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Blackbody radiation shifts in optical atomic clocks

M. S. Safronova1, M. G. Kozlov, and Charles W. Clark

Abstract—A review of recent theoretical calculations of black-
body radiation (BBR) shifts in optical atomic clocks is presented.
We summarize previous results for monovalent ions that were
obtained by a relativistic all-order single-double method, where
all single and double excitations of the Dirac-Fock wave function
are included to all orders of perturbation theory. A recently
developed method for accurate calculations of BBR shifts in
divalent atoms is then presented. This approach combines the
relativistic all-order method and the configuration interaction
method, which provides for accurate treatment of correlation
corrections in atoms with two valence electrons. Calculations of
the BBR shifts in B+, Al+, and In+ have enabled us to reduce the
present fractional uncertainties in the frequencies of their clock
transitions as measured at room temperature: to 4 × 10

−19 for
Al+ and 10

−18 for B+ and In+. These uncertainties approach
recent estimates of the limits of precision of currently proposed
optical atomic clocks. We discuss directions of future theoretical
developments for reducing clock uncertainties due to blackbody
radiation shifts.

I. INTRODUCTION

The International System of Units (SI) defines the unit of

time, the second, as “the duration of 9 192 631 770 periods

of the radiation corresponding to the transition between the

two hyperfine levels of the ground state of the cesium 133

atom,” meaning, to be precise, “a cesium atom at rest at a

temperature of 0 K” [1]. However, in light of recent advances

in optical measurements beyond the 10 digits of precision

in this microwave-based definition, the SI governance body

has recommended a number of other radiation sources for

attention, notably certain optical transitions of trapped cold

atoms and ions such as Ca, H, Sr+, Hg+, In+, Yb+, Sr, and

Rb [1], [2], [3]. In 2010, one such transition, 27Al+ 3s2 1S0

- 3s3p 3P0, was used to construct a quantum-logic optical

clock with an estimated fractional frequency uncertainty of

8.6 × 10−18 [4]. This is a 10 million-fold improvement over

the precision of the definition of the second. Development of

such precise frequency standards opens the way to applica-

tions such as precise measurements of time variation of the

fundamental constants, testing of physics postulates, geodesy,

inertial navigation, magnetometry, and tracking of deep-space

probes [5], and potentially to a more precise definition of the

second.

Any definition of the second should be based on a clock

decoupled from its particular environment. Thermal fluctu-

ations of the electromagnetic field - “blackbody radiation”

(BBR) are pervasive and can only be suppressed by cooling

the clock. Through the AC Stark effect, the BBR at any non-

zero temperature induces small shifts in atomic energy levels.

At room temperature, the differential BBR shift of the two
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levels of a clock transition turns out to make one of the largest

irreducible contributions to the uncertainty budget of optical

atomic clocks. Thus, measured clock transition frequencies

must be corrected in practice for the effect of the BBR shift,

which is quite difficult to measure directly.

In this paper, we review the current status of the theoretical

calculations of BBR shifts in optical frequency standards.

We consider the most recent developments in improving the

accuracy of BBR shifts in Ca+ and Al+. In the latter case, our

recent calculations reduce the fractional frequency uncertainty

to 4×10−19, which is close to the fundamental limits of cooled

ion frequency standards due to effects such as micromotion

in the trap [6], [7]. We present new calculations of BBR

shifts for B+ and In+, which are candidates for quantum-

logic spectroscopy as used with Al+ [8]. We also discuss

future possibilities for improvement of theoretical calculations

of BBR shifts in various systems.

The overall BBR shift of the clock frequency is the differ-

ence between BBR shifts of the initial and final levels involved

in the transition. It is related to the difference of the static

electric-dipole polarizabilities between the clock states, ∆α0,

by [9]

∆νBBR = −
1

2
(831.9 V/m)2

(

T (K)

300

)4

∆α0(1 + η), (1)

where η is a small dynamic correction due to the frequency

distribution of the blackbody radiation field. Evaluation of η
requires knowledge of the electric-dipole matrix elements of

the transitions that make the dominant contributions to the

polarizabilities. Higher multipolar contributions to the BBR

shift are suppressed by powers of the fine structure constant,

α, and are insignificant in present uncertainty budgets. For

example, magnetic-dipole (M1) contributions are suppressed

by a factor of α2 [9]; we estimate the M1 contribution to the

Al+ BBR shift to be less than 10−5 Hz, which is negligible

at the present level of accuracy [10].

