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Abstract— We developed a theoretical method within the
framework of relativistic many-body theory to accurately treat
correlation corrections in atoms with few valence electrons.
Preliminary results for systems of interest to atomic clock
development are reported. We also calculated the blackbody
radiation shift of the ground-state hyperfine microwave transition
in 87Rb using the relativistic all-order method and evaluated the
accuracy of our final value. The uncertainty estimate is discussed
in detail.

I. INTRODUCTION

The operation of atomic clocks is generally carried out

at room temperature, whereas the definition of the second

refers to the clock transition in an atom at absolute zero. This

implies that the clock transition frequency should be corrected

in practice for the effect of finite temperature of which the

leading contributor is the blackbody radiation (BBR) shift.

Experimental measurements of the BBR shifts are difficult.

In this work, we calculated the blackbody radiation shift of

the ground-state hyperfine microwave transition in 87Rb using

the relativistic all-order method and evaluated the accuracy

of our final value. Our predicted value of the scalar Stark

coefficient, ks = −1.240(4)×10−10 Hz/(V/m)2 is three times

more accurate than the previous calculation.

We have developed a theoretical method within the frame-

work of relativistic many-body theory to accurately treat

correlation corrections in atoms with few valence electrons [1].

This method combines the all-order approach currently used

in precision calculations of properties of monovalent atoms

with the configuration-interaction approach that is applicable

for many-electron systems. In the present work, we have ex-

tended CI+all-order method to the calculation of the transition

properties and polarizabilities of divalent systems. Preliminary

results are reported.

II. BBR SHIFT IN
87RB FREQUENCY STANDARD

The electrical field E radiated by a blackbody at temperature

T and described by Planck’s law induces a nonresonant

perturbation of atomic transitions at room temperature [2]. The

average electric field radiated by a blackbody at temperature

T is

〈E2〉 = (831.9 V/m)2
(

T (K)

300

)4

. (1)

The frequency shift of an atomic state due to such an electrical

field can be related to the static electric-dipole polarizability

α0 by (see Ref. [3])

δν = −
1

2
(831.9 V/m)2

(

T (K)

300

)4

α0(1 + ǫ), (2)

where ǫ is a small dynamic correction due to the frequency

distribution.

In the case of the optical transitions, the lowest (second)

order polarizabilities of the clock states are different. In the

case of the ground-state hyperfine microwave frequency stan-

dards, the lowest (second) order polarizabilities of the clock

states are identical and the lowest-order BBR shift vanishes.

Therefore, the Stark shift of the ground state 87Rb hyperfine

interval (F = 2 − F = 1) is governed by the third-order

F -dependent polarizability α
(3)
F (0).

In this work, we evaluate the scalar Stark coefficient ks,

ks = −
1

2

(

α
(3)
F=2(0)− α

(3)
F=1(0)

)

. (3)

The dynamic correction ǫ (see Eq. 2) was evaluated in

Ref. [4] and was found to be small, ǫ = 0.011, for Rb.

Therefore, we do not re-evaluate it in this work.

The expression for the α
(3)
F (0) is [5]:

α
(3)
F (0) =

1

3

√

(2I)(2I + 1)(2I + 2)

{

jv I F
I jv 1

}

×

gIµn (−1)
F+I+jv (2T + C + R) , (4)

where gI is the nuclear gyromagnetic ratio, µn is the nuclear

magneton, I = 3/2 is the nuclear spin, and jv = 1/2 is the

total angular momentum of the atomic ground state. The F -

independent sums T , C, and R for the ground state of Rb,

|v〉 ≡ |5s〉, are given by [5]:

T =
∑

{m,n}6=5s

AT
〈5s‖D‖m〉〈m‖D‖n〉〈n‖T (1)‖5s〉

(Em − E5s) (En − E5s)
, (5)

C =
∑

{m,n}6=5s

AC
〈5s‖D‖m〉〈m‖T (1)‖n〉〈n‖D‖5s〉

(Em − E5s) (En − E5s)
,

R =
1

2
〈5s‖T (1)‖5s〉

(

∑

m∈val

−
∑

m∈core

)

|〈5s‖D‖m〉|2

(Em − E5s)
2 ,



TABLE I

SELECTION OF THE “BEST SET” VALUES FOR THE 5pj − ns, 6pj − ns, AND 7pj − ns ELECTRIC-DIPOLE REDUCED MATRIX ELEMENTS. SEE TEXT FOR

DETAILS. ABSOLUTE VALUES OF THE LOWEST ORDER DHF AND SD ALL-ORDER VALUES IN A.U. AND THEIR RELATIVE DIFFERENCE IN % ARE GIVEN IN

COLUMNS 2-4.

