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Abstract.
The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization

phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest
and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic
polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The
development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is
discussed.
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INTRODUCTION

Many topics in the area of field-atom interactions have recently been the subject of much interest owing to the de-
velopments in cold-atom physics including Bose-Einstein condensation, development of optical frequency standards,
preparation and manipulation of single quantum systems, studies of atoms in optical lattices, quantum information,
and many other topics. Atomic polarization phenomena impinge upon a number of areas and processes in physics
and have been the subject of considerable interest and heightened importance in recent years. For example, an im-
perfect knowledge of atomic polarizabilities presents a problem in accurate determination of the blackbody radiation
shifts which are the largest source of uncertainty in the new generation of optical frequency standards. More precise
atomic clocks will lead to more sensitive quantum-based standards for many applications such as searches for variation
of the fundamental constants, testing of physics postulates, gravity gradiometry, inertial navigation, and tracking of
deep-space probes.

There have been a number of reviews and tabulations of atomic and ionic polarizabilities [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13]. Some of these reviews, e.g. [3, 4, 10, 11] have largely focussed upon experimental developments while
others [6, 8, 9, 13] have given theory more attention.

Accurate polarizabilities for the group I and II atoms and ions of the periodic table have recently become available
by a variety of techniques [9]. These include refined many-body perturbation theory and coupled-cluster calculations
sometimes combined with precise experimental data for selected transitions, ab initio calculations of atomic properties
using explicitly correlated wave functions, microwave spectroscopy of Rydberg atoms and ions, interferometry with
atom beams, refractive index measurements in microwave cavities, and velocity changes of laser cooled atoms induced
by an electric field. In this paper, we review the present status of our knowledge of ground-state atomic polarizabilities
for various types of systems.

The development of a novel theoretical method to accurately treat correlation corrections in atoms with a few
valence electrons and its further extensions are discussed in detail. This method combines the linearized coupled-
cluster method with the configuration-interaction approach that is applicable for many-electron systems. This approach
has been tested on the calculation of energy levels of divalent systems from Mg to Ra [14].



APPLICATIONS OF ATOMIC POLARIZABILITIES

Accurate knowledge of atomic polarizabilities is important for variety of applications [9]: development of the next-
generation atomic time and frequency standards, optical cooling and trapping schemes, quantum information with
neutral atoms, study of fundamental symmetries, thermometry and other macroscopic standards, study of cold degen-
erate gases, study of long-range interactions, atomic transition rate determinations, and benchmark comparisons of
theory and experiment.

The current definition of a second in the International System of Units (SI) is based on the microwave transition
between the two hyperfine levels of the ground state of 133Cs [15]. The frequencies of feasible optical clock transitions
are five orders of magnitude greater than the standard microwave transitions. Therefore, optical frequency standards
may achieve even smaller relative uncertainties. Significant recent progress in optical spectroscopy and measurement
techniques has led to the achievement of relative standard uncertainties in optical frequency standards that are
comparable to the Cs microwave benchmark.

There are two main interconnecting areas of the theoretic atomic clock research: prediction of atomic properties
required for new clock proposals and determination of the quantities contributing to the uncertainty budget of the
existing schemes. New clock proposals require both estimation of the atomic properties for details of the proposals
(magic wavelength, scattering rates, transition rates, lifetimes, branching ratios, etc.) and evaluation of the systematic
shifts (blackbody radiation shift, ac Stark shifts due to various lasers fields, Zeeman shift, electric quadruple shift,
etc.). While many of these quantities may be eventually measured, lack of knowledge of some of these properties may
delay experimental realization of the new proposals by years. In the case of the well-developed proposals, one of the
main uncertainty issues is the blackbody radiation (BBR) shift [16, 17, 18], i.e. the displacement of atomic energy
levels due to universal ambient thermal fluctuations of the electromagnetic field. The operation of atomic clocks is
generally carried out at room temperature, whereas the definition of the second refers to the clock transition in an atom
at absolute zero. This implies that the clock transition frequency should be corrected for effects of finite temperature,
of which the leading contributor is the blackbody radiation (BBR) shift. Experimental measurements of the BBR shifts
are difficult and high-precision theoretical calculations are presently needed.