For optical vs. microwave transitions, the polarizabilities of

the two clock states are completely independent, in principle.

Theoretical evaluation of the BBR shift requires accurate

calculation of the polarizabilities of the individual states. Only

the scalar part of the polarizability contributes to the BBR

shift, since any tensor component of the polarizability averages

out due to the isotropy of blackbody radiation.

Useful figure of merit for the frequency standard is the

fractional BBR shift, ∆νBBR/ν0, where ν0 is the absolute

transition frequency. A summary of the fractional BBR shifts

and their uncertainties at T = 300 K is given in Table I for

various atomic transitions [9], [10], [11], [12], [13], [14], [15],

[16], [17]. We also give the fractional BBR shifts in Rb and

Cs microwave frequency standards [11], [12] to demonstrate
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TABLE I
SUMMARY OF THE FRACTIONAL BBR SHIFTS ∆νBBR/ν0 AND THEIR UNCERTAINTIES AT T = 300 K IN VARIOUS FREQUENCY STANDARDS. ν0 IS THE

ABSOLUTE TRANSITION FREQUENCY IN HZ.

Atom Clock transition ν0 (Hz) ∆νBBR/ν0 Uncertainty in ∆νBBR/ν0 Reference

Rb 5s (F = 2 − F = 1) 8.34 × 109 −1.25 × 10−14 4 × 10−17 Safronova et al. 2010 [11]

Cs 6s (F = 4 − F = 3) 9.19 × 109 −1.7 × 10−14 3 × 10−17 Simon et al. 1998 [12]

Ca+ 4s − 3d5/2 4.11 × 1014 9.2 × 10−16 1 × 10−17 Safronova et al. 2011 [13]

Sr+ 5s − 4d5/2 4.45 × 1014 5.6 × 10−16 2 × 10−17 Jiang et al. 2009 [14]

Mg 3s2 1S0 − 3s3p 3P0 6.55 × 1014 −3.9 × 10−16 1 × 10−17 Porsev et al. 2006 [9]

Ca 4s2 1S0 − 4s4p 3P0 4.54 × 1014 −2.6 × 10−16 4 × 10−17 Porsev et al. 2006 [9]

Sr 5s2 1S0 − 5s5p 3P0 4.29 × 1014 −5.5 × 10−15 7 × 10−17 Porsev et al. 2006 [9]

Yb 6s2 1S0 − 6s6p 3P0 5.18 × 1014 −2.6 × 10−15 3 × 10−16 Porsev et al. 2006 [9]

Hg 6s2 1S0 − 6s6p 3P0 1.13 × 1015 −1.6 × 10−16 Hachisu et al. 2008 [15]

B+ 2s2 1S0 − 2s2p 3P0 1.12 × 1015 1.42 × 10−17 1 × 10−18 Safronova et al. 2011 [10]

Al+ 3s2 1S0 − 3s3p 3P0 1.12 × 1015 −3.8 × 10−18 4 × 10−19 Safronova et al. 2011 [10]

In+ 5s2 1S0 − 5s5p 3P0 1.27 × 1015 −1.36 × 10−17 1 × 10−18 Safronova et al. 2011 [10]

Yb+ 6s − 5d 2D3/2 6.88 × 1014 −5.1 × 10−16 1 × 10−16 Tamm et al. 2009 [16]

Yb+ 6s − 4f136s2 2F7/2 6.42 × 1014 −2.5 × 10−16 1 × 10−16 Hosaka et al. 2009 [17]

their size relative to the BBR shifts in optical frequency

standards. Only the values with the smallest (to the best of our

knowledge) uncertainty are listed for each frequency standard.

With the exception of the Cs value [12], all data are results of

the theoretical calculations.

From the theoretical standpoint, the number of the valence

electrons (and the presence of core holes) defines the most

accurate theoretical approach that can be used. For example,

calculations of the BBR shift in Ca+ and Sr+ have the same

degree of complexity, but the treatment of Sr is consider-

ably more involved than that of Sr+. The main sources of

uncertainties in these cases also differ. Most of the present

optical clock proposals involve either monovalent or divalent

systems, with Yb+, Hg+, and Ag being notable exceptions due

to low-lying excitation energies of their subvalence electrons.

We discuss monovalent and divalent systems separately, and

outline possible approaches for treating other systems.

II. MONOVALENT IONS: CA
+

AND SR
+

Both Ca+ and Sr+ ions are monovalent systems with atomic

structure similar to that of their alkali neighbors, K and Rb.