Transition DHF SD ∆(SD-DHF) Final Source Unc. (%) Unc. source “Best set”

5p1/2 − 5s 4.8189 4.2199 14.2% 4.2310 Expt 0.07% Expt. 4.231(3)

5p1/2 − 6s 4.2564 4.1187 3.3% 4.1458 SDsc 0.66% SDsc-SD 4.146(27)

5p1/2 − 7s 0.9809 0.9543 2.8% 0.9527 SDsc 0.17% SDsc-SD 0.953(2)

5p1/2 − 8s 0.5139 0.5037 2.0% 0.5022 SDsc 0.30% SDsc-SD 0.502(2)

5p1/2 − 9s 0.3380 0.3326 1.6% 0.3314 SDsc 0.36% SDsc-SD 0.331(1)

5p1/2 − 10s 0.2472 0.2438 1.4% 0.2429 SDsc 0.38% SDsc-SD 0.243(1)

5p1/2 − 11s 0.1924 0.1899 1.3% 0.1892 SDsc 0.40% SDsc-SD 0.189(1)

5p1/2 − 12s 0.1562 0.1543 1.3% 0.1537 SDsc* 0.40% 0.4% 0.154(1)

5p3/2 − 5s 6.8017 5.9551 14.2% 5.9780 Expt 0.08% Expt 5.978(5)

5p3/2 − 6s 6.1865 6.0135 2.9% 6.0472 SDsc 0.56% SDsc-SD 6.047(34)

5p3/2 − 7s 1.3925 1.3521 3.0% 1.3497 SDsc 0.18% SDsc-SD 1.350(2)

5p3/2 − 8s 0.7265 0.7098 2.4% 0.7077 SDsc 0.29% SDsc-SD 0.708(2)

5p3/2 − 9s 0.4771 0.4677 2.0% 0.4662 SDsc 0.34% SDsc-SD 0.466(20

5p3/2 − 10s 0.3487 0.3425 1.8% 0.3413 SDsc 0.36% SDsc-SD 0.341(1)

5p3/2 − 11s 0.2712 0.2667 1.7% 0.2656 SDsc* 0.40% 0.4% 0.266(1)

5p3/2 − 12s 0.2202 0.2165 1.7% 0.2156 SDsc* 0.40% 0.4% 0.216(1)

6p1/2 − 5s 0.3825 0.3335 14.7% 0.3248 SDsc 2.69% SDsc-SD 0.325(9)

6p1/2 − 6s 10.2856 9.6839 6.2% 9.7450 SDpT 0.63% SD-SDpT 9.745(61)

6p1/2 − 7s 9.3594 9.1896 1.8% 9.2092 SDpT 0.21% SD-SDpT 9.209(20)

6p1/2 − 8s 1.9219 1.8532 3.7% 1.8616 SDpT 0.45% SD-SDpT 1.862(8)

6p1/2 − 9s 0.9702 0.9364 3.6% 0.9364 SD 0.50% 0.5% 0.936(5)

6p1/2 − 10s 0.6281 0.6071 3.5% 0.6071 SD 0.50% 0.5% 0.607(3)

6p1/2 − 11s 0.4563 0.4416 3.3% 0.4416 SD 0.50% 0.5% 0.442(2)

6p1/2 − 12s 0.3550 0.3436 3.3% 0.3436 SD 0.50% 0.5% 0.344(2)

6p3/2 − 5s 0.6055 0.5409 11.9% 0.5276 SDsc 2.51% SDsc-SD 0.528(13)

6p3/2 − 6s 14.4575 13.5918 6.4% 13.6804 SDpT 0.65% SD-SDpT 13.680(89)