The average electric field radiated by a blackbody at temperature T is [17]

〈E2〉= (831.9 V/m)2
(

T (K)
300

)4

. (1)

Assuming that the system evolves adiabatically, the frequency shift of an atomic state due to such an electrical field
can be related to the static electric-dipole polarizability α0 by (see Ref. [18])

δν =−1
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α0(1+η), (2)

where η is a small dynamic correction due to the frequency distribution and only the electric-dipole transition part
of the contribution is considered. Therefore, the calculation of BBR shifts is reduced to the evaluation of the static
polarizabilities of the two clock states and evaluation of the small dynamic correction. We refer the reader to the
review [19] for a discussion of the current status of the BBR shift calculations.

The laser fields used to trap neutral atoms for the implementation of the optical frequency standards generally shift
the energy levels of the lower and upper states by different amounts. This results in a wavelength (and intensity) depen-
dent shift of the clock transition unless the laser is tuned to a magic wavelength λmagic, where lattice potentials of equal
depth are produced for the two electronic states of the clock transition. Ab initio calculations of the dynamic polariz-
ability are needed to make an initial estimate of the magic wavelength. Such calculations involve the determination of
the crossing points of the lower and upper state dynamic polarizability curves [20, 21, 22].

Development of more precise atomic clocks is also important for laboratory searches for variation of the fundamental
constants, such as fine-structure constant α . The astrophysical approach to such studies (involving study of absorption
lines in the spectra of distant quasars) is complicated by the possible changes in isotopic abundances with time that
may mimic the variance in the value of the fine-structure constant [23]. The laboratory searches for the variation of the
fundamental constants are based on comparing the frequencies of two ultra-precise atomic clocks over time [24].

The precise calculation of atomic polarizabilities also has implications for quantum information processing and
optical cooling and trapping schemes. One requirement for the experimental realization of the scalable quantum
computer is the design of a quantum gate with low error rate which will allow for error correction. Therefore, it is



important to study the various decoherence mechanisms and to search for ways to optimize gate performance. The
issue of the mismatch of the polarizabilities of the ground and excited states has arisen in schemes to perform quantum
logical operations where it is a source of decoherence [25].

TABLE 1. Ground state polarizabilities α0 (in atomic units) of noble gases, monovalent, and divalent atoms. Uncertainties
in the last digits are given in parentheses. References are given in square brackets. Method abbreviations: DC - dielectric
constant, RI - refractive index, EH - E-H balance or beam-deflection, sum-rule - hybrid f -sum rules with experimental
data for primary contribution, RRPA - relativistic random-phase approximation, (R)(L)CCSDT - (relativistic) (linearized)
coupled-cluster calculations. aNon-relativistic Hylleraas calculation for ∞Li, bHylleraas calculations for 7Li that includes
estimate of relativistic effects, cCI, dHybrid-RLCCSD data for the alkali ground states from [51] are listed as recommended
“sum-rule” data, einterferometry, f interferometry ratio, gcold atom velocity change experiments, hRCCSDT, iMBPT, jHybrid-
RCI+MBPT data for the alkaline-earth ground states from [70] are listed as recommended “sum-rule” data

He Ne Ar Kr Xe Method [Ref.]