However, in the ions, the lowest nd states lie below the lowest

np state, leading to the possibility of using these low-lying

metastable nd states for the development of optical frequency

standards.

The overall BBR shift of the Ca+ 4s − 3d5/2 and Sr+

5s − 4d5/2 clock transition frequencies is calculated as the

difference between the BBR shifts of the individual levels

involved in the transition. For example, in the case of Ca+,

the BBR shift is given by

∆νBBR(4s − 3d5/2) = −
1

2
[α0(3d5/2) − α0(4s)]

× (831.9 V/m)2
(

T (K)

300

)4

. (2)

The polarizability difference, ∆α0, is negative when the

upper state polarizability is smaller than the lower state

polarizability. A negative polarizability difference means the

frequency shift is positive. Both Ca+ and Sr+ polarizabilities

can be obtained using the same approaches as for the alkali-

metal atoms, owing to their similar electronic structure. The

most accurate calculations of the relevant ns and nd5/2

polarizabilities in these systems have been recently carried out

using the relativistic all-order method [13], [14].

The relativistic all-order method including single, double,

and partial valence triple excitations has been applied to accu-

rate calculations of energies, transition amplitudes, hyperfine

constants, static and dynamic electric-dipole polarizabilities,

quadrupole and octupole polarizabilities, magic wavelengths,

atomic quadrupole moments, C3 and C6 coefficients, isotope

shifts and other properties of a large number of monovalent

atoms and ions as well as the calculation of parity-violating

amplitudes and EDM enhancement factors. We refer the reader

to the review [18] and references therein for a detailed de-

scription of this method, its applications, and extensions. The

accuracy of this approach is well understood, which enables

accurate estimation of the uncertainties in calculations of the

clock state polarizabilities and the resulting BBR shifts.

The valence scalar α0(v) polarizability of Ca+ or Sr+ in

an excited state v is given by (in a.u.)

α0(v) =
2

3(2jv + 1)

∑

nlj

|〈v||D||nlj〉|2

Enlj − Ev
, (3)

Unless stated otherwise, we use atomic units (a.u.) for all

matrix elements and polarizabilities throughout this paper.

We note that atomic units for α are converted to SI units

via α/h[Hz/(V/m)2] = 2.48832 × 10−8α[a.u.], where the

conversion coefficient is 4πε0a
3
0/h and the Planck constant h

is factored out.

The ionic core polarizability has to be added to the valence

term given by Eq. (3) and corrected for the presence of the

respective valence electron (term VC). This core correction

VC term is small and is calculated in the random phase

approximation (RPA). This partitioning of the core and valence

polarizability contributions is discussed in detail in [19].

While the sum over the excited states in Eq. (3) converges
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TABLE II
CONTRIBUTIONS TO THE 3d5/2 SCALAR POLARIZABILITY OF CA+ IN a3

0
.

UNCERTAINTIES ARE GIVEN IN PARENTHESIS. THE FINAL RESULTS ARE

COMPARED WITH OTHER THEORY [20], [21], [22].

Contribution α0

4p3/2 22.78(25)

np3/2 0.03

4f5/2 0.12

nf5/2 0.17

4f7/2 2.39(5)

5f7/2 0.77(1)

6f7/2 0.35(1)

7f7/2 0.19(1)

(8 − 12)f7/2 0.31(1)

(13 − 26)f7/2 1.39(4)

nf7/2 0.27(15)

Core 3.26(3)
VC -0.23(1)
Total 31.8(3)
Ref. [20] 32.0(1.1)
Ref. [21] 32.73
Ref. [22] 29.5(1.0)

rapidly for the lower state, this is not the case for the upper

nd5/2 state, where the contribution of highly-excited nf7/2

states is large and has to be treated accurately. This problem

has been recently resolved in [13] by performing the all-

order calculation for n up to n = 26, resulting in factor

of 3 improvement in the accuracy of 3d5/2 polarizability

over previous calculation (see [20] and references therein). In

previous work, contributions from highly-excited states were

calculated in the Dirac-Hartree-Fock (DHF) approximation

and adjusted for missing correlation using a semi-empirical

procedure resulting in the larger uncertainty [20]. We refer

the reader to Ref. [13] for further details of the most recent

polarizability calculations.

We list contributions to the Ca+ 3d5/2 polarizability (in

a.u.) [13] in Table II. The final result is compared with other

calculations [20], [21], [22].