6p3/2 − 7s 13.5514 13.3529 1.5% 13.3755 SDpT 0.17% SD-SDpT 13.376(23)

6p3/2 − 8s 2.7047 2.6001 4.0% 2.6129 SDpT 0.49% SD-SDpT 2.613(13)

6p3/2 − 9s 1.3583 1.3056 4.0% 1.3056 SD 0.50% 0.5% 1.306(7)

6p3/2 − 10s 0.8776 0.8446 3.9% 0.8446 SD 0.50% 0.5% 0.845(4)

6p3/2 − 11s 0.6370 0.6135 3.8% 0.6135 SD 0.50% 0.5% 0.614(3)

6p3/2 − 12s 0.4952 0.4770 3.8% 0.4770 SD 0.50% 0.5% 0.477(2)

7p1/2 − 5s 0.1418 0.1150 23.3% 0.1150 SD 2.32% SD-SDpT 0.115(3)

7p1/2 − 6s 0.9763 0.9996 2.3% 0.9931 SDpT -0.66% SD-SDpT 0.993(7)

7p1/2 − 7s 17.6123 16.8435 4.6% 16.9282 SDpT 0.50% SD-SDpT 16.928(85)

7p1/2 − 8s 16.1513 15.9838 1.0% 16.0016 SDpT 0.11% SD-SDpT 16.002(18)

7p1/2 − 9s 3.1130 3.0018 3.7% 3.0018 SD 0.50% 0.5% 3.002(15)

7p1/2 − 10s 1.5317 1.4738 3.9% 1.4738 SD 0.50% 0.5% 1.474(7)

7p1/2 − 11s 0.9787 0.9418 3.9% 0.9418 SD 0.50% 0.5% 0.942(5)

7p1/2 − 12s 0.7076 0.6808 3.9% 0.6808 SD 0.50% 0.5% 0.681(3)

7p3/2 − 5s 0.2373 0.2024 17.2% 0.2024 SD 2.07% SD-SDpT 0.202(4)

7p3/2 − 6s 1.4975 1.5399 2.8% 1.5297 SDpT 0.67% SD-SDpT 1.530(10)

7p3/2 − 7s 24.7076 23.5865 4.8% 23.7106 SDpT 0.52% SD-SDpT 23.71(12)

7p3/2 − 8s 23.3428 23.1723 0.7% 23.1893 SDpT 0.07% SD-SDpT 23.189(17)

7p3/2 − 9s 4.3619 4.1902 4.1% 4.1902 SD 0.50% 0.5% 4.190(21)

7p3/2 − 10s 2.1337 2.0430 4.4% 2.0430 SD 0.50% 0.5% 2.043(10)

7p3/2 − 11s 1.3602 1.3020 4.5% 1.3020 SD 0.50% 0.5% 1.302(7)

7p3/2 − 12s 0.9824 0.9399 4.5% 0.9399 SD 0.50% 0.5% 0.940(5)



TABLE II

SELECTION OF THE “BEST SET” VALUES FOR THE 8pj − ns, 9pj − ns, AND 10pj − ns ELECTRIC-DIPOLE REDUCED MATRIX ELEMENTS.

Transition DHF SD ∆(SD-DHF) Final Source Unc. (%) Unc. source “Best set”

8p1/2 − 5s 0.0783 0.0596 31.5% 0.0596 SD 3.30% SD-SDpT 0.060(2)

8p1/2 − 6s 0.3745 0.3927 4.6% 0.3880 SDpT 1.22% SD-SDpT 0.388(5)

8p1/2 − 7s 1.8006 1.8653 3.5% 1.8560 SDpT 0.50% SD-SDpT 1.856(9)

8p1/2 − 8s 26.8165 25.8296 3.8% 25.9417 SDpT 0.43% SD-SDpT 25.94(11)

8p1/2 − 9s 24.6543 24.5174 0.6% 24.5174 SD 0.50% 0.5% 24.52(12)

8p1/2 − 10s 4.5584 4.4017 3.6% 4.4017 SD 0.50% 0.5% 4.402(22)

8p1/2 − 11s 2.1997 2.1160 4.0% 2.1160 SD 0.50% 0.5% 2.116(11)