1.322 2.38 10.77 16.47 26.97 Th. RRPA [26]
1.383763 2.6648 11.084 Th. CCSDT [27]

2.697 11.22 16.80 27.06 Th. RCCSDT [28]
2.665 [29] 11.085 Th. MBPT [30]
2.668(6) [31] Th. RCCR12

1.38376079(23)[32] Th.
1.383223(67) [33, 34] 2.670(3) [35] 11.081(5) [35] 16.766(8) [35] Expt. DC

2.66110(3)[36] Expt. DC
1.3838 2.6680 11.091 16.740 27.340 Expt. RI [37]
1.384 2.663 11.080 16.734 27.292 Expt. RI [38]
1.383759(13) [39] 11.083(2) [40] Expt. RI

Li Na K Rb Cs Method

164.112(1)a [41] 164.50c [42] 398.2(9) [43] Th.
164.11(3)b [44] Th. Hyl.
164.21 [45] 162.8 [46] 290.0 [46] 315.7 [46] Th. CICP

165.50 [47] 301.28 [48] Th. CCSD
163.74 [48] 162.9(6) [49] 291.12 [50] 316.17 [50] 396.02 [50] Th. RCCSDT

163.0 289.1 316.4 401.5 Th. RLCCSD [51]
164.08 [52] 289.3 [53] 398.4(7) [54] Th. RLCCSDT
164(3) 159(3) 293(6) 319(6) 402(8) Expt. EH [55]
164.2(1.1)e [56] 162.7(8)e [57] 290.8(1.4) f [58] 318.8(1.4) f [58] 401.0(6)g [59] Expt.

162.6(3) 290.2(8) 318.6(6) 399.9(1.9) Sum-ruled [51]

Be Mg Ca Sr Ba Method
2s2 3s2 4s2 5s2 6s2

37.755 [60] Th. ECG
37.73(5)h [61] 71.7i [62] 157i [62] Th.
37.807 [63] 70.90 [64] 171.7 [65] Th. CI
37.29 [66] 70.74 [66] 156.0 [66] Th. CICP
37.69 [46] 71.35 [46] 159.4 [46] 201.2 [46] Th. CICP

158.00 [67] 198.85 [67] 273.9 [67] Th. RCCSDT
152 [68] 190 [68] 275.5 [69] Th. RCCSDT

37.76 [70] 71.33 [70] 159.0 [70] 202.0 [70] 272.1 [70] Th. RCI+MBPT
169(17) [71] 186(15) [72] 268(22) [72] Expt. EH

74.9(2.7) [73] 157.1(1.3) [70] 197.2(2) [70] 273.5(2.0) [70] Sum-rule j

Many other applications of the polarizability calculations are discussed in detail in the recent review [9].

THEORETICAL METHODS AND RESULTS

Most methods used to determine atomic wave functions and energy levels can be adapted to generate polarizabilities.
A brief description of the applications of the following methods to the polarizability calculations has been given in the
review [9]: configuration interaction (CI), CI calculations with a semi-empirical core potential (CICP), density func-
tional theory, correlated basis functions, many-body perturbation theory (MBPT), coupled-cluster methods, combined



CI+MBPT, and combined CI+coupled-cluster approaches. This list is not exhaustive, and includes those methods that
have achieved the highest accuracy or those methods that have been applied to a number of different atoms and ions.

The results for the ground state polarizabilities α0 (in atomic units) of He, Ne, Ar, Kr, Xe, Li, Na, K, Rb, Cs,
Be, Mg, Ca, Sr, and Ba are listed in Table 1. Uncertainties in the last digits are given in parentheses. References are
given in square brackets. Method abbreviations: DC - dielectric constant, RI - refractive index, RRPA - relativistic
random-phase approximation, (R)CCSDT - (relativistic) coupled-cluster calculations, EH - E-H balance or beam-
deflection, sum-rule - hybrid f -sum rules with experimental data for primary contribution, RLCCSDT - linearized
CCSD method with partial triple contributions included. The RCCR12 calculation is a CCSDT calculation which
allows for explicitly correlated electron pairs. Hybrid-RCI+MBPT data for the alkaline-earth ground states from [70]
are listed as recommended “sum-rule” data. All coupled-cluster calculations that include some triple excitations are
listed as (RL)CCSDT.

