level theory. This
hybrid method is discussed further in the sections on the
CI+MBPT and CI+all-order methods.

2.2. The frequency-dependent polarizability

So far, we have described the polarizability for static fields.
The numerical value of the polarizability changes when the
atom is immersed in an alternating (ac) electromagnetic field.
To the second order, one writes �E = − 1

2α(ω)F 2 + · · · . The
valence part of the scalar frequency-dependent polarizability,
usually called the dynamic polarizability, is calculated
using the sum-over-states approach with a straightforwardly
modified version of equation (13):

α0(ω) = 2

3(2J + 1)

∑
n

�E|〈ψ‖D‖ψn〉|2
(�E)2 − ω2

. (22)

Equation (22) assumes that ω is at least a few linewidths away
from resonant frequencies defined by �E = En−E. As noted
previously, atomic units are used throughout this paper, and
h̄ = 1. The core part of the polarizability may also be corrected
for frequency dependence in random phase approximation
by similarly modifying formula (21). Static values may be
used for the core contribution in many applications since
the frequencies of interest (i.e. corresponding to commonly
used lasers) are very far from the excitation energies of the
core states. The calculations of the ground and excited
state frequency-dependent polarizabilities of the alkali-metal
atoms are described in detail in [54] and [29], respectively.
It is essentially the same as the calculation of the static
polarizability described in section 2.1.2, only for ω 	= 0.

The expression for the tensor polarizability given by
equation (14) is modified in the same way, i.e. by replacing

1

�E
→ �E

�E2 − ω2
. (23)

There has been more interest recently in the determination
of frequency-dependent polarizabilities due to the need to
know various ‘magic wavelengths’ [55] for the development
of optical frequency standards and other applications. At such
wavelengths, the frequency-dependent polarizabilities of two
states are the same, and the ac Stark shift of the transition
frequency between these two states is zero. An example
of the calculation of frequency-dependent polarizabilities and
magic wavelengths is given in section 7.2. Experimentally
determined magic wavelengths may also be used to gauge the
accuracy of the theory.

3. Measurements of polarizabilities and related
quantities

Experimental measurements of atomic and ionic
polarizabilities are somewhat rarer than theoretical
determinations. There are two types of measurements,
those which directly determine the polarizability, and those
which determine differences in polarizabilities of two states
from Stark shift of atomic transitions.

For the most part, we make brief comments on the major
experimental techniques and refer the reader to primarily
experimental reviews [17, 19, 22, 23] for further details.

3.1. f -sum rules

This approach makes use of equations (10)–(15). Many of
the most interesting atoms used in cold atom physics typically
have only one or two valence electrons. The ground state
polarizability of these atoms is dominated by a single low-lying
transition. As mentioned in section 2.1.2, 97% of the total
value of Rb ground state polarizability comes from 5s → 5p
transition. In the case of Na, about 99.4% of the valence
polarizability and 98.8% of the total polarizability of sodium
arises from the 3s → 3p resonant transition.

Composite estimates of the polarizability using both
experimental and theoretical inputs are possible. One type
of estimate would use experimental oscillator strengths to
determine the valence polarizability. This could be combined
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Table 4. Ground state polarizabilities α0 (in atomic units) of noble gases and isoelectronic ions. Uncertainties in the last digits are given in
parentheses. References are given in square brackets.

He Ne Ar Kr Xe Rn Method [Reference]

1.322 2.38 10.77 16.47 26.97 Th. RRPA [50]
1.383 763 2.6648 11.084 Th. CCSDT [147]

2.697 11.22 16.80 27.06 33.18 Th. RCCSDT [148]
2.665 [149] 11.085 (6) [36] Th. CCSDT
2.6557 11.062 17.214 28.223 Th. MBPT [150]
2.668(6) [151] Th. RCCR12

1.383 760 79(23)a,b [119] Th.
1.383 223 (67) [152, 153] 2.670 (3) [154] 11.081 (5) [154] 16.766(8) [154] Expt. DC

2.66110 (3) [384] Expt. DC
1.3838 2.6680 11.091 16.740 27.340 Expt. RI [62]
1.384 2.663 11.080 16.734 27.292 Expt. RI [61]
1.383 759 (13) [63] 11.083(2) [155] Expt. RI

Li+ Na+ K+ Rb+ Cs+ Fr+

0.192 486b [156, 157] 0.9947c [104] 5.354c [104] Th.
0.1894 0.9457 5.457 9.076 15.81 Th. RRPA [50]

1.00(4) 5.52(4) 9.11(4) 15.8(1) 20.4(2) Th. RCCSDT [158]
0.188 3(20) [159] 0.978 (10) [160] 5.47(5) [160] 9.0 [161] 15.544 (30) [162] Expt. SA

1.001 5(15) [163] 15.759 [164] Expt. SA
0.998 0(33) [165] 15.644(5) [112, 166] Expt. SA

Be2+ Mg2+ Ca2+ Sr2+ Ba2+ Ra2+

0.051 82 0.4698 3.254 5.813 10.61 Th. RRPA [50]
0.052 264b [156, 157] 0.4814c [104] 3.161c [104] Th.

3.262 5.792 10.491 13.361 Th. RCCSDT [35]
0.489(5) [160] 3.26(3) [160] Expt. SA
0.486(7) [167] Expt. SA

Method abbreviations: DC—dielectric constant, RI—refractive index, SA—spectral analysis, RRPA—relativistic random-phase
approximation, (R)CCSDT—(relativistic) coupled-cluster calculations. The RCCR12 calculation is a CCSDT calculation which allows
for explicitly correlated electron pairs.
a See the text for the further discussion of He polarizability calculations.
b Finite mass Hylleraas calculation incorporating relativistic effects from an RCI calculation as an additive correction.
c PNO-CEPA (pseudo-natural orbital coupled electron pair approximation).

with a core contribution obtained by other methods to estimate
the total polarizability. Another approach replaces the most
important matrix elements in a first-principles calculation
by high precision experimental values [56, 57]. Various
types of experiments may be used to determine particular
matrix elements, including photo-association experiments
[58], lifetime, oscillator strengths or Stark shift measurements
[30] with photo-association experiments generally giving the
most reliable matrix elements. This hybrid method may
provide values accurate to better than 0.5% in certain cases
[56].

3.2. Dielectric constant

The dielectric constant K of an atomic or molecular gas is
related to the dipole polarizability, α, by the identity

α = K − 1

4πN
, (24)

where N is the atomic number density. The technique has
only been applied to the rare gas atoms, and the nitrogen and
oxygen atoms by the use of a shock tube. Results for the rare
gases typically achieve precisions of 0.01–0.1%. Examples
are reported in table 4.

3.3. Refractive index

The frequency-dependent refractive index of a gas n(ω) is
related to the polarizability by the expression

α(ω) = n(ω) − 1

2πN
, (25)

where N is the atomic number density. The static dipole
polarizability, α(0), can be extracted from the frequency-
dependent polarizability α(ω) by the following technique.

The energy denominator in equation (22) can be expanded
when the frequency is smaller than the frequency of the first
excitation giving

α(ω) = α(0) + ω2S(−4) + ω4S(−6) + · · · . (26)

The S(−q) factors are the Cauchy moments of the oscillator
strength distribution and are defined by

S(−q) =
∑

n

fgn

�E
q
ng

. (27)

Specific Cauchy moments arise in a number of atomic physics
applications, as reviewed by Fano and Cooper [48]. For
example, the Thomas–Reiche–Kuhn sum rule states that S(0)

is equal to the number of electrons in the atom. The S(−3)
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moment is related to the non-adiabatic dipole polarizability
[59, 60].

The general functional dependence of the polarizability
at low frequencies is given by equation (26) [61, 62]. The
achievable precision for the rare gases is 0.1% or better
[62, 63]. Experiments on the vapours of Zn, Cd and Hg
gave polarizabilities with uncertainties of 1–10% [64, 65].

3.4. Deflection of an atom beam by electric fields

The beam deflection experiment is conceptually simple. A
collimated atomic beam is directed through an interaction
region containing an inhomogeneous electric field. While the
atom is in the interaction region, the electric field F induces a
dipole moment on the atom. Since the field is not uniform, a
force proportional to the gradient of the electric field and the
induced dipole moment results in the deflection of the atomic
beam. The polarizability is deduced from the deflection of the
beam. The overall uncertainty in the derived polarizabilities
is between 5 and 10% [66]. Therefore, this method is mainly
useful at this time for polarizability measurements in atoms
inaccessible by any other means.

3.5. The E–H balance method

In this approach, the E–H balance configuration applies an
inhomogeneous electric field and an inhomogeneous magnetic
field in the interaction region [67]. The magnetic field acts
on the magnetic moment of the atom giving a magnetic
deflection force in addition to the electric deflection. The
experiment is tuned so that the electric and magnetic forces
are in balance. The polarizability can be determined since the
magnetic moments of many atoms are known. Uncertainties
range from 2% to 10% [67–69].

3.6. Atom interferometry

The interferometry approach splits the beam of atoms so that
one path sends a beam through a parallel plate capacitor while
the other goes through a field-free region. An interference
pattern is then measured when the beams are subsequently
merged and detected. The polarizability is deduced from
the phase shift of the beam passing through the field-free
region. So far, this approach has been used to measure the
polarizabilities of helium (see [70] for a discussion of this
measurement), lithium [71], sodium [72, 73], potassium [73]
and rubidium [73], achieving uncertainties of 0.35–0.8%.

It has been suggested that multi-species interferometers
could possibly determine the polarizability ratio R = αX/αY

to 10−4 relative accuracy [70]. Consequently, a measurement
of R in conjunction with a known standard, say lithium, could
lead to a new level of precision in polarizability measurements.
Already the Na:K and Na:Rb polarizability ratios have been
measured with a precision of 0.3% [73].

3.7. Cold atom velocity change

The experiment of Amini and Gould [74] measured the kinetic
energy gained as cold cesium atoms were launched from

a magneto-optical trap into a region with a finite electric
field. The kinetic energy gained only depends on the final
value of the electric field. The experimental arrangement
actually measures the time of return for cesium atoms to
fall back after they are launched into a region between a set
of parallel electric-field plates. The only such experiment
reported so far gave a very precise estimate of the Cs ground
state polarizability, namely α0 = 401.0(6) au. This approach
can in principle be applied to measure the polarizability of
many other atoms with a precision approaching 0.1% [22].

3.8. Other approaches

The deflection of an atomic beam by pulsed lasers has been
used to obtain the dynamic polarizabilities of rubidium and
uranium [75, 76]. The dynamic polarizabilities of some metal
atoms sourced from an exploding wire have been measured
interferometrically [77, 78]. These approaches measure
polarizabilities to an accuracy of 5–20%.

3.9. Spectral analysis for ion polarizabilities

The polarizability of an ion can in principle be extracted from
the energies of the non-penetrating Rydberg series of the parent
system [41, 79, 80]. The polarizability of the ionic core leads
to a shift in the (n, L) energy levels away from their hydrogenic
values.

Consider a charged particle interacting with an atom or
ion at large distances. To zeroth order, the interaction potential
between a highly excited electron and the residual ion is just

V (r) = Z − N

r
, (28)

where Z is the nuclear charge and N is the number of
electrons. However, the outer electron perturbs the atomic
charge distribution. This polarization of the electron charge
cloud leads to an attractive polarization potential between the
external electron and the atom. The Coulomb interaction in a
multipole expansion with |r| > |x| is written as

1

|r − x| =
∑

k

Ck(x) · Ck(r)
xk

rk+1
. (29)

Applying second-order perturbation theory leads to the
adiabatic polarization potential between the charged particle
and the atom, e.g.

Vpol(r) = −
∞∑

k=1

αEk

2r2k+2
. (30)

The quantities αEk are the multipole polarizabilities defined as

αEk =
∑

n

f (k)
gn

(�Egn)2
. (31)

In this notation, the electric-dipole polarizability is written
as αE1, and f (k)

gn is the absorption oscillator strength for a
multipole transition from g −→ n. Equation (30), with
its leading term involving the dipole polarizability is not
absolutely convergent in k [81]. At any finite r, continued
summation of the series given by equation (30), with respect

8



J. Phys. B: At. Mol. Opt. Phys. 43 (2010) 202001 Topical Review

to k, will eventually result in a divergence in the value of the
polarization potential.

Equation (30) is modified by non-adiabatic corrections
[59, 60]. The non-adiabatic dipole term is written as

Vnon-ad = 6β0

2r6
, (32)

where the non-adiabatic dipole polarizability β0 is defined as

β0 =
∑ f (1)

gn

2(�Egn)3
. (33)

The non-adiabatic interaction is repulsive for atoms in their
ground states. The polarization interaction includes further
adiabatic, non-adiabatic and higher order terms that contribute
at the r−7 and r−8, but there has been no systematic study of
what could be referred to as the non-adiabatic expansion of
the polarization potential.

When the Rydberg electron is in a state that has negligible
overlap with the core (this is best achieved with the electron
in high angular momentum orbitals), then the polarization
interaction usually provides the dominant contribution to this
energy shift. Suppose the dominant perturbation to the long-
range atomic interaction is

Vpol(r) = −C4

r4
− C6

r6
, (34)

where C4 = α0/2 and C6 = (α0 − 6β)/2. Equation (34)
omits the C7/r7 and C8/r8 terms that are included in a more
complete description [82–84]. The energy shift due to an
interaction of this type can be written as

�E

�〈r−4〉 = C4 + C6
�〈r−6〉
�〈r−4〉 , (35)

where �E is usually the energy difference between two
Rydberg states. The expectation values �〈r−6〉 and �〈r−4〉
are simply the differences in the radial expectations of the
two states. These are easily evaluated using the identities of
Bockasten [85]. Plotting �E

�〈r−4〉 versus �〈r−6〉
�〈r−4〉 yields C4 as the

intercept and C6 as the gradient. Such a graph is sometimes
called a polarization plot.

Traditional spectroscopies such as discharges or laser
excitation find it difficult to excite atoms into Rydberg states
with L > 6. Exciting atoms into states with L > 6 is best
done with resonant excitation Stark ionization spectroscopy
(RESIS) [23]. RESIS spectroscopy first excites an atomic or
ionic beam into a highly excited state, and then uses a laser
to excite the system into a very highly excited state which is
Stark ionized.

While this approach to extracting polarizabilities from
Rydberg series energy shifts is appealing, there are a number
of perturbations that act to complicate the analysis. These
include relativistic effects �Erel, Stark shifts from ambient
electric fields �Ess, second-order effects due to relaxation of
the Rydberg electron in the field of the polarization potential
�Esec [86–88], and finally the corrections due to the C7/r7

and C8/r8 terms, �E7,�E8 and �E8L. Therefore, the energy
shift between two neighbouring Rydberg states is

�E = �E4 + �E6 + �E7 + �E8 + �E8L

+ �Erel + �Esec + �Ess. (36)

One way to solve the problem is to simply subtract these terms
from the observed energy shift, e.g.

�Ec

�〈r−4〉 = �Eobs

�〈r−4〉 −
(

�Erel + �Esec + �Ess

�〈r−4〉
)

−
(

�E7 + �E8 + �E8L

�〈r−4〉
)

(37)

and then deduce C4 and C6 from the polarization plot of the
corrected energy levels [84].

3.10. Stark shift measurements of polarizability differences

The Stark shift experiment predates the formulation of
quantum mechanics in its modern form [89]. An atom is
immersed in an electric field, and the shift in the wavelength
of one of its spectral lines is measured as a function of the
field strength. Stark shift experiments effectively measure the
difference between the polarizability of the two atomic states
involved in the transition. Stark shifts can be measured for
both static and dynamic electric fields. While there have been
many Stark shift measurements, relatively few have achieved
an overall precision of 1% or better.

While the polarizabilities can generally be extracted from
the Stark shift measurement, it is useful to compare the
experimental values directly with theoretical predictions where
high precision is achieved for both theory and experiment. In
this review, comparisons of the theoretical static polarizability
differences for the resonance transitions involving the alkali
atoms with the corresponding Stark shifts are provided in
section 5. Some of the alkali atom experiments listed in table 7
report precisions between 0.01 and 0.1 au [90–93]. The many
Stark shift experiments involving Rydberg atoms [94] are not
detailed here.

Selected Stark shifts for some non-alkali atoms that are of
interest for applications described in this review are discussed
in section 5 as well. The list is restricted to low-lying excited
states for which high precision Stark shifts are available.
When compared with the alkali atoms, there are not that many
measurements and those that have been performed have larger
uncertainties.

The tensor polarizability of an open shell atom
can be extracted from the difference in polarizabilities
between the different magnetic sub-levels. Consequently,
tensor polarizabilities do not rely on absolute polarizability
measurements and can be extracted from Stark shift
measurements by tuning the polarization of a probe laser.
Tensor polarizabilities for a number of states of selected
systems are discussed in section 5.

One unusual experiment was a measurement of the ac
energy shift ratio for the 6s and 5d3/2 states of Ba+ to an
accuracy of 0.11% [95]. This experiment does not give
polarizabilities. Its main purpose was to determine selected
E1 matrix elements [96].

3.11. AC Stark shift measurements

There are few experimental measurements of ac Stark shifts
at optical frequencies. Two recent examples would be the
determination of the Stark shift for the Al+ clock transition [97]
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and the Li 2s–3s Stark shifts [98] at the frequencies of the pump
and probe laser of a two-photon resonance transition between
the two states. One difficulty in the interpretation of ac Stark
shift experiments is the lack of precise knowledge about the
overlap of the laser beam with atoms in the interaction region.
There are also complications in the analysis of experiments on
deflection of atomic beams by lasers [75, 76].