8p1/2 − 12s 1.3929 1.3381 4.1% 1.3381 SD 0.50% 0.5% 1.338(7)

8p3/2 − 5s 0.1355 0.1110 22.0% 0.1110 SD 2.68% SD-SDpT 0.111(3)

8p3/2 − 6s 0.5963 0.6286 5.1% 0.6212 SDpT 1.18% SD-SDpT 0.621(7)

8p3/2 − 7s 2.7269 2.8330 3.7% 2.8183 SDpT 0.52% SD-SDpT 2.818(15)

8p3/2 − 8s 37.5758 36.1213 4.0% 36.2874 SDpT 0.46% SD-SDpT 36.29(17)

8p3/2 − 9s 35.5931 35.4959 0.3% 35.4959 SD 0.50% 0.5% 35.50(18)

8p3/2 − 10s 6.3702 6.1248 4.0% 6.1248 SD 0.50% 0.5% 6.125(31)

8p3/2 − 11s 3.0547 2.9223 4.5% 2.9223 SD 0.50% 0.5% 2.922(15)

8p3/2 − 12s 1.9296 1.8426 4.7% 1.8426 SD 0.50% 0.5% 1.843(9)

9p1/2 − 5s 0.0517 0.0374 38.2% 0.0374 SD 3.00% 3% 0.037(1)

9p1/2 − 6s 0.2093 0.2219 5.7% 0.2219 SD 1.50% 1.5% 0.222(3)

9p1/2 − 7s 0.7050 0.7509 6.1% 0.7509 SD 1.00% 1% 0.751(8)

9p1/2 − 8s 2.8443 2.9492 3.6% 2.9492 SD 0.50% 0.5% 2.949(15)

9p1/2 − 9s 37.9027 36.6646 3.4% 36.6646 SD 0.50% 0.5% 36.67(18)

9p1/2 − 10s 34.8746 34.7962 0.2% 34.7962 SD 0.50% 0.5% 34.80(17)

9p1/2 − 11s 6.2590 6.0524 3.4% 6.0524 SD 0.50% 0.5% 6.052(30)

9p1/2 − 12s 2.9803 2.8666 4.0% 2.8666 SD 0.50% 0.5% 2.867(14)

9p3/2 − 5s 0.0914 0.0727 25.7% 0.0727 SD 3.00% 3% 0.073(2)

9p3/2 − 6s 0.3409 0.3633 6.2% 0.3633 SD 1.50% 1.5% 0.363(5)

9p3/2 − 7s 1.0997 1.1747 6.4% 1.1747 SD 1.00% 1% 1.175(12)

9p3/2 − 8s 4.2781 4.4472 3.8% 4.4472 SD 0.50% 0.5% 4.447(22)

9p3/2 − 9s 53.0686 51.2278 3.6% 51.2278 SD 0.50% 0.5% 51.23(26)

9p3/2 − 10s 50.3114 50.3324 0.0% 50.3324 SD 0.50% 0.5% 50.33(25)

9p3/2 − 11s 8.7311 8.4034 3.9% 8.4034 SD 0.50% 0.5% 8.403(42)

9p3/2 − 12s 4.1299 3.9487 4.6% 3.9487 SD 0.50% 0.5% 3.949(20)

10p1/2 − 5s 0.0376 0.0262 43.5% 0.0262 SD 4.00% 4% 0.026(1)

10p1/2 − 6s 0.1389 0.1481 6.2% 0.1481 SD 1.50% 1.5% 0.148(2)

10p1/2 − 7s 0.3973 0.4297 7.5% 0.4297 SD 1.50% 1.5% 0.430(6)

10p1/2 − 8s 1.1250 1.1969 6.0% 1.1969 SD 1.00% 1% 1.197(12)

10p1/2 − 9s 4.1037 4.2539 3.5% 4.2539 SD 0.50% 0.5% 4.254(21)

10p1/2 − 10s 50.8726 49.3551 3.1% 49.3551 SD 0.50% 0.5% 49.36(25)

10p1/2 − 11s 46.8146 46.8223 0.0% 46.8223 SD 0.50% 0.5% 46.82(23)