The most precise calculations of the noble gas polarizabilities (apart from helium) have mostly been obtained with
coupled-cluster type calculations. Particular care has to be taken to ensure that the basis set used in coupled-cluster
calculations is of sufficiently high quality to obtain accurate values. Random-phase approximation (RRPA) values for
polarizabilities of noble gases [26] appear to be in remarkably good agreement with the much more elaborate coupled-
cluster and Hylleraas basis function calculations as well as with experimental data. Core polarizabilities are included
into many calculations of the polarizabilities of alkali and alkaline-earth ions (see, for example, Refs. [51, 70, 18]).
They are also important for the construction of CICP type models of these atoms. RPPA data are used in many of these
cases.

The sum-rule polarizabilities for the alkali-metal atoms [51] come from a hybrid calculation that use the RLCCSD
calculation as a template with the matrix element for the resonance transition has been replaced by high accuracy
experimental matrix elements compiled in [74]. The ab initio RLCCSD values are in excellent agreement (better than
1%) with these hybrid recommended values. The CI calculations with a semi-empirical core potential (CICP) are in
excellent agreement with RLCCSDT calculations and experiment for lighter systems.

The perturbative methods do not work well for strong valence-valence correlations, and the sub-1% agreement
between the highest quality theory and experiment that occurred for the alkali atoms is not observed for the alkaline-
earth atoms owing to their more complicated atomic structure and resulting mixing of configurations. The hybrid
values for Ca and Sr based on the RCI+MBPT calculations with the matrix elements for the resonance transitions
replaced by values derived from experiments are respectively 1.1% and 2.5% smaller than the ab initio RCI+MBPT
estimates [70]. Therefore, the accurate determination of the possibilities for divalent and more complicated systems
requires development of the novel approaches. A promising method [14] combining CI and linearized coupled-cluster
approaches is described in the next section.

DEVELOPMENT OF THE CI+ALL-ORDER METHOD

A combination of the configuration-interaction (CI) method and perturbation theory was developed in Ref. [75]. This
approach has been later applied to the calculation of atomic properties of various systems in a number of works (see [9]
for references). In the CI method, the many-electron wave function is obtained as a linear combination of all distinct
states of a given angular momentum J and parity [76]:

ΨJ = ∑
i

ciΦi.

Energies and wave functions of the low-lying states are determined by diagonalizing an effective Hamiltonian:

Heff = H1 +H2,

where H1 represents the one-body part of the Hamiltonian, and H2 represents the two-body part (Coulomb or Coulomb
+ Breit matrix elements vi jkl). The precision of the CI method is drastically limited for large systems by the number of
the configurations that can be included. The CI + MBPT approach allows one to incorporate core excitations in the CI
method by including second-order (and some higher-order) terms in an effective Hamiltonian. The one-body part H1
is modified to include the correlation potential Σ1 that accounts for part of the core-valence correlations,

H1→ H1 +Σ1.



Either the second-order expression, Σ
(2)
1 , or all-order chains of such terms can be used (see, for example, Ref. [75]).

The two-body Coulomb interaction term H2 is modified by including the two-body part of the core-valence interaction
that represents screening of the gi jkl Coulomb interaction by valence electrons;

H2→ H2 +Σ2,

where Σ2 is calculated in second-order MBPT in CI+MBPT approach. The CI method is then applied as usual with
the modified Heff to obtain improved energies and wave functions.

The second-order matrix elements (Σ(2)
1 )yx are given by [14](

Σ
(2)
1

)
yx

= ∑
mab

gmyab g̃mxab

εab− εxm + ε̃y− εy
+ ∑

mna

gmnxa g̃mnya

ε̃y + εa− εmn
. (3)

In the equation above, indices from the middle of the alphabet m and n range over all possible virtual states while
indices a and b range over all occupied core states. The one-particle energies εi are written together as εi j = εi + ε j
for brevity. The summation over index i implies the sum over the quantum numbers ni κi mi. Ideally, the energy ε̃y
should be calculated from the particular eigenvalue of the effective Hamiltonian. In practice, we set the energy ε̃y to
the Dirac-Fock energy of the lowest orbital for the particular partial wave. For example, we use ε̃ns = ε4s for all ns
orbitals of Ca system.