4. Practical calculation of atomic polarizabilities

There have been numerous theoretical studies of atomic and
ionic polarizabilities in the last several decades. Most methods
used to determine atomic wavefunctions and energy levels
can be adapted to generate polarizabilities. These have been
divided into a number of different classes that are listed below.
We give a brief description of each approach. It should be
noted that the list is not exhaustive, and the emphasis here
has been on those methods that have achieved the highest
accuracy or those methods that have been applied to a number
of different atoms and ions.

4.1. Configuration interaction

The configuration interaction (CI) method [99] and its variants
are widely used for atomic structure calculations owing to
general applicability of the CI method. The CI wavefunction is
written as a linear combination of configuration state functions

�CI =
∑

i

ci�i, (38)

i.e. a linear combination of Slater determinants from a
model subspace [100]. Each configuration is constructed
with consideration given to anti-symmetrization, angular
momentum and parity requirements. There is a great deal
of variety in how the CI approach is implemented. For
example, sometimes the exact functional form of the orbitals in
the excitation space is generated iteratively during successive
diagonalization of the excitation basis. Such a scheme is
called the multi-configuration Hartree–Fock (MCHF) or multi-
configuration self-consistent field (MCSCF) approach [101].
The relativistic version of MCHF is referred to as the multi-
configuration Dirac–Fock (MCDF) method [102].

The CI approach has a great deal of generality since
there are no restrictions imposed upon the virtual orbital
space and classes of excitations beyond those limited by
the computer resources. The method is particularly useful
for open-shell systems which contain a number of strongly
interacting configurations. On the other hand, there can
be a good deal of variation in quality between different CI
calculations for the same system, because of the flexibility of
introducing additional configuration state functions.

The most straightforward way to evaluate polarizabilities
within the framework of the CI method it to use a direct
approach by solving the inhomogeneous equation (6). RPA
corrections to the dipole operator can be incorporated using
the effective operator technique described in section 4.7. It is
also possible to use CI-generated matrix elements and energies
to evaluate sums over states. The main drawback of the CI
method is its loss of accuracy for heavier systems. It becomes

difficult to include a sufficient number of configurations for
heavier systems to produce accurate results even with modern
computer facilities. One solution of this problem is to use
a semi-empirical core potential (CICP method) described in
the next subsection. Another, ab initio solution involves
construction of the effective Hamiltonian using either many-
body perturbation theory (CI+MBPT) or all-order linearized
coupled-cluster method (CI+all-order) and carrying out CI
calculations in the valence sector. These approaches are
described in the last two sections of this chapter.

4.2. CI calculations with a semi-empirical core potential
(CICP)

The ab initio treatment of core–valence correlations greatly
increases the complexity of any structure calculation.
Consequently, to include this physics in the calculation, using
a semi-empirical approach is an attractive alternative for an
atom with a few valence electrons [103–105].

In this method, the active Hamiltonian for a system with
two valence electrons is written as

H =
2∑

i=1

(
−1

2
∇2

i + Vdir(ri) + Vexc(ri) + Vp1(ri)

)
+

1

r12
+ Vp2(r1, r2). (39)

The Vdir and Vexc represent the direct and exchange
interactions with the core electrons. In some approaches,
these terms are represented by model potentials, [106–108].
More refined approaches evaluate Vdir and Vexc using core
wavefunctions calculated with the Hartree–Fock (or Dirac–
Fock) method [104, 105, 109]. The one-body polarization
interaction Vpol(r) is semi-empirical in nature and can be
written in its most general form as an �-dependent potential,
e.g.

Vp1(r) = −
∑
�m

αg2
� (r)

2r4
|�m〉〈�m|, (40)

where α is the static dipole polarizability of the core and g2
� (r)

is a cutoff function that eliminates the 1/r4 singularity at the
origin. The cutoff functions usually include an adjustable
parameter that is tuned to reproduce the binding energies of the
valence states. The two-electron or di-electronic polarization
potential is written as

Vp2(ri , rj ) = − α

r3
i r3

j

(ri · rj )g(ri)g(rj ) . (41)

There is variation between expressions for the core polarization
potential, but what is described above is fairly representative.
One choice for the cutoff function is g2

� (r) = 1−exp
(−r6/ρ6

�

)
[105], but other choices exist.

A complete treatment of the core-polarization corrections
also implies that corrections have to be made to the multipole
operators [104, 105, 110, 111]. The modified transition
operator is obtained from the mapping

rkCk(r) → g�(r)r
kCk(r). (42)

10



J. Phys. B: At. Mol. Opt. Phys. 43 (2010) 202001 Topical Review

The usage of the modified operator is essential to the correct
prediction of the oscillator strengths. For example, it reduces
the K(4s → 4p) oscillator strength by 8% [104].

One advantage of this configuration interaction plus
core-polarization (CICP) approach is in reducing the size
of the calculation. The elimination of the core from
active consideration permits very accurate solutions of
the Schrödinger equation for the valence electrons. The
introduction of the core-polarization potentials, Vp1 and
Vp2, presents an additional source of uncertainty into the
calculation. However, this additional small source of
uncertainty is justified by the almost complete elimination
of computational uncertainty in the solution of the resulting
simplified Schrödinger equation.

The CICP approach only gives the polarizability of the
valence electrons. Core polarizabilities are typically quite
small for the group I and II atoms, e.g. the cesium atom has
a large core polarizability of about 15.6 a3

0 [112], but this
represents only 4% of the total ground state polarizability of
401 a3

0 [74]. Hence, the usage of moderate accuracy core
polarizabilities sourced from theory or experiment will lead to
only small inaccuracies in the total polarizability.

Most implementation of the CICP approach to the
calculation of polarizabilities have been within a non-
relativistic framework. A relativistic variant (RCICP) has
recently been applied to zinc, cadmium and mercury [113].
It should be noted that even non-relativistic calculations
incorporate relativistic effects to some extent. Tuning the
core polarization correction to reproduce the experimental
binding energy partially incorporates relativistic effects on the
wavefunction.

4.3. Density functional theory

Approaches based on density functional theory (DFT) are
not expected to give polarizabilities as accurate as those
coming from the refined ab initio calculations described in
the following sections. Polarizabilities from DFT calculations
are most likely to be useful for systems for which large scale
ab initio calculations are difficult, e.g. the transition metals.
DFT calculations are often much less computationally
expensive than ab initio calculations. There have been two
relatively extensive DFT compilations [114, 115] that have
reported dipole polarizabilities for many atoms in the periodic
table.

4.4. Correlated basis functions

The accuracy of atomic structure calculations can be
dramatically improved by the use of basis functions which
explicitly include the electron–electron coordinate. The most
accurate calculations reported for atoms and ions with two or
three electrons have typically been performed with exponential
basis functions including the inter-electronic coordinates as a
linear factor. A typical Hylleraas basis function for lithium
would be

χ = r
j1
1 r

j2
2 r

j3
3 r

j12
12 r

j13
13 r

j23
23 exp (−αr1 − βr2 − γ r3) . (43)

Difficulties with performing the multi-centre integrals have
effectively precluded the use of such basis functions for
systems with more than three electrons. Within the framework
of the non-relativistic Schrödinger equation, calculations with
Hylleraas basis sets achieve accuracies of 13 significant digits
[116] for the polarizabilities of two-electron systems and
six significant digits for the polarizability of three-electron
systems [117, 118]. Inclusion of relativistic and quantum
electrodynamic (QED) corrections to the polarizability of
helium has been carried out in [116, 119], and the resulting
final value is accurate to seven significant digits.

Another correlated basis set that has recently found
increasingly widespread use utilizes the explicitly correlated
Gaussian (ECG). A typical spherically symmetric explicitly
correlated Gaussian for a three-electron system is written as
[120]

χ = exp

⎛⎝−
3∑

i=1

αir
2
i −

∑
i<j

βij r
2
ij

⎞⎠ . (44)

The multi-centre integrals that occur in the evaluation of the
Hamiltonian can be generally reduced to analytic expressions
that are relatively easy to compute. Calculations using
correlated Gaussians do not achieve the same precision as
Hylleraas forms but are still capable of achieving much
higher precision than orbital-based calculations provided the
parameters αi and βij are well optimized [120, 121].

4.5. Many-body perturbation theory

The application of many-body perturbation theory (MBPT)
is discussed in this section in the context of the Dirac
equation. While MBPT has been applied with the non-
relativistic Schrödinger equation, many recent applications
most relevant to this review have been using a relativistic
Hamiltonian.

The point of departure for the discussions of relativistic
many-body perturbation theory (RMBPT) calculations is the
no-pair Hamiltonian obtained from QED by Brown and
Ravenhall [122], where the contributions from negative-energy
(positron) states are projected out. The no-pair Hamiltonian
can be written in the second-quantized form as H = H0 + V ,
where

H0 =
∑

i

εi

[
a
†
i ai

]
, (45)

V = 1

2

∑
ijkl

(gijkl + bijkl)
[
a
†
i a

†
j alak

]
+

∑
ij

(VDHF + BDHF − U)ij
[
a
†
i aj

]
, (46)

and a c-number term that just provides an additive constant to
the energy of the atom has been omitted.

In equations (45)–(46), a
†
i and ai are creation and

annihilation operators for an electron state i, and the
summation indices range over electron bound and scattering
states only. Products of operators enclosed in brackets, such
as

[
a
†
i a

†
j alak

]
, designate normal products with respect to a
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closed core. The core DHF potential is designated by VDHF

and its Breit counterpart is designated by BDHF. The quantity
εi in equation (45) is the eigenvalue of the Dirac equation.
The quantities gijkl and bijkl in equation (46) are two-electron
Coulomb and Breit matrix elements, respectively:

gijkl =
〈
ij

∣∣∣∣ 1

r12

∣∣∣∣ kl

〉
, (47)

bijkl = −
〈
ij

∣∣∣∣α1 · α2 + (α1 · r̂12)(α2 · r̂12)

2r12

∣∣∣∣ kl

〉
, (48)

where α are Dirac matrices.
For neutral atoms, the Breit interaction is often a small

perturbation that can be ignored compared to the Coulomb
interaction. In such cases, it is particularly convenient to
choose the starting potential U(r) to be the core DHF potential
U = VDHF:

(VDHF)ij =
∑

a

[giaja − giaaj ], (49)

since with this choice, the second term in equation (46)
vanishes. The index a refers to all core orbitals. The Breit
(BDHF)ij term is defined as

(BDHF)ij =
∑

a

[biaja − biaaj ]. (50)

For monovalent atoms, the lowest-order wavefunction is
written as ∣∣�(0)

v

〉 = a†
v|0c〉, (51)

where |0c〉 = a
†
aa

†
b · · · a†

n|0〉 is the closed core wavefunction,
|0〉 the vacuum wavefunction and a†

v a valence-state creation
operator. The indices a and b refer to core orbitals.

The perturbation expansion for the wavefunction leads
immediately to a perturbation expansion for matrix elements.
Thus, for the one-particle operator written in the second-
quantized form as

Z =
∑
ij

zij a
†
i aj , (52)

perturbation theory leads to an order-by-order expansion for
the matrix element of Z between states v and w of an atom
with one valence electron:

〈�w|Z|�v〉 = Z(1)
wv + Z(2)

wv + · · · . (53)

The first-order matrix element is given by the DHF value in
the present case

Z(1)
wv = zwv. (54)

The second-order expression for the matrix element of a
one-body operator Z in a Hartree–Fock potential is given by

Z(2)
wv =

∑
am

zamg̃wmva

εav − εmw

+
∑
am

zmag̃wavm

εwa − εmv

, (55)

where εwa = εw + εa and g̃wmva = gwmva − gwmav . The
summation index a ranges over states in the closed core, and
the summation index m ranges over the excited states. The
complete third-order MBPT expression for the matrix elements
of monovalent systems was given in [51]. The monumental
task of deriving and evaluating the complete expression for

the fourth-order matrix elements has been carried out for Na
in [123].

The polarizabilities are obtained using a sum-over-state
approach by combining the resulting matrix elements and
either experimental or theoretical energies. The calculations
are carried out with a finite basis set, resulting in a finite sum
in the sum-over-state expression that it is equivalent to the
inclusion of all bound states and the continuum. Third-order
MBPT calculation of polarizabilities is described in detail, for
example, in [124] for Yb+.

The relativistic third-order many-body perturbation
theory generally gives good results for electric-dipole (E1)
matrix elements of lighter systems in the cases when the
correlation corrections are not unusually large. For example,
the third-order value of the Na 3s–3p1/2 matrix element agrees
with high-precision experiment to 0.6% [37]. However, the
third-order values for the 6s–6p1/2 matrix element in Cs and
7s–7p1/2 matrix element in Fr differ from the experimental data
by 1.3% and 2%, respectively [37]. For some small matrix
elements, for example 6s–7p in Cs, third-order perturbation
theory gives much poorer values. As a result, various
methods that are equivalent to summing dominant classes of
perturbation theory terms to all orders have to be used to obtain
precision values, in particular when sub-per cent accuracy is
required.

The relativistic all-order correlation potential method
that enables efficient treatment of dominant core–valence
correlations was developed in [125]. It was used to study
fundamental symmetries in heavy atoms and to calculate
atomic properties of alkali-metal atoms and isoelectronic ions
(see, for example, [126, 127] and references therein). In
the correlation potential method for monovalent systems, the
calculations generally start from the relativistic Hartree–Fock
method in the V N−1 approximation. The correlations are
incorporated by means of a correlation potential � defined
in such a way that its expectation value over a valence
electron wavefunction is equal to the RMBPT expression
for the correlation correction to the energy of the electron.
Two classes of higher-order corrections are generally included
in the correlation potential: the screening of the Coulomb
interaction between a valence electron and a core electron
by outer electrons, and hole–particle interactions. Ladder
diagrams were included to all orders in [128]. The correlation
potential is used to build a new set of single-electron states
for subsequent evaluation of various matrix elements using
the random-phase approximation. Structural radiation and
the normalization corrections to matrix elements are also
incorporated. This approach was used to evaluate black-body
radiation shifts in microwave frequency standards in [129, 130]
(see section 7.3.5).

Another class of the all-order approaches based on the
coupled-cluster method is discussed in the next subsection.

4.6. Coupled-cluster methods

In the coupled-cluster method, the exact many-body
wavefunction is represented in the form [131]

|�〉 = exp(S)|�(0)〉, (56)
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where |�(0)〉 is the lowest-order atomic wavefunction. The
operator S for an N-electron atom consists of ‘cluster’
contributions from one-electron, two-electron, . . ., N-electron
excitations of the lowest-order wavefunction |�(0)〉: S =
S1 + S2 + · · · + SN . In the single-double approximation of
the coupled-cluster (CCSD) method, only single and double
excitation terms with S1 and S2 are retained. Coupled-cluster
calculations which use a relativistic Hamiltonian are identified
by a prefix of R, e.g. RCCSD.

The exponential in equation (56), when expanded in terms
of the n-body excitations Sn, becomes

|�〉 = {
1 + S1 + S2 + S3 + 1

2S2
1 + S1S2 + · · · }|�(0)〉. (57)

Actual implementations of the coupled-cluster approach
and subsequent determination of polarizability vary
significantly with the main source of variation being the
inclusion of triple excitations or nonlinear terms and use
of different basis sets. These differences account for some
discrepancies between different coupled-cluster calculations
for the same system. It is common for triple excitations to be
included perturbatively. In this review, all coupled-cluster
calculations that include triples in some way are labelled
as CCSDT (or RCCSDT, RLCCSDT) calculations with no
further distinctions being made.

We can generally separate coupled-cluster calculations
of polarizabilities into two groups, but note that details of
calculations vary between different works. Implementations of
the CCSDT method in the form typically used for the quantum
chemistry calculations use Gaussian type orbital basis sets.
Care should be taken to explore the dependence of the final
results on the choice and size of the basis set. The dependence
of the dipole polarizability values on the quality of the basis
set used has been discussed, for example, in [35]. In those
calculations, the polarizabilities are generally calculated using
the finite-field approach [35, 36, 132]. Consequently, such
CC calculations are not restricted to monovalent systems, and
RCC calculations of polarizabilities of divalent systems have
been reported in [35, 133, 134].

The second type of relativistic coupled-cluster
calculations is carried out using the linearized variant of
the coupled-cluster method (referred to as the relativistic all-
order method in most references), which was first developed
for atomic physics calculations and applied to He in [135].
The extension of this method to monovalent systems was
introduced in [136]. We refer to this approach as the RLCCSD
or RLCCSDT method [37]. We note that the RLCCSDT
method includes only valence triples using the perturbative
approach. As noted above, all CC calculations that include
triples in some way are labelled as CCSDT. The RLCCSDT
method uses a finite basis set of B-splines rather than Gaussian
orbitals. The B-spline basis sets are effectively complete for
each partial wave, i.e. using a larger basis set will produce
negligible changes in the results. The partial waves with
l = 0–6 are generally used. Third-order perturbation theory
is used to account for higher partial waves where necessary.
Very large basis sets are used, typically a total of 500–700
orbitals are included for monovalent systems. Therefore,
this method avoids the basis set issues generally associated

with other coupled-cluster calculations. The actual algorithm
implementation is distinct from standard quantum chemistry
codes as well.