10p1/2 − 12s 8.2275 7.9625 3.3% 7.9625 SD 0.50% 0.5% 7.963(40)

10p3/2 − 5s 0.0675 0.0525 28.4% 0.0525 SD 4.00% 4% 0.053(2)

10p3/2 − 6s 0.2297 0.2462 6.7% 0.2462 SD 1.50% 1.5% 0.246(4)

10p3/2 − 7s 0.6307 0.6838 7.8% 0.6838 SD 1.50% 1.5% 0.684(10)

10p3/2 − 8s 1.7358 1.8518 6.3% 1.8518 SD 1.00% 1% 1.852(19)

10p3/2 − 9s 6.1461 6.3867 3.8% 6.3867 SD 0.50% 0.5% 6.387(32)

10p3/2 − 10s 71.1883 68.9149 3.3% 68.9149 SD 0.50% 0.5% 68.92(35)

10p3/2 − 11s 67.5015 67.6853 0.3% 67.6853 SD 0.50% 0.5% 67.69(34)

10p3/2 − 12s 11.4620 11.0380 3.8% 11.0380 SD 0.50% 0.5% 11.04(6)



TABLE III

SELECTION OF THE “BEST SET” VALUES FOR DIAGONAL AND OFF-DIAGONAL MATRIX ELEMENTS OF THE MAGNETIC HYPERFINE OPERATOR T (1) IN

10−8 A.U. ABSOLUTE VALUES OF THE LOWEST ORDER DHF, ALL-ORDER SD, AND ALL-ORDER SDPT VALUES ARE GIVEN IN COLUMNS 2-4.

DHF SD SDpT Expt. Final Source Unc. (%) Unc. source “Best set”

5s− 5s 22.0830 36.1633 34.6801 34.6810 34.6810 Expt. 0.00% Expt. 34.681

5s− 6s 11.4126 17.4008 16.8497 16.8602 16.8602 Expt. 0.06% Expt-SDpT 16.860(10)

5s− 7s 7.3042 10.9262 10.6061 10.6086 10.6086 Expt. 0.02% Expt-SDpT 10.609(2)

5s− 8s 5.1907 7.6957 7.4786 7.4855 7.4786 SDpT 0.09% Expt-SDpT 7.479(7)

5s− 9s 3.9328 5.8004 5.6404 5.6563 5.6404 SDpT 0.28% Expt-SDpT 5.640(16)

5s− 10s 3.1127 4.5748 4.4505 4.4505 SDpT 0.3% 0.3% 4.451(13)

5s− 11s 2.5429 3.7281 3.6279 3.6279 SDpT 0.3% 0.3% 3.628(11)

5s− 12s 2.1332 3.1194 3.0333 SD adj. -3% 0.3% 0.3% 3.033(9)

5p1/2 − 5p1/2 2.4023 4.3197 4.1460 4.1223 4.1223 Expt. 0.2% Expt. 4.122(8)

5p1/2 − 6p1/2 1.4218 2.4431 2.3582 2.3582 SDpT 0.6% from 5p1/2 2.358(14)

5p1/2 − 7p1/2 0.9681 1.6390 1.5853 1.5853 SDpT 0.6% from 5p1/2 1.585(10)

5p1/2 − 5p3/2 0.3835 0.3396 0.3274 0.3274 SDpT 1% from 5p3/2 0.327(3)

5p1/2 − 6p3/2 0.2273 0.1946 0.1886 0.1886 SDpT 1% from 5p3/2 0.189(2)

5p1/2 − 7p3/2 0.1550 0.1312 0.1272 0.1272 SDpT 1% from 5p3/2 0.127(1)

5p3/2 − 5p3/2 1.3496 2.7786 2.6682 2.7229 2.7229 Expt. 0.065% Expt. 2.723(2)

5p3/2 − 6p3/2 0.8000 1.5755 1.5212 1.5483 av. SD, SDpT 1% from 5p3/2 1.548(15)

5p3/2 − 7p3/2 0.5453 1.0583 1.0241 1.0412 av. SD, SDpT 1% from 5p3/2 1.041(10)

5p3/2 − 6p1/2 0.2269 0.1905 0.1845 0.1845 SDpT 1% from 5p3/2 0.185(2)