The second-order matrix elements (Σ(2)
2 )mnvw are given by [14](

Σ
(2)
2

)
mnvw

= ∑
cd

gvwcd gmncd

εcd− εmn + ε̃v− εv + ε̃w− εw
(4)

+
[
∑
rc

g̃wrnc g̃mrvc

ε̃v + εc− εmr + ε̃w− εw
+
(

m ⇔ n
v ⇔ w

)]
.

In the CI+MBPT approach, MBPT corrections associated with terms Σ1 and Σ2 typically grow with nuclear charge
Z leading to a deterioration of the accuracy of the results for heavier, more complicated systems requiring introduction
of the intrinsically all-order treatment of the effective Hamiltonian.

In the CI + all-order approach [14] most important corrections to the effective Hamiltonian are calculated using the
(linearized single-double coupled cluster) all-order method.

In the linearized single-double (SD) coupled-cluster method, the many-body wave function of a monovalent atom
in a state v is represented by

|Ψv〉=

[
1+∑

ma
ρmaa†

maa +
1
2 ∑

mnab
ρmnaba†

ma†
nabaa + ∑

m 6=v
ρmva†

mav + ∑
mna

ρmnvaa†
ma†

naaav

]
|Ψ(0)

v 〉 (5)

where the indices m and n range over all possible virtual states while indices a and b range over all occupied core
states. The lowest-order wave function is |Ψ(0)

v 〉= a†
v |ΨC〉, where |ΨC〉 is the lowest-order frozen-core wave function.

The quantities ρma, ρmv are single-excitation coefficients for core and valence electrons; ρmnab and ρmnva are core and
valence double-excitation coefficients, respectively. To derive equations for the excitation coefficients, the state vector
|Ψv〉 is substituted into the many-body Schrödinger equation H|Ψv〉 = E|Ψv〉,. The terms on the left- and right-hand
sides are matched, based on the number and type of operators they contain, leading to the equations for the excitation
coefficients [77]. First, the resulting system for the core excitations ρma and ρmnab is solved iteratively until the core
correlation energy converges. Next, the system of equations for the valence excitation coefficients ρmv and ρmnva is
solved iteratively with the used of the stored core coefficients. The iteration procedure continues until the valence
energy converges. The single valence coefficients ρmv are directly used in the CI+all-order method, so we list the
corresponding equation below:

(εv− εm +δEv)ρmv = ∑
bn

g̃mbvnρnb +∑
bnr

gmbnrρ̃nrvb−∑
bcn

gbcvnρ̃mnbc, (6)

where ρ̃nrvb = ρnrvb−ρrnvb and δEv is the valence correlation energy.
The effective Hamiltonian in the CI+all-order method contains dominant core and core-valence correlation correc-

tions to all orders. The core-core and core-valence sectors of the correlation corrections for systems with few valence



electrons are treated in the all-order method with the same accuracy as in the all-order approach for the monovalent
systems. The CI method is then used to evaluate valence-valence correlations. Therefore, the resulting CI+all-order
wave function contains all-order correlation corrections from all interaction sectors. In actual implementation, we first
modify the effective Hamiltonian in second order using our version of the very fast MBPT code. The second-order
modifications are done for nearly complete CI space. Then, a subset of effective Hamiltonian matrix is modified using
the all-order method. We have carried out extensive tests to verify that modifying larger subset of Hamiltonian via the
all-order approach does not change results within the expected accuracy of the method.