In the linearized coupled-cluster approach, all nonlinear
terms are omitted and the wavefunction takes the form

|�〉 = {1 + S1 + S2 + S3 + · · · + SN } |�(0)〉. (58)

The inclusion of the nonlinear terms within the framework
of this method is described in [137]. Restricting the sum in
equation (58) to single, double and valence triple excitations
yields the expansion for the wavefunction of a monovalent
atom in state v:

|�v〉 =
[

1 +
∑
ma

ρmaa
†
maa +

1

2

∑
mnab

ρmnaba
†
ma†

nabaa

+
∑
m	=v

ρmva
†
mav +

∑
mna

ρmnvaa
†
ma†

naaav

+
1

6

∑
mnrab

ρmnrvaba
†
ma†

na
†
r abaaav

] ∣∣�(0)
v

〉
, (59)

where the indices m, n and r range over all possible
virtual states while indices a and b range over all occupied
core states. The quantities ρma , ρmv are single-excitation
coefficients for core and valence electrons and ρmnab and
ρmnva are double-excitation coefficients for core and valence
electrons, respectively, ρmnrvab are the triple valence excitation
coefficients. For the monovalent systems, U is generally taken
to be the frozen-core V N−1 potential, U = VDF.

We refer to results obtained with this approach as
RLCCSDT, indicating inclusion of single, double and partial
triple excitations. The triple excitations are generally included
perturbatively. Strong cancellations between groups of smaller
terms, for example nonlinear terms and certain triple excitation
terms, have been found in [138]. As a result, an additional
inclusion of certain classes of terms may not necessarily lead
to more accurate values.

The matrix elements for any one-body operator Z given
in the second-quantized form by equation (52) are obtained
within the framework of the linearized coupled-cluster method
as

Zwv = 〈�w|Z|�v〉√〈�v|�v〉〈�w|�w〉 , (60)

where |�v〉 and |�w〉 are given by the expansion (59).
In the SD approximation, the resulting expression for the
numerator of equation (60) consists of the sum of the DHF
matrix element zwv and 20 other terms that are linear or
quadratic functions of the excitation coefficients [136]. The
main advantage of this method is its general applicability
to calculation of many atomic properties of ground and
excited states: energies, electric and magnetic multipole
matrix elements and other transition properties such as
oscillator strengths and lifetimes, A and B hyperfine constants,
dipole and quadrupole polarizabilities, parity-nonconserving
matrix elements, electron electric-dipole-moment (EDM)
enhancement factors, C3 and C6 coefficients, etc.

The all-order method yields results for the properties of
alkali atoms [31] in excellent agreement with the experiment.
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The application of this method to the calculation of alkali
polarizabilities (using a sum-over-state approach) is described
in detail in [29–31, 56].

In its present form described above, the RLCCSDT
method is only applicable to the calculation of polarizabilities
of monovalent systems. The work on combining the
RLCCSDT approach with the CI method to create a method
that is more general is currently in progress [139] and is
described in section 4.8.

4.7. Combined CI and many-body perturbation theory

Precise calculations for atoms with several valence electrons
require an accurate treatment of valence–valence correlations.
While finite-order MBPT is a powerful technique for atomic
systems with weakly interacting configurations, its accuracy
can be limited when the wavefunction has a number of
strongly interacting configurations. One example occurs
for the alkaline-earth atoms where there is strong mixing
between the ns2 and np2 configurations of 1S symmetry.
For such systems, an approach combining both aspects has
been developed by Dzuba et al [100] and later applied to
the calculation of atomic properties of many other systems
[53, 57, 140–143]. This composite approach to the calculation
of atomic structure is often abbreviated as CI+MBPT (we use
RCI+MBPT designations in this review to indicate that the
method is relativistic).

For many-electron systems, the precision of the CI method
is drastically limited by the sheer number of the configurations
that should be included. As a result, the core–core and core–
valence correlations might only receive a limited treatment,
which can lead to a significant loss of accuracy. The
RCI+MBPT approach provides a complete treatment of core
correlations to a limited order of perturbation theory. The
RCI+MBPT approach uses perturbation theory to construct an
effective Hamiltonian, and then a CI calculation is performed
to generate the valence wavefunctions.

The no-pair Hamiltonian given by equations (45) and
(46) separates into a sum of the one-body and two-body
interactions,

H = H1 + H2, (61)

where H2 contains the Coulomb (or Coulomb + Breit) matrix
elements vijkl . In the RCI+MBPT approach, the one-
body term H1 is modified to include a correlation potential
�1 that accounts for part of the core–valence correlations,
H1 → H1 + �1. Either the second-order expression for
�

(2)
1 or all-order chains of such terms can be used (see, for

example, [100]). The two-body Coulomb interaction term
in H2 is modified by including the two-body part of core–
valence interaction that represents screening of the Coulomb
interaction by valence electrons: H2 → H2 +�2. The quantity
�2 is calculated in second-order MBPT [100]. The CI method
is then used with the modified Heff to obtain improved energies
and wavefunctions.

The polarizabilities are determined using the direct
approach (in the valence sector) by solving the inhomogeneous
equation in the valence space, approximated from equation (6).

For the state v with total angular momentum J and projection
M, the corresponding equation is written as [53]

(Ev − Heff)|�(v,M ′)〉 = Deff|�0(v, J,M)〉. (62)

The wavefunction �(v,M ′) is composed of parts that have
angular momenta of J ′ = J, J ± 1. This then permits the
scalar and tensor polarizability of the state |v, J,M〉 to be
determined [53].

The construction of Heff was described in the preceding
paragraphs. The effective dipole operator Deff includes
random phase approximation (RPA) corrections and several
smaller MBPT corrections described in [144]. Non-RPA
corrections may be neglected in some cases [53]. There are
several variants of the RCI+MBPT method that differ by the
corrections included in the effective operators Heff and Deff , the
functions used for the basis sets and versions of the CI code. In
some implementations of the RCI+MBPT, the strength of the
effective Hamiltonian is rescaled to improve agreement with
binding energies. However, this procedure may not necessarily
improve the values of polarizabilities.

The contributions from the dominant transitions may
be separated and replaced by more accurate experimental
matrix elements when appropriate. Such a procedure is
discussed in detail in [141]. This hybrid RCI+MBPT approach
[13, 57, 145] has been used to obtain present recommended
values for the polarizabilities of the ns2 and nsnp3P0 states
of Mg, Ca, Sr, Hg and Yb needed to evaluate the blackbody
radiation shifts of the relevant optical frequency standards.

4.8. Combined CI and all-order method

The RCI+MBPT approach described in the previous section
includes only a limited number of the core–valence excitation
terms (mostly in second order) and deteriorates in accuracy for
heavier, more complicated systems. The linearized coupled-
cluster approach described in section 4.6 is designed to treat
core–core and core–valence correlations with high accuracy.
As noted above, it is restricted in its present form to the
calculation of properties of monovalent systems. Direct
extension of this method to even divalent systems faces two
major problems.

First, the use of the Rayleigh–Schrödinger RMBPT for
heavy systems with more than one valence electron leads to
a non-symmetric effective Hamiltonian and to the problem
of ‘intruder states’ [146]. Second, the complexity of the all-
order formalism for matrix elements increases rapidly with the
number of valence electrons. The direct extensions of the all-
order approach to more complicated systems is impractical.
For example, the expression for all-order matrix elements
in divalent systems contains several hundred terms instead
of the 20 terms in the corresponding monovalent expression.
However, combining the linearized coupled-cluster approach
(also referred to as the all-order method) with CI method
eliminates many of these difficulties. This method (referred
to as CI+all-order) was developed in [139] and tested on the
calculation of energy levels of Mg, Ca, Sr, Zn, Cd, Ba and
Hg. The prefix R is used to indicate the use of the relativistic
Hamiltonian.
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In the RCI+all-order approach, the effective Hamiltonian
is constructed using fully converged all-order excitations
coefficients ρma , ρmnab, ρmv , ρmnva and ρmnvw (see
section 4.6 for designations). The ρmnvw coefficients do
not arise in the monovalent all-order method, but are
straightforwardly obtained from the above core and core–
valence coefficients. As a result, the core–core and core–
valence sectors of the correlation corrections for systems with
few valence electrons are treated with the same accuracy as
in the all-order approach for the monovalent systems. The CI
method is used to treat valence–valence correlations and to
evaluate matrix elements and polarizabilities.

The RCI+all-order method employs a variant of the
Brillouin–Wigner many-body perturbation theory, rather than
Rayleigh–Schrödinger perturbation theory. In the Brillouin–
Wigner variant of MBPT, the effective Hamiltonian is
symmetric and accidentally small denominators do not arise
[139]. Comparisons of the RCI+MBPT and RCI+all-order
binding energies for the ground and excited states of a number
of two-electron systems reveal that the RCI+all-order energies
are usually more accurate by at least a factor of 3 [139].

The preliminary calculations of polarizabilities values in
Ca and Sr indicate better agreement of the RCI+all-order
ab initio results with recommended values from [13] in
comparison with the RCI+MBPT approach.

5. Benchmark comparisons of theory and
experiment

5.1. Noble gases and isoelectronic ions

Theoretical [36, 50, 104, 116, 117, 147, 148, 150, 151,
158, 280] and experimental [61, 62, 112, 152–155, 159–167]
values for the ground state polarizabilities of the noble gases
and isoelectronic ions are listed in table 4. References are
given in square brackets. The reference is given at the end
of the row when all data in this row come from the same
work. Otherwise, the references are listed together with the
particular value. The following method abbreviations are used
in the table: DC—dielectric constant, RI—refractive index,
SA—spectral analysis, RRPA—relativistic random phase
approximation, MBPT—many-body perturbation theory,
(R)CCSDT—(relativistic) coupled-cluster method. If any
triple excitations are included, CCSDT abbreviation is used
for coupled-cluster calculations, single-double coupled-cluster
calculations are labelled (R)CCSD. The RCCR12 calculation
[151] is a CCSDT calculation which allows for explicitly
correlated electron pairs. The pseudo-natural orbital coupled
electron pair approximation (PNO-CEPA) [104] can be
regarded as a precursor of modern CCSD-type models. We
first discuss the general trends of values for the noble gases as
a whole, and then consider He in more detail separately.

The most precise calculations of the noble gas
polarizabilities (apart from helium) have mostly been obtained
with coupled-cluster-type calculations. As we noted in the
previous sections, particular care has to be taken to ensure that
the basis set used in CC calculations is of sufficiently high
quality to obtain accurate values. One curious aspect about

the noble gases is their insensitivity to relativistic effects. The
relativistic correction to α0 is less than 1% for Ne, Ar and Kr
and is only about 2% for Xe [148].

One notable feature of table 4 is the good agreement of
the RRPA [50] with the much more elaborate coupled-cluster
and Hylleraas basis function calculations and experimental
data. The difference between RRPA values and other
calculations/experimental values for neutral systems ranges
from 10% for Ne to 1.6% for Kr (4% for He). The RRPA values
[50] improve significantly for the singly ionized systems and
differ from other values by 5% for Na+ and only 0.4% for
Rb+. The discrepancies are reduced further for doubly ionized
systems owing to the decrease in the relative contribution of
the correlation corrections beyond RRPA. Core polarizabilities
for the alkali and alkaline-earth atoms are important for
the construction of CICP-type models of these atoms. In
addition, the RRPA calculations of the core polarizabilities
are embedded into many calculations of the polarizabilities of
alkali and alkaline-earth ions (see, for example, [13, 56, 57]).

5.1.1. Helium. The helium atom is of particular interest
since it allows for the most precise calculations and benchmark
tests of theory and experiment. Within the framework of
the non-relativistic Schrödinger equation with infinite-nuclear-
mass Hamiltonian, the He polarizability value obtained using
a modified version of the generalized Hylleraas basis set [281]
is 1.383 192 174 455(1) au [116], achieving accuracy of 13
significant digits. This value is in agreement with the 1996
calculation of [117].

The finite mass effects increase the polarizability by about
0.000 62 au, with the mass polarization effect accounting for
0.000 049 au resulting in the 4He nonrelativistic value of
1.383 809 99 au [116, 119, 282]. The α2 relativistic corrections
contribute −0.000 080 35(2) au [116, 119, 282]. The α3 QED
corrections with exception of the terms containing electric-
field derivative of the Bethe logarithm were calculated in [116]
to give 0.000 0305 au. These latter terms were calculated in
[119], together with the estimates of the α4, α2me/MHe and
α3me/MHe, yielding the final value of 4He polarizability of
1.383 760 79(23) au listed in table 4.

A non-relativistic coupled-cluster calculation in the
infinite mass limit carried out in [147] provides a detailed
study of the dependence of the CCSDT results on the choice
of the basis set and tests of basis set convergence. The
values obtained with different uncontracted, even-tempered
basis sets varied in the fifth significant digit. Their final
value of α(∞He) = 1.383 763 au differs from the exact non-
relativistic Hylleraas value of 1.383 192 au [116, 117] at the
same level.

A microwave cavity was recently used to measure
the refractive index of helium giving a polarizability of
1.383 759 (13) au [63]. The best experiment has an uncertainty
of about 10 ppm and is in accord with the most accurate
theory value [119]. Availability of such precise theoretical and
experimental values of He polarizability allows for accurate
determinations of the thermodynamic temperature and may
lead to a more accurate value of the Boltzmann constant [63].
This application is discussed in more detail in section 7.5.
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Table 5. Ground and npj excited state polarizabilities (in au) of alkali atoms. Scalar (α0) and tensor (α2) polarizabilities are given for the
np3/2 states. Static polarizabilities for the np1/2 and np3/2 states are the same for the non-relativistic Hylleraas and CICP calculations.
Uncertainties in the last digits are given in parentheses. References are given in square brackets.

Li Na K Rb Cs Fr
α0 2s 3s 4s 5s 6s 7s Method

164.112(1)a [118] 164.50b [168] Th.
164.11(3)c [170] Hyl.
164.21 [171] 162.8 [105] 290.0 [105] 315.7 [105] CICP

165.50 [172] 301.28 [173] CCSD
163.74 [173] 162.9(6) [174] 291.12 [132] 316.17 [132] 396.02 [132] 315.23 [132] RCCSDT

163.0 289.1 316.4 401.5 315.1 RLCCSD [56]
164.08 [175] 289.3 [176] 398.4(7) [177] 313.7 [178] RLCCSDT
164(3) 159(3) 293(6) 319(6) 402(8) Expt. EH [67]
164.2(1.1)d [71] 162.7(8)d [72] 290.8(1.4)e [73] 318.8(1.4)e [73] 401.0(6)f [74] Expt.

162.6(3) 290.2(8) 318.6(6) 399.9(1.9) 317.8(2.4) Sum-ruleg [56]

α0 2p1/2 3p1/2 4p1/2 5p1/2 6p1/2

126.945 8(3) [118] aHyl.
126.95 [171] 360.7 [179] 615.3 [179] 854.4 [179] CICP
126.980 [175] 604.1 [176] 805(31) [30] 1338(54) [177] RLCCSDT

359.7 605 807 RCI+MBPT [180]

α0 2p3/2 3p3/2 4p3/2 5p3/2 6p3/2

126.995 [175] 614.1 [176] 1648(58) [177] RLCCSDT
361.4 616 870 RCI+MBPT [180]

α2 2p3/2 3p3/2 4p3/2 5p3/2 6p3/2

1.621 4(3) [118] Hyl.
1.6627 [171] −87.89 [179] −107.9 [179] −160.5 [179] CICP

−88.0 −111 −171 RCI+MBPT [180]
1.59 [175] −107.9 [176] −261(13) [177] RLCCSDT
1.64(4) [181] −88.3(4) [182] −107(2) [183] −163(3) [183] −261(8) [90] Expt.

−113(16) [184] −110.9(2.8) [185] −262.4(1.5) [186] Expt.

Method abbreviations: EH—E-H balance or beam deflection, sum-rule—hybrid f -sum rules with experimental data for primary
contribution, SA—spectral analysis, CI—configuration interaction, CICP—CI calculations with a semi-empirical core potential,
MBPT—many-body perturbation theory, RLCCSDT—linearized CCSD method with partial triple contributions. All values in the
sum-rule row explicitly include a core polarizability.
a Non-relativistic Hylleraas calculation for ∞Li.
b CI.
c Hylleraas calculations for 7Li that includes estimate of relativistic effects.
d Interferometry.
e Interferometry ratio.
f Cold atom velocity change experiments.
g Hybrid-RLCCSD data for the alkali ground states from [56] are listed as recommended ‘sum-rule’ data.

5.2. Monovalent systems

The theoretical [30, 35, 56, 84, 96, 105, 117, 132,
168, 169, 171–178, 180, 188–193, 283] and experimental
[67, 71–75, 90, 181, 183–186, 194–199, 284] values of a static
scalar (α0) and a tensor (α2) polarizabilities of alkali atoms
and scalar static polarizabilities of singly ionized monovalent
ions are compared in tables 5 and 6. The same designations
are used as in the noble gas table. The following additional
method abbreviations are used: EH—E-H balance or beam
deflection, sum-rule—hybrid f -sum rules with experimental
data for primary contribution, RESIS—resonant excitation
Stark ionization spectroscopy, RLCCSDT—linearized CCSD
method with partial triple contributions included. First, some
general remarks are made for monovalent systems, and then
Li, Na, Mg+ and Cs are considered in more detail.

The comparatively simple electronic structure of these
atoms render them amenable to accurate calculation by
the coupled-cluster and CICP methods. The sum-rule
polarizabilities [56] come from a hybrid calculation that use
the RLCCSD calculation as a template. However, the matrix
element for the resonance transition has been replaced by
high accuracy experimental matrix elements compiled in [31].
The ab initio RLCCSD values are in excellent agreement
(better than 1%) with these hybrid recommended values.
The semi-empirical CICP calculations reveal a similar level
of accuracy, although there has been some degradation in
accuracy for the heavier Rb system. The CI calculations
with a semi-empirical core potential (CICP) are in excellent
agreement with RLCCSDT calculations and experiment for
lighter systems. The non-relativistic CICP cannot be expected
to be particularly accurate for states with significant spin–orbit
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Table 6. Ground state polarizabilities (in au) of alkali-like ions. Uncertainties in the last digits are given in parentheses. References are
given in square brackets.