5p3/2 − 7p1/2 0.1545 0.1275 0.1236 0.1236 SDpT 1% from 5p3/2 0.124(1)

6p1/2 − 6p1/2 0.8443 1.3431 1.3453 1.3453 Expt. 0.02% Expt. 1.3453(3)

6p1/2 − 7p1/2 0.5747 0.9024 0.9024 SDpT 0.2% from 6p1/2 0.902(2)

6p1/2 − 6p3/2 0.1350 0.1076 0.1076 SDpT 2% from 6p3/2 0.108(2)

6p1/2 − 7p3/2 0.0919 0.0727 0.0727 SDpT 2% from 6p3/2 0.073(1)

6p3/2 − 7p1/2 0.0918 0.0722 0.0722 SDpT 2% from 6p3/2 0.072(1)

6p3/2 − 6p3/2 0.4759 0.8675 0.8890 0.8890 Expt. 0.06% Expt. 0.889(1)

6p3/2 − 7p3/2 0.3241 0.5834 0.5834 SDpT 2% from 6p3/2 0.583(12)

7p1/2 − 7p1/2 0.3916 0.6067 0.6020 0.6020 Expt. 0.05% Expt. 0.6020(3)

7p1/2 − 7p3/2 0.0627 0.0488 0.0488 SDpT 3% from 7p3/2 0.049(1)

7p3/2 − 7p3/2 0.2211 0.3925 0.4034 0.4034 Expt. 0.08% Expt. 0.4034(3)

where 〈i‖D‖j〉 are electric-dipole reduced matrix elements

and 〈i‖T (1)‖j〉 are the matrix element of the magnetic hyper-

fine operator T (1). The quantities AT and AC are the angular

coefficients given in our case by

AT =
(−1)jm+1/2

2

AC = (−1)jm−jn

{

1 1/2 1/2
1 jm jn

}

.

Sums over m and n run over all possible states allowed by

the selection rules. Therefore, three distinct sets of matrix el-

ements are needed for the present calculations: electric-dipole

matrix elements between ns and mpj states, 〈mpj‖D‖ns〉,
and diagonal and off-diagonal matrix elements of the magnetic

hyperfine operator for both ns and np states: 〈ns‖T (1)‖5s〉,
〈mpj1‖T

(1)‖npj2〉. Therefore, the calculation of the BBR shift

reduces to the evaluation of the electric-dipole and magnetic

hyperfine matrix elements.

We start our calculation by evaluating all three terms in

Dirac-Hartree-Fock approximation. The resulting DF values

for the T , C, and R terms in atomic units are

2TDF = 2.376× 10−3, CDF = 6.111× 10−6,

RDF = 3.199× 10−3.

Then, we replace all dominant matrix elements by the “best

set” values that have been evaluated for their accuracy and

replace corresponding energies by their experimental values

[6], [7]. We refer to the terms where such replacements have

been made as “main” terms, and refer to the remaining terms

calculated in the DHF approximation as remainders. The “best

set” consists of our all-order high-precision values and several

experimental values. The following 128 matrix elements have

been replaced by the all-order or experimental values:

〈mpj‖D‖ns〉, m = 5− 12, n = 5− 12

〈ns‖T (1)‖5s〉, n = 5− 12

〈mpj1‖T
(1)‖npj2〉, m = 5− 7, n = 5− 7.



The all-order calculation Rb matrix elements has been de-

scribed in detail in [8].

We illustrate the selection of the “best set” values of the

electric-dipole matrix elements and determination of their

uncertainties in Tables I and II. The absolute values in atomic

units (a0e) are given in all cases. We list the lowest-order

DHF results, all-order SD values, and their relative differences

in percent in columns 2 - 4 of Tables I and II. The relative

differences of DHF and SD all-order numbers give a good

estimate of the size of the correlation correction. In general,

the smaller the correlation correction, the more precise our

theoretical values are. The final values used in our “best

set” are listed in column 5. The next column identifies the

source of these values for each of the matrix elements. The

5s − 5pj matrix elements are experimental values from [9].