Substituting the values for the 4s and 3d5/2 static polariz-

abilities, 76.1(5) a.u. and 31.8(3) a.u., respectively, into Eq. (2)

yields 0.3815(44) Hz [13] for the BBR shift. The dynamic

corrections were evaluated in [13] to be η = 0.0012 and

η = 0.0044 for the 4s and 3d5/2 states, respectively, following

Ref. [9]. The resulting dynamic correction to the BBR shift is

only 0.1%, −0.0004 Hz.

Mitroy and Zhang [21] used non-relativistic configuration

interaction with a semi-empirical core potential (CICP) ap-

proach. The CICP values are in good agreement with our

results taking into account the accuracy of both calculations.

The comparison with coupled-cluster calculations of Ref. [22]

is discussed in detail in [13]. In summary, the present value

of the BBR shift, 0.3811(44) Hz, is consistent with other

calculations, 0.380(14) Hz [20], 0.37(1) Hz [22], and 0.368 Hz

[21], but is three times more accurate.

The all-order calculation of the BBR shift of the Sr+

4s − 3d5/2 clock transition is similar to that for the Ca+.

The dynamic contribution is more significant in Sr+, where

it contributes nearly 1% (−0.002 Hz) to the BBR shift of

0.250(9) Hz.

In comparison with the Ca+, the lower accuracy of the

calculated Sr+ BBR shift is due to greater cancelation be-

tween polarizabilities of the upper and lower clock states.

The individual uncertainties in the Sr+ 5s and 4d5/2 static

polarizabilities, 91.3(9) a.u. and 62.0(5) a.u., respectively, are

about 1% which is similar to that of the corresponding states

in Ca+.

Further reduction of the theoretical uncertainty would be

very difficult as it would require predicting a number of E1

matrix elements to significantly better than 0.5%. On the other

hand, experimental measurement of the DC Stark shift of

the clock transition would be essentially equivalent to the

measurement of the BBR shift, in particularly for Ca+, where

dynamic correction contributes only 0.1%. Very accurate mea-

surements of the ground state static polarizabilities would also

lead to the improvement of the BBR shift values.

III. DIVALENT SYSTEMS

A. Mg, Ca, Sr, Hg, and Yb

While the all-order approach produced accurate results

for BBR shifts for optical clocks based on the monovalent

ions, such as Ca+ and Sr+, it can not be straightforwardly

extended to the BBR calculations in divalent systems, such

as Sr or Al+. The main difficulties of such an extension are

outlined in [23]. The correlation corrections associated with

the interaction of valence electrons are very large and are

described poorly by perturbative treatments. On the other hand,

the configuration interaction (CI) method is well suited for

the accurate treatment of valence-valence correlations as long

as number of the valence electrons is small. However, core

excitations are neglected or only a small number of them are

included, leading to a significant loss of accuracy for heavy

atoms. Therefore, an approach that combines configuration

interaction with many-body perturbation theory (MBPT) was

developed in Ref. [24]. The CI+MBPT approach allows one to

incorporate core excitations in the CI method by constructing

an effective Hamiltonian that incorporates certain perturbation

theory terms. The CI method is then applied to the modified

Heff to obtain improved energies and wave functions. The

CI+MBPT method was used in Refs. [9], [15] to calculate

BBR shifts in ns2 1S0 − nsnp 3P0 clock transitions in Mg,

Ca, Sr, Yb, and Hg. Where available, experimental data was

used for the dipole matrix element associated with dominant

contributions. The Sr BBR shift was later investigated in more

detail in Ref. [25] using the same approach. Table I lists the

results of these calculations.

The CI+MBPT approach includes only a limited number

of the core-valence excitation terms (mostly to second order)

and it deteriorates in accuracy for heavier, more complicated

systems. Moreover, the BBR shifts are particularly large in

Sr and Yb, requiring higher precision of the calculation (or

measurements) to achieve the same ultimate clock uncertainty.

CI+all-order method developed in [23], [26] includes

higher-order correlations beyond second order in a systematic

way, resulting in higher accuracy of the resulting atomic

properties. We have applied this method to the calculation

of the BBR shifts in B+, Al+, and In+. This calculation is
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described in Section III-B. The same approach may be also

used to calculate BBR shifts in all other divalent systems.