Be+ Mg+ Ca+ Sr+ Ba+ Ra+

2s 3s 4s 5s 6s 7s Method

24.496 6(1)a [188] Th. Hyl.
24.489(4)b [170] Th. Hyl.
24.495 [189] 35.66 [168] Th. CI
24.493 [188] 34.99 [84] 75.49 [190] 89.9 [191] Th. CICP

35.05 [84] 76.1(1.1) [192] 91.3(9) [193] 124.15 [96] 106.5 [178] Th. RLCCSD
75.88 91.10 123.07 105.37 Th. RCCSDT [35]

33.80(50) [194] 75.3 [195] 125.5(1.0) [196] Expt. SA
35.04(3) [84] 124.30(16) [197] Expt. RESIS
35.00(5) [198] 123.88(5) [199] Expt. RESIS
35.10 [200] 74.11 [200] cf -sum rule

Method abbreviations: SA—spectral analysis, RESIS—resonant excitation Stark ionization spectroscopy.
a Non-relativistic Hylleraas calculation for ∞Be+.
b Hylleraas calculations for 9Be+ that includes an estimate of relativistic effects.
c f -sum rule for valence polarizability with core-polarization from [187] added.

Table 7. Polarizability differences α0(npJ )–α0(ns) (in au) of the alkali atoms derived from Stark shift measurements. Values are negative
when the npJ state polarizability is smaller than the ground state polarizability. Stark shifts for the np1/2 and np3/2 states are the same for the
non-relativistic Hylleraas and CICP methods. Uncertainties in the last digits are given in parentheses. References are given in square
brackets. The experimental values and Hylleraas calculations [170] are those reported for 7Li, the CICP and RLCCSDT values are for ∞Li.

7Li Na K Rb Cs
2s–2p1/2 3s–3p1/2 4s–4p1/2 5s–5p1/2 6s–6p1/2 Method

−37.14(3) [170] Th. Hylleraas
−37.26 [105, 171] 197.9 [105, 179] 325.3 [105, 179] Th. CICP
−37.104 [175] 196.7 [56, 180] 314.8 [176] 488(4) [30, 180] 940(55) [177] Th. RLCCSDT
−37.146 (17) [91] 316.68(4) [201] 491.52(6) [201] 926.08(12) [92] Expt.
−37.11(33) [181] 196.86(45) [202] 315(3) [183] Expt.

2s–2p3/2 3s–3p3/2 4s–4p3/2 5s–5p3/2 6s–6p3/2

−37.089 MBPT [175] 198.4 [56, 180] 324.8 [176] 554 [56, 180] 1250(59) [177] Th. RLCCSDT
−37.30(42) [181] 198.0(6) [182] 322.3(3.2) [183] 538.5(3.2) [183] 1240.2(2.4) [186] Expt.

1264(13) [90] Expt.

splitting, e.g. the npJ states of Rb. The best that can be
expected is that the CICP calculation will do a reasonable
job of reproducing the statistically weighted npJ average
polarizability.

The results of the coupled-cluster calculations can
be sensitive to particular contributions that are included,
owing to cancellations of various terms (for example, some
triple excitations beyond perturbative treatment may partially
cancel with nonlinear single-double terms), leading to some
differences between different coupled-cluster calculations
[285]. The properties involving nd states (i.e. np
polarizabilities) are also sensitive to the number of partial
of waves included in the basis sets. Omission or inadequate
inclusion of partial waves with l > 3 may lead to poor results
for matrix elements involving nd states and, subsequently,
relevant excited-state polarizabilities.

Some of the most stringent tests of polarizability
calculations of monovalent systems come from Stark shift
measurements of alkali resonance transitions. Therefore, it is
useful to compare the experimental values for the polarizability
difference obtained from the Stark shift measurement
directly with theoretical predictions in these cases. Scalar
polarizability differences α0(npJ ) − α0(ns) (in au) of the

alkali transitions derived from Stark shift measurements are
compared with theoretical values in table 7 [30, 56, 90–92,
105, 170, 171, 175–177, 180–183, 186, 201, 202]. For the
elements heavier that Li, the finite mass effects are smaller
than the uncertainty of the calculation.

The tensor polarizability of an open shell atom can
be extracted from the difference in polarizabilities between
the different magnetic sub-levels. The scalar and tensor
polarizabilities [118, 171, 191–193, 203–206, 208, 209] of
some low-lying excited states of Li, Na, K, Rb, Ca+ and Sr+

are listed in table 8. There is a paucity of experimental data
for excited states, even for well-studied alkali atoms. The
polarizabilities of the nd5/2 states of Ca+ and Sr+ are given
owing to their importance for evaluation of the black-body
radiation shifts. Some older and less accurate Stark shifts and
tensor polarizabilities are omitted from these tables.

5.2.1. Lithium. The lithium polarizability could assume
a pivotal role in polarizability metrology if a multi-species
interferometer can be constructed that is capable of measuring
the ratio of the polarizability of other atoms to that of Li to a
relative accuracy of 10−4 [70]. In this case, a measurement
of such ratios in conjunction with a definitive calculation of
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Table 8. Excited state scalar α0 and tensor α2 polarizabilities (in au)
of monovalent systems. All experimental values are derived from
Stark shift experiments and the polarizability of the lower state is
added to the Stark shift to get the upper-state polarizability.
Uncertainties in the last digits are given in parentheses. References
are given in square brackets.

Atom State Experiment Theory

Li 3d3/2 α0 −15082(60) [203] −14928a [118]
−15044b [171]

α2 11626(68) [203] 11409a [118]
11490b [171]

3d5/2 α0 −15159(32) [203] −14928a [118]
−15044b [171]

α2 16308(52) [203] 16298a [118]
16414b [171]

Na 5s1/2 α0 21000(1200) [204] 21780*b [179]
4d3/2 α0 624000(7000) [204] 633800*b [179]

α2 −154700(2800) [204] −148700*b [179]
4d5/2 α0 627000(5000) [204]

α2 −213800(2000) [204] −212400*b [179]
K 5p3/2 α0 7118*b [179]

α2 −1057(161) [205] −1019*b [179]
Ca+ 3d5/2 α0 32.73b [190]

32.0(1.1)c [192]
3d5/2 α2 −25.20b [190]

−24.5(4)c [192]
Rb 6p3/2 α2 −2090(80) [206] −2040d [207]

6d3/2 α2 −42.2(28) [208] −559d [207]
6d5/2 α2 3780(200) [208] 3450d [207]
7p3/2 α2 −12900(800) [209] −12500d [207]

Sr+ 4d5/2 α0 61.77a [191]
62.0(5)c [193]

4d5/2 α2 −47.20a [191]
−47.7(3)c [193]

a Hylleraas basis functions.
b CICP.
c RLCCSDT.
d CA—Coulomb approximation.
Polarizabilities marked with an asterisk were not published, but
obtained from the matrix elements of [179].

the Li α0 could lead to new accuracy benchmarks for the
polarizabilities of a number of elements.

Correlated basis calculations are possible for lithium since
it only has three electrons. Consequently it has been possible
to calculate the polarizability to very high precision [117, 118].
The uncertainty in the experimental value of the polarizability
164.2(11) au [71] spans all of the theoretical results reported
in table 5.

The most recent Hylleraas calculation gave α0 =
164.112(1) au for ∞Li [118]. Including finite mass effects
gave α0 = 164.161(1) au for 7Li. An approximate treatment
of relativistic effects gave a recommended value of 164.11(3)
au [170]. Hylleraas polarizabilities could also serve as
benchmarks for coupled-cluster-type calculations which can
be applied to atoms heavier than lithium.

The most stringent test of Li polarizability calculations
is presently the Stark shift measurement of the 2s–2p1/2

transitions by Hunter et al [91], which gave a polarizability
difference of −37.14(2) au. The current theoretical benchmark
is the recent Hylleraas calculations that include finite mass and
relativistic effects [118, 170]. The 7Li Hylleraas polarizability

Table 9. Selected theoretical and experimental ground state
polarizabilities α0 (in au) of the sodium atom. Uncertainties in the
last digits are given in parentheses. References are given in square
brackets.

Method Year Value

Theory
HF [210] 1964 183
HF [104] 1984 189.2
PNO-CEPA [211] 1976 165.02
CICP [212] 1979 162.6
CICP [104] 1984 162.4
CICP [105] 2003 162.8
CI [168] 2007 164.50
RLCCSD [56] 1999 163.0
RCCSDT [173] 1999 164.89
CCSDT [213] 2001 165.06
RCCSDT [214] 2003 166.3
RCCSDT [172] 2004 165.5
CCSDT [174] 2005 162.88(60)

Experiment
f -sum [215] 1959 166
EH [66] 1974 165(11)
EH [67] 1974 159(3)
Interferometry [72] 1995 162.7(8)
Hybrid f -sum [56] 1999 162.6(3)
Interferometry [73] 2010 162.7(1.3)

HF—Hartree–Fock, PNO-CEPA—pseudonatural orbital
configuration expansion, EH—E-H balance or beam deflection.

difference of −37.14(4) au [170] is in excellent agreement
with the experimental polarizability difference [91]. The
RLCCSDT value of −37.104 is within two standard deviations
of the Hunter experiment while the CICP value is 4 standard
deviations too large. Table 7 shows that the Stark shift data
offer the most precise information to discriminate between
various theoretical calculations.

5.2.2. Sodium. A chronological list detailing selected values
[56, 66, 67, 72, 73, 104, 105, 168, 172–174, 210–215] of
the sodium ground state polarizability is presented in table 9.
The theory values are also sorted by the type of calculation.
The 3s → 3p resonant transition accounts for 98.8% of the
polarizability.

The most notable feature of this table is the excellent
agreement of the semi-empirical CICP-type calculations with
the recent high-precision experimental values of 162.6(3) au
[56] and 162.7(8) au [72]. All three calculations [104, 105,
212], performed over a period of three decades lie within the
experimental uncertainties.

The coupled-cluster calculations, with the exception of
the RLCCSD one [56], tended to give polarizabilities which
were 1–2% larger than the experiment until the most recent
RCCSDT calculation of Thakkar and Lupinetti [174] which
gave 162.9(6) au. The earlier CCSDT calculations tend to
overestimate the polarizability most likely due to basis set
issues [172, 173, 213, 214]. The same problem could also be
leading to the overestimation of the polarizability by the CI
[168] and CEPA-PNO [211] calculations.

By way of contrast, the RLCCSD calculation [56] gave
a polarizability of 163.0 au which is in agreement with
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experiment. We have discussed the differences of the
RLCCSD approach from the other coupled-cluster calculation
in section 4.6. An important feature here is that this calculation
uses a B-spline basis which is effectively complete [37,
56]. As we have discussed with the example of the He
CCSD polarizability calculation [147], coupled-cluster results
vary significantly with the choice of the basis set if it is
not sufficiently saturated. In summary, large (effectively
complete) basis sets are needed for precision polarizability
calculations by a coupled-cluster method.

The relativistic correction to the dipole polarizability
is about −1.0 au [174]. The three non-relativistic
CICP calculations all lie within 0.5% of the experimental
polarizability. As mentioned earlier, these calculations
implicitly include relativistic effects to some extent by tuning
the core polarization potential to the experimental binding
energies. The RLCCSD calculation uses a relativistic
Hamiltonian and intrinsically includes relativistic corrections.
The recommended value 162.6(3) is based on the RLCCSD
calculation with resonant 3s–3pj transition matrix elements
replaced by their experimental values.

The Na polarizability of 162.7(8) [72] obtained
by interferometry experiment served as the reference
polarizability in the determination of the K and Rb
polarizabilities by the interferometry ratio approach [73].
Table 5 shows excellent agreement of these values with the
hybrid RLCCSD f -sum polarizabilities of [56].

5.2.3. Mg+. We use Mg+ to illustrate the RESIS experimental
approach owing to recent advances in that area. Both the
potential and the problems of determining the polarizabilities
of ions using spectral analysis are evident by contrasting the
different values listed for Mg+ and Ba+. The original analysis
of the RESIS data for Mg+ reported a dipole polarizability of
35.00(5) au [198]. However, the contributions from the C7

and C8 terms of equation (36) can possibly corrupt the value
of α0 if they are significant as described in section 3.9. A
more detailed analysis of the polarization plot which explicitly
included the C7 and C8 terms was subsequently performed
in [84]. This polarization plot is shown in figure 2. The
data points including the explicit subtraction of the C7 and C8

terms show a higher degree of linearity. The revised analysis
resulted in α0 = 35.05(3) au. This is only 0.15% larger than
the original value and lies within the original error limits.

The treatment of non-adiabatic corrections is a much more
serious issue for the Ba+ ground state. Table 5 shows that
subsequent analysis of the RESIS data [197, 199] does not lie
within their mutual uncertainties. The most recent analysis of
RESIS data gave a polarizability of 123.88(5) au [199]. This
analysis explicitly included non-adiabatic effects from the low-
lying 5d excitation. However, non-adiabatic effects from the
6s–6p excitation are also significant and need to be included
for a RESIS polarizability to be regarded as definitive.

The influence of the non-adiabatic effects in the C7

and C8 terms of equation (36) can be minimized by taking
measurements at high values of L, e.g. L � 8. Unfortunately,
as the non-adiabatic corrections diminish with increasing L, the
states with very high L are more sensitive to Stark shifts due
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Figure 2. The polarization plot of the fine-structure intervals of Mg
for the n = 17 Rydberg levels. The �Ec1 intervals are corrected for
relativistic, second-order and Stark shifts. The �Ec2 intervals
account for 〈r−7〉 and 〈r−8〉 shifts. The linear regression for the
�Ec2 plot did not include the last point.

to stray electric fields. As the energy splitting of the Rydberg
states gets smaller at higher L, the polarizabilities of the (n, L)

levels then get larger due to the very small (n, L − n,L ± 1)

energy differences. To a certain extent one has to choose the
(n, L) states to navigate between the low-L Scylla [286] of
non-adiabatic corrections and the high-L Charybdis [286] of
Stark shifts [84].

5.2.4. Cesium. The Cs atom has been studied extensively
owing to the parity-violation experiments on this system [287].
A comprehensive set of Cs scalar and tensor polarizabilities
for the 7s–12s, 7p1/2–10p1/2, 7p3/2–10p3/2, 5d3/2–10d3/2 and
5d5/2–10d5/2 states [31, 74, 93, 177, 206, 216–225] taken from
[177] is given in table 10.

The polarizabilities listed in table 10 are in 103 au since
the values range in size from 300 au to 7 × 106 au. The results
of [177] are obtained from the sum-over-state calculation using
the RLCCSDT matrix elements and experimental energies
for a large number of states. The remaining contributions
from highly excited states were evaluated as well. In a
few cases, some of the RLCCSDT matrix elements have
been replaced with matrix elements extracted from experiment
[177]. Incorporating such highly excited states as 12s required
the use of a very large R = 220 au spherical cavity and large
B-spline basis sets. Extensive tests of numerical stability of
the calculations in such a large cavity have been conducted
to verify the accuracy of a finite basis set representation.
All matrix elements used to evaluate dominant polarizability
contributions were critically evaluated for their accuracy based
on the size and type of the dominant correlation corrections
and semi-empirical estimates of the omitted correlation terms.
Such uncertainty evaluation is discussed in more detail in
section 6.

The Coulomb approximation (CA) values [218] were also
computed with a sum-over-states approach. One interesting
feature of table 10 is the reasonable level of agreement between
the CA and RLCCSDT values for many of the polarizabilities.
The CA results are computed with wavefunctions which are
tuned to experimental energies. The radial matrix elements
that arise in the sum-over-states calculation are dominated by
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Table 10. Excited state scalar α0 and tensor α2 polarizabilities (in multiples of 1000 au) of the Cs atom. Uncertainties in the last digits are
given in parentheses. References are given in square brackets.

α0 7s 8s 9s 10s 11s 12s Reference

6.238 (41) 38.27(28) 153.7(1.0) 478(3) 1246(8) 2866(30) Th. RLCCSDT [177]
6.14 37.9 153 475 1240 2840 Th. CA [218]
6.238(6)a 38.06(25)b 478.5(1.1)c 1245(1)c 2867(2)c Expt.

α0 7p1/2 8p1/2 9p1/2 10p1/2

29.9(7) 223(2) 1021(7) 3499(19) Th. RLCCSDT [177]
29.4 221 1020 3490 Th. CA [218]
29.6(6) Expt. [224]

7p3/2 8p3/2 9p3/2 10p3/2

α0 37.5(8) 284(3) 1312(7) 4522(19) Th. RLCCSDT [177]
36.9 282 1310 4510 Th. CA [218]
37.9(8) Expt. [219]

α2 −4.41(17) −30.6(6) −135(2) −451(5) Th. RLCCSDT [177]
−4.28 −30.2 −134 −449 Th. CA [218]
−4.43(12)d −30.5(1.2)e Expt.
−4.33(17) Expt. [206]
−4.00(8) Expt. [224]

5d3/2 6d3/2 7d3/2 8d3/2 9d3/2 10d3/2

α0 −0.352 (69) −5.68(45) −66.7(1.7) −369(5) −1402(13) −4234(32) Th. RLCCSDT [177, 225]
−0.418 −5.32 −65.2 −366 −1400 −4220 Th. CA [218]

−60(8)f −1450(120)e −4185(4)g Expt.