All other E1 matrix elements are from all-order calculation

that included SD, SDpT, or SDsc values. The SDsc values

include additional corrections added to SD ab initio results by

means of the scaling procedure described in Ref. [10] and

references therein. The SDpT label refers to ab initio all-

order calculations that include single, double, and partial triple

excitations. The selection of the particular value as final is

determined by the study of the dominant correlation correction

terms (as scaling procedure is only applicable for certain

classes of terms) and accuracy requirements. In the present

calculation, extremely high accuracy is not needed for matrix

elements with high values of principal quantum numbers. In

such cases, SD values are sufficiently accurate for E1 matrix

elements.

Evaluation of theoretical uncertainties is a very difficult

problem since it essentially involves evaluation of the quantity

that is not known beforehand. Several strategies can be used in

evaluating the uncertainties of the all-order results, including

the study of the breakdown of the various all-order contribu-

tions, identification of the most important terms, and semi-

empirical determination of important missing contributions.

Our uncertainty estimates are listed in percent in column

labeled “Unc.”. The method for determining uncertainty is

noted in the next column labeled “Unc. source”. Where the

scaling was performed, it is expected to estimate the dominant

missing correlation correction (see Ref. [10] and references

therein for explanation). Therefore, it is reasonable to take the

difference of ab initio and scaled results as the uncertainty.

This is indicated by SDsc-SD note in the “Unc. source”

column. We note that this procedure is expected to somewhat

overestimate the uncertainty.

In some cases, where such high accuracy was not required

but the same correlation terms were dominant, we carried

out ab initio SDpT calculation (i.e. partially included triples)

instead and took these values as final. The uncertainties were

estimated at the differences of the SD and SDpT numbers in

those cases. We note that numerous tests were conducted in the

past that demonstrated that the above-mentioned procedures

of the uncertainty estimates are valid (see Ref. [10] for

review of the all-order method and its applications). In the

cases of transitions with high values of the principal quantum

numbers (for example, np−10s transitions) where only rough

estimates of uncertainties were needed, we used uncertainty

estimate from the previous transition. For example, we use

0.5% as uncertainty estimate for the 6pj − 9s transitions

since the uncertainty for the 6pj − 8s ones was 0.5%. Since

relative correlation correction generally decreases with n, such

procedure can overestimate the uncertainty, but should not

underestimate it. The final results and their uncertainties are

summarized in the last columns of Tables I and II.

Selection of the “best set” values for diagonal and off-

diagonal matrix elements of the magnetic hyperfine operator

T (1) in 10−8 a.u is illustrated in Table III. Triple corrections

are large for hyperfine matrix elements and have to be in-

cluded. Scaling procedure can not be applied here since the

terms that it corrects are generally not dominant unlike the

cases of the ns − n′p matrix elements above. The remaining

columns in Table III are the same as in the E1 matrix element

tables.

Most of the diagonal hyperfine matrix elements are taken

from the experiment. Experimental uncertainties are listed

where experimental data are used. Off-diagonal hyperfine

matrix elements between the s-states 〈ns‖T (1)‖n′s〉 can be

also evaluated from experimental hyperfine constants using

the formula

|〈ns‖T (1)‖n′s〉| =
√

〈ns‖T (1)‖ns〉〈n′s‖T (1)‖n′s〉, (6)

that is useful for the cases where accurate values of the

hyperfine constants A are available. We list such values

for the off-diagonal matrix elements as experimental. Since

large number of experimental values are available for data in

Table III, the remaining uncertainties for off-diagonal matrix

elements are assigned based on the differences of the theory

values for the most relevant diagonal matrix elements with

experiment. We note that contributions of np − np′ matrix

elements to total uncertainty of the static Stark coefficient kS

is very small, and approximate estimate of uncertainties is

sufficient.

The total uncertainty of the main terms of the static Stark

coefficient is obtained by adding uncertainties from all terms in

quadrature. The uncertainties in the remainders are evaluated

separately for each term. They are found to be very small for

terms C and R. The remainder (over ns sum) in term T is large,

about 15% of the total term T, and was considered in detail.

We found that the accuracy of the DHF approximation for the

remainder of term T is about 4%, bases on the comparison of

the DHF and final results for the main terms. Therefore, we

adjusted DHF tail for the term T by 4%. We took 100% of

the adjustment to be the uncertainty of the T term remainder.