The Sr case requires very high accuracy of the BBR

calculations (see [25] for detailed analysis of the Sr case)

since fractional BBR shift in this system is the largest among

all optical cases listed in Table I. Therefore, more all-order

corrections, such as triple excitations [18] and all-order correc-

tions to the effective dipole operation may have to be included

to significantly reduce the uncertainty.

Until recently, attempts to apply CI+all-order approach to

treat Yb resulted in the failure of the convergence procedure

used in the the all-order part of the method. Specifically, we

found that the iteration procedure in the all-order method fails

to converge for the Yb2+ core equations owing to extremely

large contributions from the 4f shell. This all-order core

calculation is necessary for the future use in the CI+all-order

Yb calculation. Recently, this problem was resolved by using

the reduced linear equation (RLE) stabilizer procedure [27].

Therefore, Yb BBR shift value may be improved with the use

of the CI+all-order method described in the next section.

B. Al+, B+, and In+

While the BBR shift in Al+ frequency standards is anoma-

lously small, its contribution becomes significant at the current

level of precision. As noted above, the BBR frequency shift

of the clock transition can be related to the difference of

the static electric-dipole polarizabilities between the final

and initial clock states. Owing to severe (98%) cancellation

between the static polarizabilities of the two clock states in this

frequency standard, accurate calculation of the BBR shift in

Al+ is very difficult and required development of new all-order

methodology. We developed a theoretical method within the

framework of relativistic many-body theory to accurately treat

correlation corrections in atoms with a few valence electrons

[23]. This method combines the all-order approach currently

used in precision calculations of properties of monovalent

atoms with the configuration-interaction (CI) approach that is

applicable for many-electron systems. In this work, we have

extended this method to accurate calculation of the ground

and excited state polarizabilities of divalent ions. The resulting

polarizabilities are used to evaluate the BBR shifts at 300K in

the ns2 − nsnp 3P0 clock transitions in Al+, B+, and In+.

Frequency-dependent corrections are also evaluated and found

to be negligible in all three cases.

In the combined CI + all-order approach used in this

work, core excitations are incorporated in the CI method by

constructing an effective Hamiltonian using fully converged

all-order method mentioned in Section III-A. This approach is

described in detail in [23]. Its application to the polarizability

calculations is described in [10]. The valence part of the

polarizability is determined by solving the inhomogeneous

equation of perturbation theory in the valence space [28].

The ionic core contribution to the polarizability is calculated

separately in the random-phase approximation (RPA). The

small valence-core (VC) term that corrects the ionic core

polarizability for the presence of the valence electrons is also

calculated in the RPA. DHF calculations are carried out as well

for both of these contributions to evaluate their uncertainties.

We note that in our approach the ionic core contribution is

the same for both clock states and so it does not contribute

to the BBR shift. On the other hand, the VC contribution

differs between the two clock states. It is negligible for B+.

It is the largest for the 3P0 polarizability of In+ to which

it contributes only 0.5%. However, its contribution to the

BBR shift is much larger, 1.8% and 5% in Al+ and In+,

respectively, owing to the large degree of cancelation between
1S0 and 3P0 polarizabilities. Our estimate of the dominant

uncertainty in this term is the difference of the DHF and

RPA values; we assume that all other uncertainties do not

exceed this dominant uncertainty. Adding these uncertainties

in quadrature, we estimate that the VC term leads to 0.6%

and 2% uncertainties in the BBR shifts for Al+ and In+,

respectively.

TABLE III
PERCENTAGE DIFFERENCES BETWEEN EXPERIMENTAL AND CALCULATED

ENERGY LEVELS THE B+ AND AL+ (IN %). EXPERIMENTAL ENERGY

LEVELS E ARE GIVEN IN CM−1 . THE TWO-ELECTRON BINDING ENERGIES

ARE LISTED IN THE FIRST ROW FOR EACH ION; ALL OTHER LEVELS ARE

MEASURED FROM THE GROUND STATE. THE THREE RIGHTMOST COLUMNS

ARE RESULTS OF THE DIFFERENT METHODS LABELED IN THE TEXT.