To implement CI+all-order method, the all-order equations are re-written in terms of the quantities Σ instead of the
excitation coefficients ρ as follows:

Σma = ρma (εa− εm) ,
Σmnab = ρmnab (εab− εmn) ,
Σmnva = ρmnva (ε̃v + εa− εmn) . (7)

The quantities Σma, Σmnab, and Σmnva are used in the all-order iteration procedure but do not explicitly appear in the
effective Hamiltonian. The one-body correction to the effective Hamiltonian Σ1 is given by

(Σ1)mv = ρmv (ε̃v− εm) , (8)

where ρmv are valence excitation coefficients given by Eq. (6).
The two-body correction to the effective Hamiltonian Σ2 is given by [14]

(Σ2)mnvw = ∑
cd

gcdvw Σmncd

εcd− εmn + ε̃v− εv + ε̃w− εw
−∑

c

gcnvw Σmc

εc− εm + ε̃v− εv + ε̃w− εw

− ∑
c

gmcvw Σnc

εc− εn + ε̃v− εv + ε̃w− εw
+∑

cr

g̃cnrw Σmrvc

ε̃v + εc− εmr + ε̃w− εw

− ∑
cr

gcnrw Σrmvc

ε̃v + εc− εmr + ε̃w− εw
−∑

cr

gmcrw Σrnvc

ε̃v + εc− εnr + ε̃w− εw

+ ∑
cr

g̃mcvr Σrncw

εc + ε̃w− εnr + ε̃v− εv
−∑

cr

gmcvr Σrnwc

εc + ε̃w− εnr + ε̃v− εv

− ∑
cr

gcnvr Σrmwc

εc + ε̃w− εmr + ε̃v− εv
. (9)

where all of the quantities Σ are given by Eq. (7) and are obtained as the result of the SD all-order iteration procedure.
The Eq. (9) does not appear in the monovalent all-order method. This equation is not iterative, unlike the equation for
Σ1 given by (8).

We note that rather large basis sets and CI space have to be used to achieve sufficient numerical accuracy. The
MBPT correction to the effective Hamiltonian has to done for nearly entire CI space.

We compare the results of our CI, CI + MBPT, and CI + all-order ab initio calculations for the two-electron binding
energies of Mg, Ca, Zn, Sr, Cd, In+, Ba, Hg, and Ra with experiment in Table 2. Some of these values were published
in Ref. [14]. The energy values are given in cm−1. Relative differences of all results with experiment are given in
the last three columns of Table 1 to illustrate the accuracy of each approach. We find that the all-order results are
in significantly better agreement with experiment in comparison with the CI+MBPT values. We also find almost no
deterioration in the accuracy of the two-electron binding energies from Ca to Ra; the all-order method reduces the
differences with experiment by about factor of three in comparison with the second-order data. Similar improvements
are observed for most of the excited states as illustrated in Ref. [14].

While we have demonstrated a success of the CI + all-order method for divalent systems and obtained significant
improvement of accuracy with comparison to the best know approaches for a number of properties, we found that a
number of the additional all-order corrections have to be added to achieve the precision needed for accurate calculations
of polarizabilities in heavy systems with a few valence electrons. Further proposed extensions of the present CI+all-
order method are outlined below.



TABLE 2. Comparison of the CI, CI+MBPT and CI+all-order ab initio results for the two-electron
binding energies of Mg, Ca, Zn, Sr, Cd, In+, Ba, Hg, and Ra with experiment. CI+all-order results
are listed in column labeled “CI+all”. The energies are given in cm−1. The relative difference with
experimental values is given in the last three columns in %.