α2 0.370 (28) 8.77(36) 71.1(1.2) 339(4) 1189(10)h 3416(26) Th. RLCCSDT [177, 225]
0.380 8.62 70.4 336 1190 3410 Th. CA [218]

74.5(2.0)h 332(16)e 1183(35)h 3401(4)g Expt.

5d5/2 6d5/2 7d5/2 8d5/2 9d5/2 10d5/2

α0 −0.453 (70) −8.37(55) −88.8(2.0) −475(5) −1777(14) −5316(38) Th. RLCCSDT [177, 225]
−0.518 −7.95 −87.1 −472 −1770 −5300 Th. CA [218]

−76(8)f −2050(100)e −5303(8)g Expt.

α2 0.691 (40) 17.33(50) 142(2) 678(5) 2386(13) 6869(34) Th. RLCCSDT [177, 225]
0.704 17.00 140 675 2380 6850 Th. CA [218]

129(4)f 731(40)e 2650(140)e 6815(20)g Expt.
7110(360) Expt. [220]

Experimental values: a derived from the [93] 7s–6s Stark shift measurement and the 6s result from [74],
breference [216],
creferences [217, 218],
dreference [219],
ereference [220],
freference [221],
greference [222],
hreference [223],
CA—Coulomb approximation, RLCCSDT—relativistic linearized coupled-cluster method with single, double and partial
triple excitations.

the shape of the wavefunction at large distances. Tuning the
wavefunctions to have the correct energy goes a long way to
ensuring that the long-range part of the wavefunction has the
correct shape.

A number of the experimental values in table 10 were
obtained from Stark shift experiments. In many cases, the
excited state polarizabilities are much larger than the Cs ground
state polarizability, so uncertainties in the ground state have
minimal impact on the overall uncertainty. The agreement
between the experimental and RLCCSDT polarizabilities is

excellent for the ns states; in most cases, the difference
between them is less than 1%. The situation is not so clear-cut
for the nd states. Differences between theory and experiment
are large in some cases, but so are the uncertainties of many
of the experimental values. However, the RLCCSDT results
were found in good agreement with more recent experiments
[222, 223, 225]. The RLCCSDT calculation [177] provided
critically evaluated recommended values for a large number
of Cs polarizabilities for which accurate experimental data are
not available.
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Table 11. Ground and excited (nsnp3P0) state scalar polarizabilities α0 (in au) of group II atoms and divalent ions. Uncertainties in the last
digits are given in parentheses. References are given in square brackets. The abbreviations conform to those used in tables 4 and 5.
Hybrid-RCI+MBPT include experimental data for some transitions.

Be Mg Ca Sr Ba Ra

2s2 3s2 4s2 5s2 6s2 7s2 Method

37.755 [121] Th. ECG
37.73(5)a [226] 71.7b [227] 157b [227] Th.
37.807 [228] 70.90 [229] 171.7 [230] Th. CI
37.29 [104] 70.74 [104] 156.0 [104] Th. CICP
37.69 [105] 71.35 [105] 159.4 [105] 201.2 [105] Th. CICP

158.00 [35] 198.85 [35] 273.9 [35] 248.56 [35] Th. RCCSDT
152 [133] 190 [133] 275.5 [134] Th. RCCSDT

37.76 [57] 71.33 [57] 159.0 [57] 202.0 [57] 272.1 [57] Th. RCI+MBPT
169(17) [68] 186(15) [69] 268(22) [69] Expt. EH

74.9(2.7) [231] 157.1(1.3) [57] 197.2(2) [57] 273.5(2.0) [57] Sum-rulec

2s2p 3Po
0 3s3p 3Po

0 4s4p 3Po
0 5s5p 3Po

0 6s6p 3Po
0

39.02 [28] 101.5 [232, 233] 295.3 [234] Th. CICP
101.2(3) [13] 290.3(1.5) [13] 458.3(3.6) [13] Th. Hybrid-RCI+MBPT

457.0 [141] −13 [53] Th. RCI+MBPT

Al+ Si2+ Zn Cd Hg Yb

3s2 3s2 4s2 5s2 5d106s2 4d146s2

24.2b [227] Th.
24.14(12) [235] 11.688 [88] 38.12 [113] 44.63 [113] 31.32 [113] Th. CICP
24.12 CI [229] 11.75 CI [229] 33.6d [145] 111.3d [13] Th.

138.9 [143] Th. RCI+MBPT
141(6) [143] Th. Hybrid-RCI+MBPT

39.2(8) [236] 140.4 [237] Th. RCCSDT
38.8(8) [236] 49.65(1.49) [64] 33.75 [238] Expt. RI

33.91 [65] Expt. RI
11.666(4) [239] Expt. RESIS
11.669(9) [88] Expt. RESIS

24.20(75) [231] Sum-rule

3s3p 3Po
0 4s4p 3Po

0 5s5p 3Po
0 6s6p 3Po

0 6s6p 3Po
0

24.62(25) [235] 67.69 [113] 75.29 [113] 55.32 [113] Th. CICP
54.6 [145] 315.9 [143] Th. RCI+MBPT

252(25) [240] Th. RCI+MBPT
266(15) [13] Th. RCI+MBPT
302(14) [143] Th. RCI+MBPT

a RCCSDT.
b MBPT.
c Hybrid-RCI+MBPT data for the alkaline-earth ground states from [57] are listed as recommended ‘sum-rule’ data.
d RCI+MBPT.

5.3. Two electron atoms and ions, ns2 1S and nsnp3 Po
0 states

Table 11 gives the polarizabilities for a number of divalent
species including the alkaline-earth atoms from [13, 28, 35,
53, 57, 64, 68, 69, 88, 104, 105, 113, 121, 133, 134, 141,
143, 145, 226–240, 299, 300]. The beryllium atom serves as
a theoretical benchmark since a very accurate value has been
obtained with a basis of exponentially correlated Gaussians
(ECG) [121]. The CICP [105] and RCI+MBPT polarizabilities
[57] lie within 0.2% of the ECG basis polarizability.

The sub-1% agreement between the highest quality
theory and experiment that occurred for the alkali atoms
is not observed for the alkaline-earth atoms owing to their
more complicated atomic structure and resulting mixing
of configurations. As we have described in section 4.7,
perturbative methods do not work well for strong valence–

valence correlations. The hybrid values for Ca and Sr based
on the RCI+MBPT calculations with the matrix elements for
the resonance transitions replaced by values derived from
experiments are respectively 1.1% and 2.5% smaller than the
ab initio RCI+MBPT estimates [57]. With the exception of
Be, our recommended values for alkaline-earth polarizabilities
are those obtained from the hybrid RCI+MBPT method. We
note very good agreement of the RCCSDT calculations of
[35] for the ground state polarizabilities of Ca, Sr and Ba
with the recommended values in all three cases. One of
the problems of the hybrid approach is the paucity of high-
precision experimental data for divalent atoms. Strontium
is the only atom where the polarizability has been quoted
with a precision approaching 0.1% [57]. This is due to
the availability of a high precision estimate of the resonant
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oscillator strength obtained by Yasuda and Katori using photo-
association spectroscopy [301]. However, an alternate photo-
association experiment [302] gave a lifetime 0.8% smaller than
the Yasuda and Katori value, so it may be over-optimistic to
assign an uncertainty of 0.1% to the strontium polarizability.
Currently the best estimate of the 5s5p 3Po

0 excited state
polarizability of Sr is accurate to 0.8% despite the use of
the experimental data. The Sr polarizabilities are discussed in
detail in [141].

The 27Al+ ion is included in table 11 since it is being used
in the development of a single ion optical frequency standard
[303]. The most reliable calculation of the ground state
polarizability α0 is probably given by the CICP calculation.
The only experimental value is of low precision (3%) and
was obtained by summing experimental oscillator strengths.
A CICP calculation of the isoelectronic Si2+ system gave a
polarizability that was within 0.2% of the value from a RESIS
experiment.

The scatter amongst the different calculations of ytterbium
underlines the difficulties of performing calculations in this
system. The source of the problem lies in the weakly
bound 4f14 core. There are 20% differences between two
of the RCI+MBPT calculations that are discussed in recent
work by Dzuba and Derevianko [143] and are attributed to
the inconsistent use of experimental matrix element for the
principal transition in [13]. Yb is of particular interest for many
applications, including ultracold atoms, optical frequency
standards and parity violation experiments.

There is a significant discrepancy for Cd between the
refractive index value of 49.65(1.49) au [64] and the calculated
value of 44.63 au from the RCICP calculation [113]. For
a number of reasons, including the measured values of the
oscillator strengths for the 5s2 1S–5s5p 1Po transitions, it has
been suggested that the experimental polarizability might be
overestimated [304].

The polarizabilities of other excited states, tensor
polarizabilities and Stark shifts in divalent systems are
discussed in the next subsection.

5.4. Other data

Ground state polarizabilities for the other selected systems
from [36, 50, 76, 84, 124, 168, 241–245, 247–258, 305] are
given in table 12. In this review, we list data for selected
systems with a monovalent ns ground state: Cu, Ag, Au,
Zn+, Hg+ and Yb+, and Al2+; ions for which recent RESIS
experiments have been performed: Si3+ and Kr6+; neutral
atoms with three and four valence electrons: Al, Ga, In, Tl, Si,
Sn, Pd and Ir; and U. The reader is referred to a recent review
[21] for atomic ground state polarizabilities of other systems
not listed herein.

One notable discrepancy between theory and experiment
occurs for the Al ground state where the best calculations
exceed the experiment value from an EH balance experiment
by 25% [36, 254]. The most precise experimental value in
table 12 is the RESIS value for Si3+. The final value 7.433 (25)
au comes from a reanalysis of the raw experimental data
[248, 306] that includes estimates of r−7 and r−8 polarization

corrections from RLCCSD and CICP calculations [84]. The
agreement between the RLCCSD polarizability of 7.419 au
[84] and the latest RESIS reanalysis is at the 0.2% level.

Table 13 shows a number of measurements and
calculations of the tensor polarizability of non-alkali systems
including Ca, Sr, Ba, Zn, Cd, Hg, Tl, Yb and Yb+ from
[36, 53, 141, 145, 206, 234, 240, 251, 253, 259–266, 268,
270–273, 275–279, 293]. These systems are the ones under
consideration as frequency standards or are being used in
atomic parity violation experiments. Measurements for some
states have been omitted from the table, and some older or less
precise results on Sc, Y, La and Lu [307], Cd [206], Ba [259,
266, 308], Hg [206], Yb [276], Sm and Eu [273] have also
been omitted.

One feature of table 13 is the relatively small number
of modern calculations performed. For example, the best
calculated polarizabilities for the 4s4p 1,3Po

1 states of Ca are
the non-relativistic CICP calculations. Another feature is
the relatively large uncertainties in many of the experimental
values. There are only five tensor polarizabilities with
uncertainties less than 2%. The most precisely measured
α2 of −43.04(40) au occurs for the Ba 6s6p 1Po

1 state.
The RCI+MBPT value of −51 au is incompatible with the
experiment.

The static polarizability differences (in au) for selected
transitions in Cs, Mg, Ca, Ba, Yb, Hg, Ga, Tl and Yb+ derived
from Stark shift measurements [93, 183, 216, 278, 279, 290–
293, 295, 296, 298] are compared with theoretical calculations
[53, 145, 216, 288, 297] in table 14. Total polarizability
differences are given for the cases where m values are listed,
otherwise scalar polarizability differences are listed.

There have been sub-1% experiments on four systems,
Cs, Ba, Yb and Hg. The ability of RCI+MBPT calculations
to reproduce the experiment for the divalent systems is mixed.
The agreement for the Hg 6s2 1S–6s6p 3Po

1 is excellent, but 10%
discrepancies exist for the Ba 6s2 1S–6s6p 1Po

1 and Yb 6s2 1S–
6s6p 3Po

1 transitions. However, the RCI+MBPT calculations
for Ba [53] and Yb [240] were among the first RCI+MBPT
calculations reported.

6. Evaluating uncertainties of theoretical values

6.1. Sources of theoretical uncertainty

As illustrated by the tables in the previous section, benchmark
comparisons of theory and experiment carry more value
when the theoretical results are accompanied by uncertainty
evaluations. Uncertainty bounds are particularly important for
the recommended values obtained by either high-precision
theory methods or by combination of theory values with
experimental data. The analysis of the theoretical uncertainties
has been stimulated by the applications that require an error
bound to be placed on the recommended values. Such
applications include parity violation, development of the next-
generation frequency standards, ultra-cold atom studies, etc.
Analysis of certain experiments requires input of some data
that cannot be easily measured and have to be obtained from
theory. In those cases, the uncertainties of the theoretical data
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Table 12. Ground state scalar polarizabilities α0 (in au) of other systems. Uncertainties in the last digits are given in parentheses.
References are given in square brackets.

Cu Ag Au Zn+ Hg+ Yb+

4s 5s 6s 4s 6s 6s Method

45.0 [241] 52.2 [241] 35.1 [241] 62.04a [124] Th.
46.50 [242] 52.46 [242] 36.06 [242] 18.84 [243] 19.36 [243] Th. RCCSDT
41.65 46.17 Th. CICP [244]

30(4)b [245] 15.4(5)b [246] Expt.

Al2+ Si3+ P3+ Kr6+ Cu+ Ag+

3s 3s 3s2 3d104s2 3d10 4d10

14.44 [168] 7.50 [168] 6.73 [229] Th. CI
7.399c [84] 5.36d [50] 8.829d [50] Th.
7.419e [84] 2.555f 6.57g [247] 9.21g [247] Th.
7.426 (12) [248] 2.69(4) [249] Expt. RESIS
7.433 (25)h [84, 248] 6.312 (10)i [250] Expt.

Al Ga In Tl

3s23p 4s24p 5s25p 6s26p

57.74j [36] 49.2k [251] Th.
59.5l [252] Th.

49.9 [253] 61.9 [253] 51.6 [253] Th. RCCSDT
46.2(20) [254] 68.7(8.1) [255] 51.3(5.4) [256] Expt. EH

Si Sn Pb Ir U

3s23p2 5s25p2 6s26p2

37.0 [252] Th. CI
37.17 [36] Th. CCSD
37.3 [257] 52.9 [257] 47.3 [257] Th. RCCSDT

42.4(11.0) [257] 47.1(7.0) [257] 54.0(6.7) [258] 137.0(9.4)m [76] Expt. EH

a Third-order MBPT.
b f -sum rule.
c CICP.
d RRPA.
e RLCCSD.
f RMBPT.
g RCCSD.
h RESIS reanalysis using theoretical estimates of higher order polarization corrections.
i Spectral analysis.
j CCSDT.
k RCI+MBPT.
l CI.
m Light deflection.

have to be included in the uncertainty of the final experimental
value. Evaluations of the theoretical uncertainties are still few
and cannot be carried out for all of the methods and in all
cases. Here, we discuss how some theoretical uncertainties
may be evaluated.

There are two distinct sources of theoretical uncertainties.
First, there is an uncertainty associated with the numerical
constraints upon the calculations. Many of the methods
that we discussed in this review are computationally very
intensive and restrictions are imposed so that the calculations
can be performed within a reasonable time. Most common
numerical uncertainties are associated with the choice of
the basis sets, configuration space, radial grid, termination
of the iterative procedures after achieving the specified
convergence tolerance, etc. Generally, it is possible to at least
estimate uncertainties caused by numerical issues by varying
the appropriate parameters and recording the changes in the

results. In many cases, it is possible to simply continue to
change parameters until the change in the resulting values is
sufficiently small or negligible.

For example, it is relatively easy to test the convergence
of B-spline basis sets. The dimensionality of the radial basis
in a RLCCSD calculation for each partial wave (e.g. ns, np1/2,
np3/2, . . . states) is steadily increased. The final values of
a property like the sodium ground state polarizability do
not change, within the quoted digits whether the B-spline
basis has a dimension of 40, 50 or 70 orbitals [56]. Using
only 20 orbitals, however, will lead to a change in the final
value that is not negligible. Also, truncating the partial
wave expansion at l = 3 will measurably affect the final
result, while including all partial waves up to l = 6 is
sufficiently complete in this case. Generally, such tests do
not have to be carried out at the level of the most accurate
calculation possible and it is sometimes sufficient to study the
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Table 13. Excited state scalar α0 and tensor α2 polarizabilities (in
au) of selected systems. Uncertainties in the last digits are given in
parentheses. References are given in square brackets.