The resulting final values for the T , C, and R terms in

atomic units are

2T = 2.247(17)× 10−3, C = −2.385(20)× 10−5,

R = 2.769(2)× 10−3.

Using these values, we obtain our predicted value of the Stark

coefficient, ks = −1.240(4) × 10−10 Hz/(V/m)2. It is in



agreement with the value −1.24×10−10 Hz/(V/m)2 of Ref. [4]

that was estimated to be accurate to about 1% based on the

uncertainty estimate done for Cs atom.

III. DEVELOPMENT OF CI + ALL-ORDER METHOD

The all-order method use to evaluate Rb matrix elements

above is designed to treat core-core and core-valence cor-

relations with high accuracy. It is not directly applicable to

evaluate properties of divalent systems used in many optical

atomic clock schemes (Ca, Sr, Yb, etc.) Precision calculations

for atoms with several valence electrons require an accurate

treatment of the very strong valence-valence correlation. A

perturbative approach leads to significant difficulties.

A combination of the configuration-interaction method and

perturbation theory was developed in Ref. [11] and later

applied to the calculation of atomic properties of various

systems in a number of works. The CI + MBPT approach

allows one to incorporate core excitations in the CI method by

constructing an effective Hamiltonian that incorporates certain

perturbation theory terms. The CI method is then applied to the

modified Heff to obtain improved energies and wave functions.

The CI+MBPT approach includes only a limited number of

the core-valence excitation terms (mostly in second order)

and deteriorates in accuracy for heavier, more complicated

systems.

TABLE IV

COMPARISON OF THE CI, CI+MBPT, AND OUR FINAL ab initio

CI+ALL-ORDER RESULTS WITH RECOMMENDED VALUES FROM REF. [12]

THAT INCORPORATE HIGH-PRECISION EXPERIMENTAL RESULTS.

Atom State CI CI+MBPT CI+all Ref. [12]

Mg 3s2 1S0 73.56 71.20 71.19 71.3(7)

3s3p 3P0 101.97 100.76 100.81 101.2(3)

Ca 4s2 1S0 168.66 156.58 157.64 157.1(1.3)

4s4p 3P0 236.09 300.83 288.69 290.3(1.5)

Sr 5s2 1S0 219.34 195.60 198.01 197.2(2)

5s5p 3P0 341.29 483.64 459.39 458.3(3.6)

In the CI+all-order approach, the effective Hamiltonian is

constructed using fully converged all-order excitations co-

efficients. Therefore, the core-core and core-valence sectors

of the correlation corrections for systems with few valence

electrons will be treated with the same accuracy as in the all-

order approach for the monovalent systems. The CI method

is then used to treat valence-valence correlations. This ap-

proach has been tested on the calculation of energy levels

of divalent systems from Mg to Ra. We have demonstrated

an improvement of at least a factor of 3 in agreement with

experimental values for the two-electron binding energies and

most excited-state energies in comparison with the CI+MBPT

(many-body perturbation theory) method [1]. In the present

work, we have extended CI+all-order method to the calculation

of the transition properties and polarizabilities of divalent

systems. Preliminary results for polarizabilities are listed in

Table IV. The CI, CI+MBPT, and CI + all-order values for

the polarizabilities of Mg, Ca, and Sr in the ground 1S0 and

excited 3P0 states are given. The BBR shift for optical atomic

clocks is closely related to the difference of static polarizabil-

ities of these states (up to relatively small dynamic correction)

[3], [13]. We observe that while CI+MBPT and CI+all order

results are nearly the same for Mg, the difference is large for

Sr. Our CI+all-order results are in very good agreement with

recommended values from [12], where experimental values for

transition matrix elements were used where available.

IV. CONCLUSION

We had carried out accurate evaluation of the blackbody

radiation shift for the 87Rb microwave frequency standard.

Progress on the development of the CI+all-order method for

calculation of properties of divalent atoms relevant to the

atomic clock research is reported. Out preliminary ab initio

values for atomic polarizabilities of Mg, Ca, and Sr are in

very good agreement with the present recommended values

that incorporate experimental results for transition properties.
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