Atom State Energies Differences with experiment (%)
Expt. CI CI+MBPT CI+all CI CI+MBPT CI+all

Mg 3s2 182939 179537 182717 182877 1.86 0.12 0.03
Ca 4s2 145058 139068 145985 145517 4.13 -0.64 -0.32
Zn 4s2 220662 204083 218521 219442 7.51 0.97 0.55
Sr 5s2 134896 127858 136082 135322 5.22 -0.88 -0.32
Cd 5s2 208915 188884 210716 208620 9.59 -0.86 0.14
In+ 5s2 378299 356232 382436 379259 5.83 -1.09 -0.25
Ba 6s2 122721 114898 124956 123363 6.37 -1.82 -0.52
Hg 6s2 235469 207652 241152 236626 11.81 -2.41 -0.49
Ra 7s2 124416 115334 127302 125227 7.3 -2.23 -0.65

Inclusion of the valence triple excitations

The next version of the CI+all-order method will be based on the SDpT all-order version rather than the SD version
of the all-order code (which is used at the present time). In the SDpT method [74], the triple valence term is added to
the SD wave function:

|Ψv〉= |ΨSD
v 〉+

1
6 ∑

mnrab
ρmnrvaba†

ma†
na†

r abaaav|Ψ(0)
v 〉,

to the SD wave function |ΨSD
v 〉. The indices m, n, and r range over all possible virtual states while indices a and b range

over all occupied core states. The quantities ρmnrvab are the triples valence excitation coefficients. The SDpT extension
will directly modify Σ1 corrections to the effective Hamiltonian and will produce significantly improved energies.
While the SD approximation includes important high-order corrections, it omits certain third-order energy terms. The
addition of the triple excitations will automatically add these contributions as well as other important higher-order
corrections. The additions of the triple excitations should also significantly improve properties of levels that include d
orbitals, based on our knowledge of the SDpT results for monovalent systems.

All-order corrections to the matrix elements

In the current CI + all-order approach, matrix elements of the one-body operators Z, such as electric-dipole or parity-
nonconservation operators are calculated by replacing “bare” matrix elements by the “dressed” matrix elements using
the random-phase approximations (RPA). The all-order corrections are included to the effective Hamiltonian, and
consequently to the wave functions, but not to the effective Z operators. Such treatment omits all structure radiation,
normalization, and other all-order corrections to the matrix elements (see Ref. [78] for definitions of these terms). We
propose to remedy this problem by performing complete SD all-order “dressing” of all one-body matrix elements. The
“bare” one-body matrix elements zwv have to be modified as follows:

Zeff
vw = zwv +∑

ma
zamρ̃wmva +∑

ab
zabρ

∗
vbρwa + ∑

mna
zmnρ

∗
maρ̃wnva

− ∑
mab

zabρ
∗
mbρ̃wmva + ∑

mab
zamρ

∗
vbρ̃wmab−∑

mab
zavρ

∗
mbρ̃wmab

+ ∑
mnab

zabρ
∗
mnwbρ̃nmva + ∑

mabc
zabρ̃

∗
vmbcρ̃wmac + ∑

mnra
zmnρ̃

∗
rmwaρ̃rnva

+ ∑
mnab

zmnρ
∗
vmabρ̃wnba− ∑

mnab
zamρ̃

∗
vnwbρ̃nmab + ∑

mnab
zavρ

∗
mnwbρ̃nmab +(c.c.), (10)

where (c.c.) stands for a complex conjugate part of certain terms (generally, there terms are the same with v↔ w).
Using “dressed” SD all-order one-body matrix elements given by Eq. (10) will make these quantities complete at

the SD all-order level. Such treatment produced extremely accurate matrix elements for the monovalent systems [77].



It has never been implemented for more complicated systems. The excitation coefficients ρ in Eq. (10) are the same ρ

used in the Σ1 and Σ2 correction of the effective Hamiltonian given by the Eqs. (8, 9).
The one-body part of the Breit interaction can be included on the same footing as the Coulomb potential via the

modification of the B-spline basis set orbitals. The effect of the two-body part of Breit interaction on the matrix
elements is generally small and can be included perturbatively.

CONCLUSION

Further progress in experimental precision will require to make more detailed corrections of the effects of electromag-
netic fields that are used for manipulation and investigation of atoms. Accurate determination of polarizabilities will
become increasingly important in the future. New all-order approaches need to be developed to significantly improve
precision of the polarizability calculations for systems with a few valence electrons.
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