Atom State Expt. Theory

Ca 4s4p 1Po
1 α0 242.4a [234]

α2 −54.7(1.2) [259] −55.54a [234]
4s4p 3Po

1 α2 12.9(3.2) [260] 14.2a [234]
10.54(6) [261]
12.1(8) [261, 262]

Sr 5s5p 1Po
1 α2 −63.1(7.6) [263] −58.62a [385]

α2 −57.55(60) [259]
5s5p 3Po

1 α0 498.8b [141]
α2 24.5(3.2) [264] 27.44a [385]

Ba 6s6p 1Po
1 α0 409b [53]

α2 −43.08(40) [259] −51b [53]
−43.4(1.2) [265]

6s5d 1D2 α2 85.2(2.4) [266] 81b [53]
6p2 3P2 α2 −109.7(4) [267]

Zn 4s4p 3Po
1 α2 7.35(32) [268] 6.73c [269]

Cd 5s5p 3Po
1 α2 7.11(32) [268] 6.30c [269]

5.10(24) [270]
5.35(16) [270]

Hg 6s6p 3Po
1 α0 60.6b [145]

α2 6.31(24) [206]
6.35(8) [271]
6.34(6) [272]

Al 3s23p 2Po
3/2 α0 57.74d [36]

α2 −8.15(40) [273] −8.53d [36]
Tl 6s26p 2Po

3/2 α0 81.2e [253]
79.6b [251]

α2 −24.2(3) [274, 275] −24.56e [253]
−25.0b [251]

Yb 6s6p 1Po
1 α0 501(200)b [240]

α2 −57.4(5.6) [276] −118(60)b [240]
6s6p 3Po

1 α0 278(15)b [240]
α2 24.26(84) [277] 24.3(1.5)b [240]

23.35(52) [278]
Yb+ 5d 2D3/2 α2 −82.5(1.3) [279]

a CICP.
b RCI+MBPT.
c One-electron model potential.
d CCSDT.
e RCCSDT.

lowest-order results or low-order MBPT values. In some
cases, it may become necessary to completely repeat the
entire calculation. However, such numerical problems may
be studied by well-understood conventional methods. In most
cases, numerical errors of the theoretical values can be made
small enough not to affect any of the significant figures that
are quoted or can be evaluated and quoted as uncertainty in
the last digit.

Investigations using the Hylleraas method typically
perform a series of calculations of increasing dimension while
keeping the nonlinear parameters the same. The convergence
of the data against a value of the total polynomial power
is studied. The total polynomial power for a correlated
wavefunction such as equation (43) would be

� = j1 + j2 + j3 + j12 + j13 + j23. (63)

Most expectation values in a Hylleraas calculation converge
as ∼1/�p. This result is exploited to give uncertainties in
energies, transition matrix elements, polarizabilities and other
quantities [117, 118].

Table 14. Static polarizability differences (in au) derived from
selected Stark shift measurements. Uncertainties in the last digits
are given in parentheses. References are given in square brackets.

Atom State Experiment Theory

Cs 6s−7s 5837(6) [93] 5834a [288]
5709(19) [289]

6s−8s 37660(250) [216] 37820(290)b [216]
Mg 3s2 − 3s3p 3Po

1
(m = 1) 32.1(4.0) [290] 37.6c [232]
(m = 0) 15.7(4) [291] 16.3c [232]

Ca 4s2 − 4s4p 3Po
1

(m = 0) 90.4(13.5) [292] 107.5c [234]
98.97(33) [293]

Ba 6s2 − 6s6p 1Po
1

(m = 0) −229.32(48) [294] −247d [53]
Yb 6s2 − 6s6p 3Po

1 160(60)d, e [240]
(m = 0) 123.85(38) [278] 110(18)d [240]

Hg 6s2 − 6s6p 3Po
1 26.68(48)e [295] 26.95d, e [145]

Ga 4s24p3/2– 4s25s 788(40)e [183]
Tl 6s26p1/2– 6s27s −900(48) [296] −830b [297]

−829.7(3.1) [298]
6p1/2–7p1/2 −4967(249) [296] −4866b [297]

Yb+ 6s–5d 2D3/2 −41.8(8.5)e [279]

a RMBPT.
b RLCCSDT.
c CICP.
d RCI+MBPT.
e Scalar polarizabilities used for both states.

The theoretical uncertainties of the second type are much
harder to evaluate. These are the uncertainties associated
with the particular theoretical methodology, for example, the
uncertainty associated with stopping a perturbation theory
treatment at third order. Ideally, the total uncertainty of
the theoretical value should give an estimate of how far any
value is from the actual (unknown) exact result. Evaluation
of the complete theoretical uncertainty is non-trivial since it
essentially involves the evaluation of a quantity that is not
known beforehand and cannot be determined by the theoretical
methodology adopted.

6.2. Sources of uncertainties in the sum-over-states
polarizability calculations

It is particularly problematic to evaluate full theoretical
uncertainties for the semi-empirical theoretical methods. In
this case, there may be no basis to make assumptions regarding
the missing theory. It may be possible to infer some
information based on the agreement of CICP calculations with
quality experiments for similar states in other members of the
same iso-electronic series. For example, the CICP ground
state polarizability for Al+ of 24.14 au has been assessed at
±0.5% [235] based on the 0.3% agreement between a CICP
calculation of the Si2+ polarizability and a RESIS experiment
[88, 239]. The assessment of uncertainties, for states that lack
validating information, as in the case of the 3Po

0 state of Al+

has a larger speculative element [235].
Several strategies exist for uncertainty evaluation for the

ab initio MBPT, correlation potential and all-order linearized
coupled-cluster (RLCCSDT) approaches. These strategies are
illustrated using the RLCCSDT method which utilizes the
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sum-over-states algorithm. For brevity, we refer to RLCCSDT
calculation as ‘all-order’ in the text below.

We use the example discussed in section 2.1.2, i.e. the
polarizability of the 5p1/2 state. Table 3 lists a detailed
breakdown of the contributions to this value. There are three
separate contributions: the main part (5s–11s and 4d3/2–9d3/2),
remainder (all other valence terms) and core contribution. The
uncertainty in each term of the main part has to be determined.
The energy levels of low-lying states are generally well known.
Therefore, the determination of the uncertainty here reduces
to the evaluation of the uncertainty in the corresponding
electric-dipole matrix elements. The relative uncertainty in
the polarizability contribution is twice the relative uncertainty
in the matrix element (see equation (17)).

The uncertainty of the remainder (higher n contributions)
as well as the uncertainty of the ionic core have to be
determined separately. The uncertainty in the RPA value of
the core is estimated from comparison of the RPA values for
noble gases with experiment and precision coupled-cluster
calculations (see table 4 and the corresponding discussion).
The evaluation of the uncertainty of the remaining highly
excited contribution has been discussed in great detail in recent
work on the Sr+ polarizabilities [193].

In most cases, all of the uncertainties are added in
quadrature to obtain the final uncertainty of the polarizability
value.

6.2.1. Determination of the uncertainties in E1 matrix
elements. Ultimately, the theoretical uncertainty estimates
in the polarizability need uncertainties in the E1 matrix
elements such as those listed in table 3. The starting point
of relativistic MBPT or all-order RLCCSD calculations for
monovalent systems is a DHF calculation. We refer to the
DHF value as the lowest order. Essentially all corrections
to that value come from Coulomb correlations. The Breit
interaction corrections to the E1 matrix elements are generally
insignificant at the present level of accuracy [309], and the
relativistic corrections are intrinsically included due to the
use of a relativistic Hamiltonian. Therefore, an uncertainty
evaluation requires an estimation of the missing part of the
correlation correction. The strategies to do so include:

• approximate evaluation of the size of the correlation
correction;

• evaluation of the size of the higher-order corrections;
• study of the order-by-order convergence of perturbation

theory;
• study of the breakdown of the various all-order

contributions and identification of the most important
terms;

• semi-empirical determination of dominant missing
contributions.

The first three strategies are aimed at providing a rough
estimate of the matrix element uncertainty. Separate third-
order RMBPT and all-order calculations have to be carried
out to evaluate the accuracy of the all-order values since the
extraction of third-order matrix elements from the all-order
values is impractical.

Table 15. Rb electric-dipole matrix elements (in au) calculated in
different approximations [310]. The rows labelled ‘correlation’ list
an estimate of the correlation contribution, determined as the
relative difference between the lowest-order and the all-order values.
The rows labelled ‘higher orders’ list an estimate of the fourth and
higher-order contributions, determined as the relative difference
between the third-order and the all-order values. Absolute values
are listed. The negative sign in front of the lowest-order 6d3/2–6p1/2

value indicates that the lowest order gives the incorrect sign for this
matrix element.

5s–5p1/2 5s–6p1/2 6s–5p1/2

Lowest order 4.819 0.383 4.256
Third order 4.181 0.363 4.189
All order 4.221 0.333 4.119
Correlation 14% 15% 3.3%
Higher orders 0.9% 9% 1.7%

8s–8p1/2 4d3/2–5p1/2 6d3/2–6p1/2

Lowest order 26.817 9.046 −0.047
Third order 25.587 8.092 2.184
All order 25.831 7.847 2.974
Correlation 3.8% 15% 100%
Higher orders 0.9% 3% 27%

The application of the first three strategies are illustrated
in table 15 where Rb E1 matrix elements are listed [310].
Three values are given for each matrix element: lowest-order
DHF value, the third-order RMBPT value and all-order values
obtained from an RLCCSD calculation. Third-order values
include the second-order, third-order and RPA corrections
iterated to all orders (see [51] for a detailed description of the
third-order MBPT calculations). The size of the correlation
correction is estimated as the relative difference between
the lowest-order and the all-order values. It is given as a
percentage change in the rows labelled ‘correlation’. The size
of the fourth and higher-order corrections is estimated as a
percentage difference between the third-order and all-order
values and listed in the rows labelled ‘higher orders’.

Study of the ‘correlation’ and ‘higher orders’ rows
gives some insight into the accuracy of the final all-order
values. First, it is noted that the corrections vary significantly
among the different transitions. A very rough estimate of
the uncertainty can be obtained by assuming that higher-
order corrections incorporated into RLCCSD are smaller
than the higher orders that are omitted by RLCCSD. Thus,
the difference between third and all-orders is taken as the
uncertainty. In most cases, this procedure will significantly
overestimate the uncertainty since table 15 shows that
contributions from all higher orders are smaller than the second
and third order in all cases except the small 5s–6p1/2 matrix
element. However, this procedure clearly indicates that while
the 5s–5p1/2 matrix element is probably accurate to better than
1%; the SD all-order 6d3/2–6p3/2 matrix element may only be
accurate to about 25%.

The last two strategies should be employed if more
accurate uncertainty evaluations are required. This can only be
done for certain cases within the framework of the RLCCSDT
method and requires substantial additional calculations and
the careful analysis of all available data. First, the breakdown
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of the all-order terms have to be studied. Triple excitations
need to be added at least partially. If certain types of the
contributions (associated with the so-called Brueckner orbital
terms) are dominant, they may be estimated by the semi-
empirical scaling described, for example, in [37]. This
procedure involves rescaling single-excitation coefficients
ρmv (see section 4.6) using experimental energies, and re-
running the entire matrix element calculation with the modified
coefficients. Obviously, this method is only expected to
produce more accurate values if the correlation correction is
dominated by the terms containing single valence excitation
coefficients. However, this is true in many cases. Nonlinear
terms may also be evaluated. The most extensive uncertainty
study of this type has recently been carried out for the atomic
quadrupole moments of Ca+, Sr+ and Ba+ in [311].

Detailed studies of the uncertainties of the electric-dipole
matrix elements are described, for example, in [30, 193,
216]. A brief description is given here for the case of the
4d5/2–5p3/2 matrix element in Sr+ [193]. This transition is
important in the evaluation of the Sr+ BBR shift. Correlation
corrections change the matrix element by about 20%. The
study of the correction breakdown indicates that the correlation
is dominated by a single term that contains single valence
excitations. Therefore, we carry out additional ab initio
calculations that partially include triple excitations, and also
perform scaled RLCCSD and RLCCSDT calculations. The
results of these four calculations are listed below. All data are
in atomic units. The first line corresponds to the ‘all-order’
lines in table 15:

RLCCSD 4.150

RLCCSDT 4.198

RLCCSD scaled 4.187

RLCCSDT scaled 4.173

Final 4.187 (14).

Note that scaled values are much closer together than the
SD and SDT ab initio values. The final value was taken to be
the RLCCSD scaled 4.187 (14) result (see, for example, [37]
and references therein for the discussion of this choice). The
uncertainty of 0.014 is determined as the maximum difference
between the scaled SD values and the ab initio SDT and scaled
SDT values.

7. Applications

7.1. Parity non-conservation

The goals of the parity nonconservation (PNC) studies in heavy
atoms are to search for new physics beyond the standard
model of the electroweak interaction by precise evaluation
of the weak charge Qw and to probe parity violation in the
nucleus by evaluating the nuclear anapole moment. The
study of PNC in the cesium 6s–7s transition involving both
high-precision measurement [287] and several high-precision
calculations provided an atomic-physics test of the standard
model of the electroweak interactions [312]. Moreover, an
accurate determination of the uncertainty in theoretical values
was necessary, leading to detailed studies of parity-conserving

quantities in Cs including the polarizabilities of the 6s, 6pJ and
7s states (see [31, 37, 313, 314] and references therein). The
analysis of the Cs experiment was instrumental in developing
methods to evaluate the uncertainties of the theoretical data
[315].

In the Cs experiment [287], the PNC amplitude was
measured relative to the Stark-induced tensor transition
polarizability βS (some works refer to this quantity as
the vector transition polarizability). The dc electric field
mixes states of opposite parity allowing electric–dipole
transitions between ns states. The Stark-induced amplitude
is expressed via the Stark-induced scalar and tensor transition
polarizabilities αS and βS . In the case of the Cs 7s–6s
transition, they are calculated as sum-over-states using the
expressions [315]

αS = 1

6

∑
n

〈7s‖D‖np1/2〉〈np1/2‖D‖6s〉

×
(

1

E7s − Enp1/2

+
1

E6s − Enp1/2

)
− 1

6

∑
n

〈7s‖D‖np3/2〉〈np3/2‖D‖6s〉

×
(

1

E7s − Enp3/2

+
1

E6s − Enp3/2

)
,

βS = 1

6

∑
n

〈7s‖D‖np1/2〉〈np1/2‖D‖6s〉

×
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− 1
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+

1

12

∑
n

〈7s‖D‖np3/2〉〈np3/2‖D‖6s〉

×
(

1

E7s − Enp3/2

− 1

E6s − Enp3/2

)
. (64)

These quantities have been extensively studied due to their
importance in PNC research [287, 313–316]. It is more
complicated to calculate βS accurately, in comparison to
αS , owing to severe cancellations between different terms
contributing to βS . The ratio of αS and βS has been measured
to high precision [316]. At the present time, the Cs experiment
is consistent with the standard model [312].

However, the precise measurement of PNC amplitudes
in Cs [287] also led to an experimental value of the small
contribution from the nuclear-spin-dependent PNC accurate
to 14%. The constraints on weak nucleon–nucleon coupling
constants derived from this experiment and calculations
in Cs were found to be significantly inconsistent with
constraints from deep inelastic scattering and other nuclear
experiments [317–319]. At this time, this discrepancy remains
unexplained.

More PNC experiments in other atomic systems, such as
Ra+, Yb and Fr are currently in progress. Experiments in Pb,
Bi and Tl have been conducted but theoretical calculations
of comparable accuracy are not available to permit a precise
comparison of experiments with the standard model. A
comparison of theoretical and experimental values of αS and
βS for Tl is given in [297].
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Figure 3. Magic wavelengths for the 2s–3p1/2 transition in Li. The upper state of the resonant transition is marked on top of the box.

(This figure is in colour only in the electronic version)

7.2. Ultracold atoms in optical lattices and quantum
computation

Quantum computation is a field of research which is aimed at
using the quantum nature of matter to produce fundamentally
new methods of computation. There are various approaches
to the experimental realization of the quantum computation.
In the quantum computation scheme relevant to this review,
the qubits are realized as internal states of neutral atoms
trapped in optical lattices or microtraps. This approach to
quantum computation has many advantages, such as the long
decoherence times of the internal states of the atoms, flexibility
in controlling atomic interactions, scalability, possible massive
parallelism and well-developed experimental techniques.

Trapping an atom or a group of atoms in an optical lattice
raises the possibility that the laser field used to create the
lattice might shift the energy levels of the lower and upper
states by different amounts. This can result in a wavelength-
(and intensity-) dependent shift of the clock transition. This
issue was first raised for the atomic clocks based on neutral
atoms trapped in optical lattices.

A solution to this problem was proposed independently
by Kimble et al [386, 387] and by Katori et al [55] who
suggested that the laser can be tuned to a magic wavelength
λmagic, where lattice potentials of equal depth are produced for
the two electronic states of the clock transition. The concept
of the magic wavelength is discussed in detail in the recent
review [388]. At such wavelength, the ac polarizabilities of
the two relevant states satisfy the condition

αupper(λ) = αlower(λ). (65)

State-insensitive bichromatic optical trapping was
recently described in [389].

Ab initio calculations of the dynamic polarizability are
valuable in making an initial estimate of the magic wavelength
prior to construction of the optical lattice. However, it is

possible to make very precise determinations of the magic
wavelength once the lattice has been constructed and atoms
have been trapped since the experimental design is that of a
null experiment. The experimental magic wavelength can be
used as a constraint upon the dynamic polarizability and to
refine the polarizability calculation.

Examples of a magic wavelength calculation are depicted
in figure 3, where polarizabilities of the Li 2s and 3p1/2 states
obtained using the RLCCSDT method are plotted. The magic
wavelengths are located at the crossing points of the two
curves. The ground state polarizability is nearly flat in this
wavelength region, while the 3p1/2 polarizability has several
resonances noted by the vertical lines.

One of the current goals of the quantum information
projects is to design an apparatus capable of interconnecting
‘flying’ and ‘stationary’ qubits. The ability to trap neutral
atoms inside high-Q cavities in the strong coupling regime is
of particular importance for such schemes. In a far-detuned
optical dipole trap, the potential experienced by an atom can
be either attractive or repulsive depending on the sign of
the ac Stark shift due to the trap light. The excited states
may experience an ac Stark shift with an opposite sign to
the ground state Stark shift which will affect the fidelity of
the experiments. McKeever et al [320] demonstrated state-
insensitive trapping of Cs atoms at λmagic = 935 nm while still
maintaining strong coupling for the 6p3/2–6s1/2 transition.