Ion Term Eexpt CI CI+MBPT CI+All

B+ 2s2 1S0 508818 0.2 0.007 -0.001

2p2 3P0 98911 -1.0 -0.114 -0.005

2p2 3P1 98920 -1.0 -0.116 -0.007

2p2 3P2 98933 -1.1 -0.124 -0.015

2p2 1D2 102363 -0.8 -0.188 -0.113

2p2 1S0 127661 -0.5 -0.264 -0.223

2s3s 3S1 129774 0.2 0.010 0.014

2s3s 1S0 137622 -0.2 -0.116 -0.093

2s3d 3D1 150650 0.2 -0.005 -0.004

2s3d 3D2 150650 0.2 -0.006 -0.004

2s3d 3D3 150650 0.2 -0.006 -0.005

2s2p 3P0 37336 -0.7 -0.028 0.043

2s2p 3P1 37342 -0.7 -0.040 0.037

2s2p 3P2 37358 -0.8 -0.054 0.020

2s2p 1P1 73397 -1.3 -0.395 -0.272

2s3p 3P0 143989 0.1 0.004 0.009

2s3p 3P2 143990 0.1 0.003 0.008

2s3p 3P1 143993 0.1 0.002 0.008

2s3p 1P1 144103 0.04 -0.016 -0.004

Al+ 3s2 1S0 381308 1.2 0.043 0.006

3p2 1D2 85481 2.3 0.071 -0.022

3s4s 3S1 91275 1.4 0.068 0.015

3p2 3P0 94085 1.6 0.036 0.008

3p2 3P1 94147 1.6 0.032 0.004

3p2 3P2 94269 1.6 0.024 -0.004

3s4s 1S0 95351 1.4 0.053 0.003

3s3d 3D3 95549 1.4 -0.002 -0.026

3s3d 3D2 95551 1.4 -0.002 -0.026

3s3d 3D1 95551 1.4 -0.001 -0.025

3s3p 3P0 37393 3.1 0.151 0.007

3s3p 3P1 37454 3.1 0.140 0.008

3s3p 3P2 37578 3.1 0.120 -0.017

3s3p 1P1 59852 0.4 -0.175 -0.141

3s4p 3P0 105428 1.4 0.068 0.020

3s4p 3P1 105442 1.4 0.067 0.020

3s4p 3P2 105471 1.4 0.065 0.018

3s4p 1P1 106921 1.3 0.046 0.007

In order to establish the accuracy of our approach to

the calculation of valence polarizability, we also perform CI

and CI+MBPT [24] calculations carried out with the same
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TABLE IV
PERCENTAGE DIFFERENCES BETWEEN EXPERIMENTAL AND CALCULATED

ENERGY LEVELS THE IN+ (IN %). EXPERIMENTAL ENERGY LEVELS E
ARE GIVEN IN CM−1 . THE TWO-ELECTRON BINDING ENERGY IS LISTED IN

THE FIRST ROW; ALL OTHER LEVELS ARE MEASURED FROM THE GROUND

STATE. THE THREE RIGHTMOST COLUMNS ARE RESULTS OF THE

DIFFERENT METHODS LABELED IN THE TEXT.

Ion Term Eexpt CI CI+MBPT CI+All

In+ 5s2 1S0 378299 5.8 -1.1 -0.25

5s6s 3S1 93923 8.8 -1.5 -0.42

5s6s 1S0 97030 8.1 -1.5 -0.48

5p2 1D2 97628 10.5 -2.3 -0.66

5p2 3P0 101608 7.0 -1.8 -0.42

5s5d 3D1 102088 8.6 -1.4 -0.30

5s5d 3D2 102174 8.6 -1.4 -0.30

5s5d 3D3 102308 8.6 -1.4 -0.31

5p2 3P1 103249 7.2 -1.9 -0.44

5p2 3P2 105565 7.3 -1.9 -0.45

5s5p 3P0 42276 13.2 -3.7 -1.08

5s5p 3P1 43351 13.0 -3.6 -0.97

5s5p 3P2 45830 13.0 -3.6 -1.06

5s5p 1P1 63038 4.2 -0.4 -0.09

5s6p 3P0 107662 8.1 -1.4 -0.34

5s6p 3P1 107842 8.0 -1.4 -0.34

5s6p 3P2 108430 8.0 -1.4 -0.35

5s6p 1P1 109780 7.4 -1.3 -0.35

parameters (configuration space, basis set, number of partial

waves, etc.). No core excitations are added in the pure divalent

CI approach. Comparison of the CI, CI+MBPT, and CI+all-

order values allows us to evaluate the importance of the various

correlation corrections, thereby establishing the upper bound

on the uncertainty of our calculations.