The magic wavelengths in Na, K, Rb and Cs atoms
for which the ns ground state and either of the first two
npj excited states experience the same optical potential
for state-insensitive cooling and trapping were evaluated in
[29]. This was accomplished by matching the dynamic
polarizabilities of the atomic ns and npj states using extensive
relativistic all-order calculations. Uncertainties in the dynamic
polarizabilities were also evaluated.

One requirement for the experimental realization of the
scalable quantum computer is the design of a quantum gate
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with low error rate which will allow for error correction.
Therefore, it is important to study the various decoherence
mechanisms and to search for ways to optimize gate
performance.

The issue of the mismatch of the polarizabilities of the
ground and excited states has also arisen in schemes to perform
quantum logical operations where it is a source of decoherence.
In the Rydberg gate scheme [321], the qubit is based on
two ground hyperfine states of neutral atoms confined in
an optical lattice. A two-qubit phase gate may be realized
by conditionally exciting two atoms to relatively low-lying
Rydberg states. The choice of this particular scheme results
from its potential for fast (sub-microsecond) gate operations.
Such a gate has been experimentally demonstrated recently
[322]. An atom in a Rydberg state will, in general, move in a
different optical lattice potential than that experienced by the
ground state. Therefore, the vibrational state of the atom in
the lattice may change after the gate operation is completed,
leading to decoherence due to motional heating. The optical
potential for a given state depends on its ac polarizability, so
we can seek to minimize this motional heating effect by the
choice of a particular Rydberg state or of the lattice photon
frequency ω. A method for accomplishing this by matching
the frequency-dependent polarizabilities α(λ) of the atomic
ground state and Rydberg state is described in [323, 324].

In a recent work [325], a novel approach to quantum
information processing, in which multiple qubits can be
encoded and manipulated using electronic and nuclear degrees
of freedom associated with individual alkaline-earth-metal
atoms trapped in an optical lattice, was proposed and analysed.
In this scheme, curves of dynamic polarizabilities are needed
for alkali and group II atom elements to locate the wavelengths
where one of the species can escape or where ac Stark shifts
cancel for a specific transition.

7.3. Atomic clocks

The current definition of the second in the International System
of Units (SI) is based on the microwave transition between
the two hyperfine levels of the ground state of 133Cs [343].
The present relative standard uncertainty of the Cs microwave
frequency standard is around 5×10−16. More accurate clocks
are needed for a variety of applications. Significant recent
progress in optical spectroscopy and measurement techniques
has led to the achievement of relative standard uncertainties
in optical frequency standards that are comparable to the Cs
microwave benchmark. The frequencies of feasible optical
clock transitions are five orders of magnitude greater than
the standard microwave transitions, and so smaller relative
uncertainties are potentially achievable. A list of optical
transitions recommended for this purpose has recently been
disseminated by the International Committee for Weights and
Measures [344].

There are two types of optical atomic clocks under active
investigation at the moment. Both types of clocks are based
on optical frequency transitions with a narrow linewidth. The
narrow linewidth mandates that the upper state of the clock
transition be a long-lived metastable state. One type of clock is
implemented using a group of cold atoms trapped in an optical

lattice. The second consists of a single laser-cooled ion. With
extremely low systematic perturbations and better stability and
accuracy, such optical frequency standards should exceed the
performance of the existing Cs standard. A commonly quoted
target for the new generation of optical frequency standards is
a fractional uncertainty of �ν/ν0 = 10−18 [5, 334, 345, 346].

There are two main interconnecting areas of theoretical
atomic clock research: prediction of atomic properties
required for new clock proposals and determination of
quantities contributing to the uncertainty budget. New clock
proposals require estimates of the atomic properties for details
of the proposals (transition rates, lifetimes, branching ratios,
magic wavelengths, scattering rates, etc) and evaluation of
the systematic shifts (Zeeman shift, electric quadrupole shift,
blackbody radiation shift, ac Stark shifts due to various
laser fields, etc). While a large fraction of these quantities
may be eventually measured, lack of knowledge of some of
these properties may delay experimental realization of new
proposals. In the case of well-developed proposals, one of the
main uncertainty issues is the blackbody radiation (BBR) shift.
The operation of atomic clocks is generally carried out at room
temperature, whereas the definition of the second refers to the
clock transition in an atom at absolute zero. This implies that
the clock transition frequency should be corrected for effects
of finite temperature, of which the leading contributor is the
blackbody radiation shift. The BBR shift is looming as a major
component in the uncertainty budget of the optical frequency
standards. Table 16 gives the BBR shifts in clock frequencies
of many proposed standards while table 17 gives the fractional
uncertainty budget for a 87Sr optical frequency standard [347].
The BBR shift is by far the largest source of uncertainty in
the Sr uncertainty budget [347]. It is noteworthy that the
second largest source of uncertainty is the ac stark shift caused
by the optical lattice (this estimate did not take into account
possible corrections due to M1 and E2 multipoles caused by
spatial inhomogeneities of the lattice field). Experimental
measurements of BBR shifts are difficult and high-precision
theoretical calculations are presently needed.

7.3.1. Blackbody radiation shifts. The BBR shift is the ac
Stark shift resulting from the ambient blackbody radiation field
surrounding the atom. The BBR energy shift of an atomic state
can be approximately calculated as [57]

�E = − 2
15 (απ)3α0(0)T 4(1 + η), (66)

where α is the fine structure constant. The static scalar
polarizability α0(0) and energy shift �E in equation (66)
are in atomic units. In this expression, the temperature in
K is multiplied by 3.166 8153 × 10−6 and �E is converted
to Hz by multiplying by 6.579 684 × 1015. The factor η is
a correction factor that allows for the frequency dependence
of the polarizability when the blackbody integral is performed
[11, 13, 235]. The factor η, referred to as the dynamic shift, is
most conveniently written as [13, 235]

η ≈ −40π2T 2

21αd(0)
S(−4). (67)

The dynamic shift is largest when the excitation energies of the
states that make the largest contribution to the polarizabilities
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Table 16. The blackbody radiation shifts for a number of proposed optical frequency standards. The polarizability difference, �α, is
negative when the upper state polarizability is smaller than the lower state polarizability. A negative polarizability difference means the
frequency shift is positive. All BBR shifts are evaluated at 300 K and values that include the dynamic shifts are indicated with an asterisk
(∗). The uncertainty in the temperature was assumed to be zero. Linewidths are converted from lifetimes, τ using �νnat = 1/(2πτ); natural
linewidths are given for fermionic isotopes for the ns2–nsnp clock transitions. Uncertainties in the last digits are given in parentheses.
References are given in square brackets. The composite CI calculation for Yb+ is a hybrid calculation that used CI to explicitly allow for
core excitations but also included core polarization using a semi-empirical core polarization potential.

Transition ν0 (×1015 Hz) �νnat (Hz) �α (a3
0 ) �νBBR (Hz)

∣∣∣�νBBR
ν0

∣∣∣ × 1015 Approach

Ca+(4s1/2–3d5/2) 0.411 [326] 0.14 [9] −44.1(1.5) 0.38(1) 0.925 RLCCSDT [192]
−42.8 0.369 0.895 CICP [190]

Sr+(5s1/2–4d5/2) 0.445 [327] 0.4 [9] −29.3(1.1) 0.250(9)∗ 0.562∗ RLCCSDT [193]
Hg+(5d106s–5d9

5/26s2) 1.06 [328] 1.8 [9] Cryogenic
Yb+(4f146s–4f136s2 2F7/2) 0.642 [329] ∼10−9 [9] 11.7 −0.101 0.16 f -sum composite CI

[329–331]
6.9(1.8) −0.057 (14) 0.089 f -sum (Lifetimes)

[329, 331]
Yb+(4f146s–4f145d 2D3/2) 0.688 [332] 3.1 [9] 42(8) −0.36(7) 0.53(10) Expt. [332]
Al+(3s2 1S–3s3p 3Po

0) 1.12 [333] 0.008 [9] 0.483 −0.004 2(32) 0.004(3) CICP [235]
−0.008(3) 0.007(3) Expt. [97]

In+(5s2 1S–5s5p 3Po
0) 1.27 [334, 335] 0.8 [9] < 30.7 >−0.264 < 0.20 Theory, using �α(Cd)

Mg(3s2 1S–3s3p 3Po
0) 0.655 [336] 0.000 14 [108] 29.9(7) −0.258(7)∗ 0.394 (11) RCI+MBPT [13]

30.1 −0.259 0.395 CICP [232]
Mg(3s2 1S–3s3p 3Po

1) 0.656 [337] 57 [108] 30.1 −0.259 0.394 CICP [232]
Ca(4s2 1S–4s4p 3Po

0) 0.454 [33] 0.0005 [108] 133.2(2.0) −1.171 (17)∗ 2.58(4) RCI+MBPT [13]
135.9 −1.170 2.58 CICP [234]

Sr(5s2 1S–5s5p 3Po
0) 0.429 [338] 0.0014 [108] 261.1(3.6) −2.354 (32)∗ 5.49(7) RCI+MBPT [13]

Yb(6s2 1S–6s6p 3Po
0) 0.518 [339] 0.008 [340] 155(15) −1.34(13)∗ 2.6(3) RCI-MBPT [13]

161(15) −1.39(13) 2.7(3) Hybrid RCI+MBPT [143]
Zn(4s2 1S–4s4p 3Po

0) 0.969 [336] 0.0025 [341] 29.57 −0.255 0.263 RCICP [113]
Cd(5s2 1S–5s5p 3Po

0) 0.903 [33] ∼10−2 30.66 −0.264 0.292 RCICP [113]
Hg(6s2 1S–6s6p 3Po

0) 1.13 [145] 0.11 [342] 21.0 −0.181 0.160 RCI+MBPT [145]
24.00 −0.207 0.183 RCICP [113]

are small. The dynamic shift is largest for strontium and
increases the BBR shift by 2.7% [13].

Under most circumstances, the energy shift of an atomic
level by a radiation field is dominated by the dipole component.
However, other multipoles might make a contribution when
the atomic level is part of a spin–orbit multiplet [13]. The
nsnp 3PJ levels of the alkaline-earth atoms have relatively
small energy splittings. The frequency shift due to magnetic
dipole (M1) transitions could become important at the 10−18

level of accuracy. The M1 frequency shift for Sr has been
estimated at 2.4 × 10−5 Hz [13]. The frequency shifts for
other alkaline earths can be estimated using the approximate
result δνX ≈ δνSrδESr(

3Po
1 − 3Po

0)/δEX(3Po
1 − 3Po

0) since the
magnetic dipole matrix elements between the two members of
the triplet show little variation between different species.

Table 16 lists the frequencies, linewidths and blackbody
radiation shifts for a number of potential optical frequency
standards from [9, 13, 97, 108, 113, 143, 145, 190, 192,
193, 232, 334, 235, 326–329, 331–333, 336–342, 348]. The
polarizability difference, �α, is negative when the upper state
polarizability is smaller than the lower state polarizability. All
BBR shifts are evaluated at 300 K. Linewidths are converted
from lifetimes, τ using �νnat = 1/(2πτ); natural linewidths
are given for fermionic isotopes for the ns2–nsnp clock
transitions. It is immediately apparent that the proposed ion
clocks generally have smaller polarizability differences than
the electrically neutral atoms in the lattice clocks.

Table 17. Fractional uncertainty budget for the 87Sr atomic
frequency standard [347]. The BBR shifts are evaluated at 296 K.
Corrections that include knowledge of polarizabilities are preceded
by an asterisk (*).

Correction Uncertainty
Effect (×1016) (×1016)

*Lattice Stark shifts −6.5 0.5
*Lattice hyperpolarizability

Stark shifts −0.2 0.2
*BBR shifts 52.1 1.0
*Probe laser Stark shifts 0.2 0.1
First-order Zeeman 0.2 0.2
Second-order Zeeman 0.2 0.02
Collisional shift 8.9 0.8
Line pulling 0.0 0.2
Servo error shift 0.0 0.5
Second-order Doppler shift 0.0 < 0.01
Totals 54.9 1.5

All of the proposed frequency standards, with the
exception of the Al+(3s2–3s3p 3Po

0) transition have T = 300 K
fractional shifts of 10−16 or higher. The frequency shifts of
the neutrals are generally larger than the singly charged ions.

7.3.2. Optical lattice clocks. Many of the issues that impact
on the optimal choice for an optical frequency standard are
present in the proposed strontium 1S–3Po

0 optical frequency
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standard [338, 349]. While Sr might be a desirable atom from
the perspective of practical experimentation, it is the most
susceptible to BBR shifts since the polarizability difference
between the two states is 259.8 au, giving a BBR shift of
2.35 Hz at T = 300 K [141].

Assuming that the polarizability difference can be
determined to 0.2% accuracy, the resulting BBR uncertainty
would be 0.0047 Hz which corresponds to a fractional
uncertainty of 1 × 10−17. Achieving such a level of precision
requires experimental determination of the five most important
transitions in the oscillator strength sum-over-states to a
precision of 0.1% [141].

Another problem associated with large polarizability
differences is the enhanced sensitivity with respect to
variations in temperature. A 1.0 K uncertainty in the
temperature at 300 K would of itself lead to a frequency
uncertainty of �ν = 0.031 Hz. The large BBR shift makes
a Sr standard particularly sensitive to an imprecisely known
temperature. These problems can be reduced by running
the clock at lower temperatures. For example, the BBR
uncertainties stated above can be reduced in size by a factor
of more than 200 by maintaining the clock at liquid nitrogen
temperatures.

Sensitivity to BBR fields has resulted in a proposal
that mercury would be a superior candidate for an optical
frequency standard [145] despite the inconvenience of much
shorter optical lattice wavelengths. Cadmium and zinc have
also been identified as candidates with reduced BBR shifts
[113, 341]. The drawback of the group IIB atoms
are the greater uncertainties in the determination of the
polarizabilities. The underlying (nd)10 shell of the group IIB
atoms implies large core polarizabilities, stronger valence–
core correlations and valence expectation values that are
slower to converge. In addition, the resonant oscillator strength
for these atoms is about 1.4, as opposed to 1.7–1.8 for the group
II atoms. Consequently the use of a high precision resonant
transition matrix element from a photo-association experiment
would do less to minimize the uncertainty than in a group II
atom.

Ytterbium has also been the subject of increased
experimental interest [339]. This system also suffers from
the drawback that it has a large polarizability. Furthermore, a
first-principles calculation of the polarizability to a guaranteed
accuracy of even 1% is a very difficult proposition. The
most weakly bound core shell is the (4f)14 shell and the Yb2+

polarizability is ∼9 au [124].
The atoms that have so far been used in most experiments

are those that are amenable to cooling and trapping. The lighter
group II atoms, Be and Mg, have the disadvantage that they are
difficult to cool, but have the advantage of much smaller BBR
shifts [337]. Further, it would be easier to compensate for the
effect of the BBR shift in Be and Mg than in most other atoms.
Besides having smaller shifts, these are relatively light atoms
with small core polarizabilities, so the uncertainties associated
with any calculation will be smaller than those of other lattice
clocks. These considerations apply most strongly to beryllium.
In this case, the polarizability difference of the states in the
clock transition is only 1.3 au (table 11). Beryllium has only

four electrons, so calculations with ECGs are possible and
should ultimately be able to achieve a precision approaching
0.01 au.

The dynamic correction to the BBR shift makes a finite
contribution when the precision reaches the 10−18 Hz level
[57, 193] but should not lead to a significant increase in the
BBR shift uncertainty. The sum rule for evaluation of S(−4)

is more strongly dominated by a few major transitions than
α0 and the relative uncertainty in S(−4) will not be any larger
than that of α0. Further, the dynamic contribution will be small
so the need for a precise evaluation is reduced.

One recent complication has been the realization that
higher order multipoles could have an impact upon the
magic wavelength. The inhomogenous spatial distributions
of the electric and magnetic fields in the standing wave
patterns that define the lattice can lead to energy shifts in the
atomic vibrational motion [350]. This requires the definition
of a motion insensitive magic wavelength which requires
knowledge of the frequency-dependent electric quadrupole
and magnetic dipole polarizabilities [351].

7.3.3. Ion clocks. Ion state polarizabilities are generally
smaller than those for neutral atoms because the electrons are
more tightly bound. None of the ion clocks have polarizability
differences that exceed 50 au.

The Al+(3s2–3s3p 3Po
0) transition has the smallest BBR

shift of any ion clock due to the fortuitous near equality of
polarizabilities of the two states in the clock transition. The
CICP BBR shift is only −0.004 2(32) Hz [235] while the
experiment gave −0.008(3) Hz [97]. However, the technical
requirements for construction of an Al+ clock are much more
demanding since the clock transition and cooling laser are in
the ultraviolet [333].

While the Ca+ system is monovalent, calculation of its
polarizabilities using the RLCCSDT method is a more difficult
proposition than for the iso-electronic neutral potassium [192].
The difficulties lie in the determination of the 3d state
polarizability. First, the 3d state is quite compact and its
charge distribution does perturb the charge distribution of
the 3s23p6 core. This leads to a more slowly convergent
perturbation theory or CI expansion. Second, about 30%
of the polarizability comes from the 3d → nf excitations.
The sum-over-states in this case is not dominated by a
single transition, so discrete excitations up to the 12f have
to be included. Furthermore, the continuum contribution is
significant. Including states up to 12f means a much larger
B-spline basis needs to be used, which in turn makes the
calculation more exacting. Similar considerations impact the
BBR shift calculation for Sr+ [193].

The relative uncertainties associated with the determina-
tion of the BBR shifts for the two proposed Yb+ standards
are also large due to the underlying 4f14 core. This is partly
mitigated by the small size of the BBR shifts. The BBR shift
for In+ was determined by assuming that the polarizability dif-
ference would be smaller than that of cadmium. This estimate
will be an overestimate since the In+ ion will have smaller
polarizabilities than cadmium.
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Table 18. Summary of the recent theoretical calculations of the Stark shift coefficient k in 10−10 Hz (V m−1)−2 and the BBR radiation shift
parameter β for transitions between the ground hyperfine states and comparison with the experiment. All BBR shifts are evaluated at 300 K.
Uncertainties in the last digits are given in parentheses. References are given in square brackets.

Atom Transition Method k β

7Li 2s(F = 2 ↔ F = 1) RLCCSDT [175] −0.058 24 −0.5017×10−14

Expt. [352] −0.061(2)
23Na 3s(F = 2 ↔ F = 1) RLCCSDT [353] −0.1285 −0.5019×10−14

Expt. [352] −0.124(3)

39K 4s(F = 2 ↔ F = 1) RLCCSDT [176] −0.0746 −1.118×10−14

Expt. [352] −0.071(2)

87Rb 5s(F = 2 ↔ F = 1) RLCCSDT [354] −1.240(4) −1.256(4)×10−14

RCI+MBPT [130] −1.24(1) −1.26(1)×10−14

Expt. [352] −1.23(3)
133Cs 6s(F = 4 ↔ F = 3) RLCCSDT [355] −2.271(8) −1.710(6)×10−14

Theory, CP [129] −2.26(2) −1.70(2)×10−14

Expt. [356] −2.271(4) −1.710(3)×10−14

Expt. [357] −2.05(4) −1.54(4)×10−14

137Ba+ 6s(F = 2 ↔ F = 1) CP [130] −0.284(3) −0.245(2)×10−14

171Yb+ 6s(F = 1 ↔ F = 0) RMBPT3 [124] −0.1796 −0.0983×10−14

Theory, CP [130] −0.171(9) −0.094(5)×10−14

199Hg+ 6s(F = 1 ↔ F = 0) CP [130] −0.060(3) −0.010 2(5)×10−14

CP—correlation potential method; see section 4.5 for method description.

7.3.4. Experimental possibilities. So far discussions
have focused largely on theory-based approaches to the
determination of the relevant polarizabilities. However,
experimental avenues do exist. For example, the polarizability
of the Si2+ ground state, an ion iso-electronic with Al+, has
been determined by RESIS to an accuracy of better than 0.1%.
A RESIS experiment on Al+ should be able to achieve a similar
precision. Similarly, a RESIS experiment should be able to
determine the In+ ground state polarizability to an accuracy
of 0.1%. However, an improved theoretical analysis would
be needed to get RESIS polarizabilities for Ca+, Sr+ and Yb+.
The application of RESIS to excited parent ions also remains
a challenge.

The actual knowledge of the ground and excited state
polarizabilities is mainly important because it enables the
determination of the BBR Stark shift. Direct Stark shift
experiments, on the other hand, might ultimately give the
most accurate polarizability differences. Table 7 shows that
experiments on the ns–np1/2 transitions of the alkali atoms
have yielded polarizability differences with uncertainties less
than 0.1 au.

Photo-association (PA) experiment lifetimes have been
utilized in estimating polarizabilities with sub-1% precision.
However, PA spectroscopy has never been applied to measure
transitions to an excited state, and excited state polarizabilities
have significant contributions from more than one transition.

7.3.5. BBR shifts in microwave frequency standards. A BBR
shift also exists for the different hyperfine states involved in
microwave frequency standards. In the case of the optical
transitions, the lowest (second) order polarizabilities of the
clock states are different. In the case of the ground-state
hyperfine microwave frequency standards, the lowest (second)

order polarizabilities of the clock states are identical and the
lowest-order BBR shift vanishes. To evaluate the BBR shift,
third-order F-dependent polarizabilities must be calculated.

The third-order F-dependent (F is the angular momentum
of the hyperfine state) static polarizability, αF can be written
[355] as

αF = AgIμn(2T + C + R), (68)

where A is an angular coefficient, gI is the nuclear
gyromagnetic ratio and μn is the nuclear magneton. The
quantities T, C and R arise from third-order perturbation theory
and typically involve two electric-dipole matrix elements
〈i‖D‖j 〉 and a matrix element involving the magnetic
hyperfine operator T (1). For example, term T is given by
[355]

T =
∑
m	=v

∑
n	=v

A1δjnjv

〈v‖D‖m〉〈m‖D‖n〉〈n‖T (1)‖v〉
(Em − Ev) (En − Ev)

.

Here, A1 is the angular coefficient and sums over m, n run over
all possible states allowed by the selection rules.

The BBR shift at room temperature effecting the Cs
microwave frequency standard has been calculated to high
accuracy (0.35% and 1%) in [129, 355], respectively, implying
a 6 × 10−17 fractional uncertainty. These calculations are in
agreement with a 0.2% measurement [356].

A summary of recent theoretical calculations [124, 130,
175, 353–355] of the Stark shift coefficient k in 10−10 Hz
(V m−1)−2 and the BBR radiation shift parameter β

for transitions between the ground hyperfine states and
comparison with experiment [352, 356] is given in table 18.
All BBR shifts are evaluated at 300 K. The Stark coefficient k
is defined as

δν = kE2, (69)
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Table 19. The lowest-order dispersion coefficient, C6 for homonuclear atom–atom pairs. The hybrid-RLCCSD replaces the calculated
matrix element for the resonance transition with an experimental value.

Method ∞Li Na K Rb Cs Fr

Hylleraas [118] 1393.42(5)
Model potential [358] 1388 1472 3813 4426 6331
CICP [105] 1394.6 1561 3905 4635
RLCCSD [56] 1564 3867 4628 6899 5174
Hybrid-RLCCSD [56, 359] 1390(2) 1556(4) 3897(15) 4691(23) 6851(74) 5256(89)
Expt. 3921 [360] 4698(4) [361] 6877(24) [74]
Expt. 6860(25)[362]

where δν is the frequency shift in the static electric field. The
Stark coefficient for the transition between states F and I is
related to the polarizability as

k = − 1
2 [α0(F ) − α0(I )]. (70)

The parameter β of the relative temperature-dependent BBR
shift of the microwave frequency standard is defined as

δν

ν0
= β

(
T (K)

T0

)4
(

1 + ε

(
T (K)

T0

)2
)

, (71)

where T0 is generally taken to be the room temperature, 300 K,
ε parameterizes the lowest-order (in T) contribution to the
dynamic correction η in equation (66) and ν0 is clock transition
frequency. The parameter β is calculated directly from the
Stark-shift coefficient k defined by equations (69)–(70) as

β = k

ν0
(831.9 V m−1)2. (72)

7.4. Long-range interatomic potentials

The long-range dispersion interaction between two spherically
symmetric atoms has the form

Vdisp = −C6

R6
− C8

R8
− C10

R10
· · · , (73)

where the Cn coefficients are called the dispersion coefficients.
The calculation of the dispersion interaction is closely related
to polarizability calculations. For example, the C6 parameter
for two atoms, a and b, in states m and n, can be evaluated
using the oscillator strengths as

C6 = 3

2

∑
ij

fmifnj

�Emi�Enj (�Emi + �Enj )
. (74)

The equation is reminiscent of equation (10) and any
calculation using equation (74) automatically generates the
necessary information to generate the dipole polarizability.
The dispersion coefficients can also be directly evaluated from
the polarizability at imaginary frequencies as

C6 = 3

2

∫ ∞

0
αa,0(iω) αb,0(iω) dω. (75)

The polarizability of state n at imaginary frequencies is written
as

α0(iω) =
∑

i

fni(
�E2

ni + ω2
) . (76)

Equation (73) and subsequent expressions given by
equations (74), or (75), are the best way to evaluate long-
range atom–atom interactions. Orthodox quantum chemistry

techniques are not well suited to determining the very small
energies of the long-range potential.

The importance of a good description of the long-
range atom–atom interaction increases at very low energies.
Determination of the dissociation energy for many molecules
often involves an extrapolation from the rovibrational energy
levels of the highest vibrational states [363]. This has been
accomplished in the semi-classical (WKB) LeRoy–Bernstein
procedure [363]. Similarly, the determination of the scattering
length in cold-atom collisions often requires knowledge of the
dispersion parameters [364].

Better information about the specific values of the
dispersion coefficients for many atoms has become available
primarily because of the importance of such data for the
field of cold-atom physics. There have been the near exact
non-relativistic calculation by Yan and co-workers on H, He
and Li using Hylleraas basis sets [117, 118, 365–369]. An
important series of calculations on the ground and excited
states of the alkali atoms were reported by Marinescu and
co-workers [358, 370–373]. However, these calculations
were performed with a model potential approach that omitted
some dynamical features (e.g. transitions from the core) that
should be included. Later calculations with semi-empirical
Hamiltonians by Mitroy and co-workers [105, 171, 179,
232–234, 374] and RLCCSD/RCI+MBPT calculations by
Derevianko and co-workers [31, 56, 57, 180, 375, 376] should
be preferred since the underlying atomic structure descriptions
are superior. These calculations encompass both the alkali
and alkaline-earth atoms. Table 19 shows that CICP and
RLCCSDT calculations of C6 for homo-nuclear pairs of alkali
atoms agree at the 1% level. This agreement extends to
heteronuclear pairs of alkali atoms [105] and to alkaline-earth
atoms [57].

7.5. Thermometry and other macroscopic standards

The present definition of temperature is based on the triple
point of water which is set to 273.16 K. An alternative approach
would be to fix the Boltzmann constant, kB , and then measure
the thermometric properties of a substance which depend on
the product kBT. At present, the best estimate of the Boltzmann
constant was determined by the speed of sound in helium gas.
Acoustic gas thermometry (AGT) has resulted in a value of kB

accurate to 1.8 ppm [377, 378].
The speed of sound is not the only thermometric property

that can be used to determine kB . Two other properties are
the dielectric constant for helium gas and the refractive index
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for helium gas [63, 378, 379]. The most recent refractive
index experiment using a microwave cavity [63] has given the
dipole polarizability to an accuracy of 9.3 ppm. If the 4He
polarizability is taken as a known quantity from theory, then
the microwave cavity experiment admits other interpretations.
Taking the polarizability and diamagnetic susceptibility as
known quantities, the refractive index experiment yields a
value for the universal gas constant, R = 8.314 487(76),
which is not far removed in precision from the recommended
value of 8.314 472 (15) [377]. Boltzmann’s constant, the
definition of the mol and the universal gas constant are all
inter-related through the identity, R = kBNA.

7.6. Atomic transition rate determinations

The sum-over-states approach described in section 2.1.2 is
generally used to determine the polarizabilities from calculated
or experimental oscillator strengths or E1 matrix elements. It
is possible to reverse the process for systems which have a
precisely known polarizability that is dominated by a single
strong transition. A good example occurs for the cesium atom
[380] where the dipole polarizability [74] and line strength
ratio [381] have been measured to high accuracy.

The ground state static polarizability α0 can be written as

α0 = α6p + α′
v + αcore, (77)

where α6p is the contribution of the resonance excitations to
the polarizability, i.e. from 6s–6p1/2 and 6s–6p3/2 transitions,
and α′

v includes contributions from all other excited states.
Rearranging and expressing α6p in terms of the 6s → 6p1/2

line strength gives

S6s−6p1/2 = α0 − α′
v − αcore

1

3�E6s−6p1/2

+
R

3�E6s−6p3/2

. (78)

The factor R is the ratio of the line strengths of the spin–orbit
doublet. Using α0 = 401.0(6) [74], R = 1.9809(9) [381],
the ionic core polarizability of 15.644(4) [112] that needs to
be corrected for the presence of the valence electron by the
term αcv = −0.72, α′

v = 1.81 yields S6s−6p1/2 = 20.308 (42)

and S6s−6p3/2 = 40.227 (84). The corresponding values for
the reduced matrix elements in atomic units are 4.510(4)
and 6.347(5) for the 6s–6p1/2 and 6s–6p3/2 transitions,
respectively. The uncertainties of these values are dominated
by the uncertainty in the experimental value of α0.

A similar approach has been used to determine the
multiplet strengths for the resonance transitions in Mg+, Si3+

[84] and Si2+ [88] from RESIS experimental data [198, 239].
Stark shifts for the ns–np1/2 transition [201] have also

been used to derive estimates for the S(np1/2–(n− 1)d3/2)

line strengths with a precision of about 1% for potassium and
rubidium [30]. This analysis relied on the result that 80–90%
of the np1/2 polarizability comes from the excitation to the
(n − 1)d3/2 state. These values were also used to determine
the magic wavelengths for the np–ns transitions in these alkali
atoms [29]. Such determination of matrix elements permitted
benchmark comparisons of theory and experiment [30].

The procedures described above also permit the
crosschecking of results from completely different types

of experiment. The domination of the 6p Cs scalar
polarizabilities by the 5d–6p dipole matrix elements facilitated
an exacting consistency check of the 5d lifetime with 6p
polarizability data [169]. In that work, 5d–6p matrix
elements obtained from experimental Stark shift data were
compared with the values extracted from the 5d lifetimes.
The experimental measurements of the 5d lifetime and 6p
scalar polarizabilities were found to be inconsistent within
the uncertainties quoted by the experimental groups [169].
Theoretical RLCCSDT matrix elements [169] were found to
be in agreement with the Stark shift experiments but not with
the lifetime measurements.

8. Conclusions

The advent of cold-atom physics owes its existence to the
ability to manipulate groups of atoms with electromagnetic
fields. Consequently, many topics in the area of field–atom
interactions have recently been the subject of considerable
interest and heightened importance. This applies to a quantity
like the dipole polarizability which governs the first-order
response of an atom to an applied electric field and the
preceding few years have seen many calculations of atomic
polarizabilities for a variety of systems.

The aim of this review has been to provide a reasonably
comprehensive treatment of polarizability-related issues as
they relate to topics of contemporary importance. However,
our treatment is not exhaustive. The polarizabilities of many
atoms such as the halogens have been omitted. The reader
is referred to the broader treatment in [21]. Similarly, the
treatment of dc and ac Stark shift data is better described as
selective as opposed to exhaustive.

Part of the motivation for this review has been the
importance in developing new atom-based standards of time
[344], and corresponding need for precise knowledge of
the blackbody radiation shifts. The primary requirement for
the BBR application is for polarizabilities and Stark shifts to
be known with a precision of 0.1% or better. Much of the
existing body of experimental data is an order of magnitude
less precise. Precise measurements of clock transition Stark
shifts would be helpful in reducing the BBR shift uncertainties.

One area where theory might be useful in this endeavour
would be in the development of atom-based polarizability
standards. Such a standard is already in existence for
helium where theoretical and experimental polarizabilities
have uncertainties of 0.17 ppm and 9.1 ppm [63], respectively.
These results are not relevant to atomic clock research and
another atom needs to serve as a standard. Hylleraas
calculations on lithium could yet serve to provide a theoretical
reference point for Stark shift experiments. At the moment the
uncertainties in the best calculation and best experiment are
0.08% [170] and 0.05% [91]. A better treatment of relativistic
effects should result in the uncertainty in the Hylleraas
calculation decreasing to the 0.01% level of precision.

One possible avenue for improvement could be in the
development of hybrid theoretical approaches combining the
best features of different methods. For example, orbital-based
approaches cannot match the extreme accuracies achievable
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with correlated basis sets. Direct incorporation of the
Dirac Hamiltonian into orbital-based calculations is now
relatively routine, but this is not the case for calculations with
correlated basis sets. Perhaps, comparisons of correlated basis
calculations with non-relativistic orbital-based calculations
and with relativistic orbital-based calculations could be used
to estimate relativistic corrections to Hylleraas calculations or
correlation corrections to orbital-based calculations.

It is likely that the determination of polarizabilities
will become increasingly important in the future. As
experiments become capable of greater precision, it will
become necessary to make more detailed corrections of the
effects of electromagnetic fields that are used for manipulation
and investigation of atoms.
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[146] Nikolić D and Lindroth E 2004 J. Phys. B: At. Mol. Opt.
Phys. 37 L285

[147] Soldán P, Lee E P F and Wright T G 2001 Phys. Chem.
Chem. Phys. (Incorporating Faraday Transactions) 3 4661

[148] Nakajima T and Hirao K 2001 Chem. Lett. 30 706
[149] Hald K, Pawłowski F, Jørgensen P and Hättig C 2003

J. Chem. Phys. 118 1292
[150] Thakkar A J, Hettema H and Wormer P E S 1992 J. Chem.

Phys. 97 3252
[151] Franke R, Müller H and Noga J 2001 J. Chem. Phys. 114 7746
[152] Gugan D and Michel G W 1980 Mol. Phys. 39 783
[153] Gugan D and Michel G W 1980 Metrologia 16 149
[154] Orcutt R H and Cole R H 1967 J. Chem. Phys. 46 697
[155] Newell A C and Baird R C 1965 J. Appl. Phys. 36 3751
[156] Bhatia A K and Drachman R J 1997 Can. J. Phys. 75 11
[157] Johnson W R and Cheng K T 1996 Phys. Rev. A 53 1375
[158] Lim I S, Laerdahl J K and Schwerdtfeger P 2002 J. Chem.

Phys. 116 172
[159] Cooke W E, Gallagher T F, Hill R M and Edelstein S A 1977

Phys. Rev. A 16 1141
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