Tables III and IV present the comparison of the experimental

energies of Al+, B+, and In+ with those calculated in the

CI, CI+MBPT, and CI+all-order approximations. The first

and second column give state identification and the term

value taken from the NIST critically evaluated experimental

data [29]. Percentage differences between experimental and

calculated energy levels

ε =
Eexpt − Eth

Eexpt

the In+ (in %). Experimental term values E are given in

cm−1. Theoretical values calculated in the CI, CI+MBPT,

and CI+all-order approximations are listed in the respectively

labeled columns. Two-electron binding energies are given

in the first row for each ion; all other levels are counted

from the ground state as in [29]. Significant improvement

of the energy values is observed for Al+ and In+ with the

CI+all-order method as expected owing to the more complete

inclusion of the correlation corrections in comparison with the

CI and CI+MBPT approaches. The CI+all-order energies are

within a few cm−1 of the experimental values for B+ and

Al+ for most of the levels. The accuracy of the In+ energy

levels is sufficient for the purposes of the present work, i.e.

replacing our theoretical energies by the experimental values

in the dominant polarizability contributions leads to only a

1% change in the value of the BBR shift. The accuracy of

the CI+MBPT method for B+ is already at the level of our

numerical precision for most of the transitions.

The breakdown of the contributions to the ns2 1S0 and

nsnp 3P0 polarizabilities α0 of B+ (n = 2), Al+ (n = 3),

and In+ (n = 5) is given in Table V. Absolute values of

the corresponding reduced electric-dipole matrix elements are

listed in column labeled “D” in units of a0e. The ionic core

polarizability and VC term that corrects it for the presence

of the valence electrons are listed in rows labeled “Core”

and “VC”. The final polarizability values are listed in rows

labeled “Total”. We subtract the values of the terms listed

separately in Table V from our total valence polarizability

values to obtain the remaining contributions that are listed

in the rows labeled “Other”. Our dominant contributions for

Al+ are in excellent agreement with CI calculations with a

semi-empirical core potential (CICP) of Mitroy et al. [30].

Note that Al+ is anomalous in this table for the near equality

(within 2%) of the polarizabilities of its upper and lower

states, especially since the polarizability of the lower state

is completely dominated by the contribution from a single

transition, whereas the upper state has substantial contributions

from three different configurations.

We note that the oscillator strengths fgn can be obtained

from the reduced matrix elements to compare with standard

tabulations by using

fgn =
2D2

gn∆Eng

3(2Jg + 1)
, (4)

where ∆Eng = En − Eg and Jg = 0 for the present clock

states [19].

We investigate the uncertainty due to the inclusion of the

core excitations by comparing the difference ∆α0 calculated in

the CI, CI+MBPT, CI+all-order approximations. These results

are summarized in Table V. We find that the entire contribution

of core excitations to the BBR shift, estimated as the difference

of the CI+all-order and CI values ∆α0 is only 3%, 5%,

and 16% for B+, Al+, and In+, respectively. The difference

between CI+MBPT and CI+all-order values is 0.4% for B+

and Al+, and 1.7% for In+. Therefore, we place an upper

bound on the uncertainty of our BBR values at 10% for all

three cases.

Our final results are summarized in Table VI [10], where

we list the polarizability difference ∆α0, BBR shift at T =
300 K, relative BBR shift ∆νBBR/ν0, and the uncertainty in

the relative BBR shift for B+, Al+, and In+. We find that

dynamic corrections are very small for both states and nearly

equal foe both states. Their contributions to BBR shift are

thus negligible for all three ions. Our BBR shift value in Al+

∆νBBR = −0.00426(43) Hz is in agreement with CICP value

of Mitroy et al. [30] and recent coupled-cluster calculation

[31]. It is also consistent with the experimental measurement

∆νBBR = −0.008(3) Hz from Ref. [32]. The values of η for

Al+ are in agreement with those of [30].

IV. OTHER SYSTEMS

While the ground state of Yb+ is a single-particle config-

uration, 4f146s 2S1/2, the first excited configuration in this

system is a one-hole two-particle state, i.e. 4f136s2 2F7/2.

Both this configuration and the next excited configuration,
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TABLE V
CONTRIBUTIONS TO THE ns2 1S0 AND nsnp 3P0 POLARIZABILITIES α0

OF B+ , AL+ , AND IN+ IN a0
3

. ABSOLUTE VALUES OF THE

CORRESPONDING REDUCED ELECTRIC-DIPOLE MATRIX ELEMENTS ARE

LISTED IN COLUMN LABELED “D” IN a0e. FINAL POLARIZABILITY

VALUES ARE LISTED IN ROWS LABELED “TOTAL”.

Ion State Contr. D α0

B+ 2s2 1S0 2s2 1S0 − 2s2p 1P1 2.118 8.918

2s2 1S0 − 2s3p 1P1 0.320 0.104
Other 0.582
Core 0.020
VC 0.000
Total 9.624

B+ 2s2p 3P0 2s2p 3P0 − 2p2 3P1 1.354 3.216

2s2p 3P0 − 2s3s 3S1 0.476 0.754

2s2p 3P0 − 2s3d 3D1 1.175 1.517
Other 2.267
Core 0.020
VC -0.001
Total 7.772

Al+ 3s2 1S0 3s2 1S0 − 3s3p 1P1 3.113 23.661

3s2 1S0 − 3s4p 1P1 0.045 0.003
Other 0.138
Core 0.265
VC -0.019
Total 24.048

Al+ 3s3p 3P0 3s3p 3P0 − 3s4s 3S1 0.900 2.197

3s3p 3P0 − 3p2 3P0 1.836 8.687

3s3p 3P0 − 3s3d 3D1 2.236 12.568
Other 0.836
Core 0.265
VC -0.010
Total 24.543

In+ 5s2 1S0 5s2 1S0 − 5s5p 1P1 2.977 20.554

5s2 1S0 − 5s6p 1P1 0.123 0.020
Other 0.261
Core 3.220
VC -0.041
Total 24.014

In+ 5s5p 3P0 5s5p 3P0 − 5s6d 3S1 1.015 2.921

5s5p 3P0 − 5s5d 3D1 2.189 11.755

5s5p 3P0 − 5p2 3P1 1.664 6.649
Other 1.645
Core 3.220
VC -0.170
Total 26.019

TABLE VI
BBR SHIFTS AT T = 300K IN B+ , AL+ , AND IN+ . ∆α0 IS GIVEN IN a0

3
;

THE BBR SHIFTS ∆νBBR ARE GIVEN IN HZ.

Ion ∆α0 ∆νBBR (Hz) |∆νBBR/ν0| Uncertainty

B+ -1.851 0.0159(16) 1.42 × 10−17 1 × 10−18

Al+ 0.495 -0.00426(43) 3.8 × 10−18 4 × 10−19

In+ 2.01 -0.0173(17) 1.36 × 10−17 1 × 10−18

4f145d 2D, are metastable, as electric-dipole transitions to

the ground state are forbidden. Therefore, Yb+ is particularly

well suited for the development of optical-frequency standards

since two different types of transitions (quadrupole and oc-

tupole) may be used [2], [16], [17].

While the single-particle states of Yb+ such as the ground

and the 4f145d 2D configurations can be treated with the

all-order approach, the results may not be as accurate as for

monovalent systems, such as Cs or even heavier Ra+ owing

to very large correlation corrections and mixing of the one-

hole two-particle configuration. However, accuracy of the BBR

shift for the quadupole transition may be improved with the

all-order approach such as described above for Ca+. Such

calculations have not yet yet been performed owing to the

convergence issue in the Yb2+ core equations described in

Section III-A that was resolved only recently [27].

At the present time, there is no approach that can produce

accurate predictions of the properties of actual one-hole two-

particle configurations such as 4f136s2 2F7/2 in Yb+. The best

possible theoretical approach may be to develop a CI+MBPT

method that can treat one-hole two-particle configurations. The

particle-hole formalism provides more efficient treatment of

the states with more-than-half filled shells. It is particularly

useful for almost-filled shells with no more than one hole.

Generalization of the CI+MBPT approach to systems with

holes requires significant modifications. The main problem

here is avoiding double counting of the correlation corrections.

The Hg+ case is similar to that of Yb+, but since the Hg+

trap is operated at cryogenic temperatures [33], the BBR shift

is negligible.

V. CONCLUSION

In summary, we have reviewed the present status of BBR

shift calculations for a number of optical frequency standards.

Recent calculations of BBR shifts in Ca+, B+, Al+, and In+

are described in more detail. Our calculations of the BBR

shifts in B+, Al+, and In+ reduce the ultimate uncertainties

due to this effect at room temperature to the 10−18 level

for B+ and In+ and to 4 × 10−19 for Al+. These uncer-

tainties approach recent estimates of the feasible precision of

currently proposed optical atomic clocks. Possible theoretical

approaches that may reduce uncertainties due to BBR shifts

in other systems are discussed.
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