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Abstract. Selected modern applications of the atomic calculations ranging from the study of fundamental interactions to
applications of atomic physics to future technological developments are reviewed. The coupled-cluster approach to high-
precision calculation of various atomic properties of monovalent systems is discussed. The computational challenges in the
implementation of the all-order approaches including the development of the computer programs capable of performing
complicated symbolic calculations, automatic generation of the computer codes are discussed. Novel approach to calculation
of the atomic properties of more complicated systems that combines configuration interaction and all-order methods is
discussed and preliminary results are presented.
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INTRODUCTION

One of the unique attractions of atomic physics is the possibility of the extremely accurate theoretical predictions and
stingiest experimental tests of those predictions. There are numerous observable quantities which can be accurately
calculated and measured. The advancements in the experimental technologies and further development of the high-
precision atomic theory methodologies lead not only to our better understanding of atomic properties but also to
remarkable opportunities for applications in many areas. In this talk, I report on various modern applications of the
atomic calculations ranging from the study of fundamental interactions to applications of atomic physics to future
technological developments, such as quantum computing and optical atomic clocks.

One of such applications is the study of fundamental symmetries with atomic systems. For example, the study of
parity nonconservation (PNC) in cesium provided an atomic-physics test of the standard model of the electroweak
interactions and tested our understanding of weak hadronic interactions. Another test of fundamental science where
atomic physics calculations are important is the search for the variation of the fundamental constants, such as fine-
structure constant.

In this talk, I also review applications of the atomic calculations to the fields of quantum information and atomic
clocks. Quantum computation is a new field of research that is aimed at using quantum nature of matter to produce
fundamentally new methods of computation and simulation of physical systems. New generation of atomic clocks,
based on optical rather than microwave frequency standards will allow to increase the accuracy and stability of the
atomic clocks by orders of magnitude and will lead to new technological and scientific developments such as tracking
of deep-space probes, searches for gravitational waves and nonlinearity of the quantum mechanics, as well as other
applications.

The applications mentioned above require precise calculations of atomic properties and evaluation of the accuracy
of the results. I describe the computational challenges in the implementation of the computational methods used by our
group including the development of the computer programs capable of performing complicated symbolic calculations
and automatic generation of the computer codes.

SELECTED APPLICATIONS OF THE ATOMIC CALCULATIONS

Study of fundamental symmetries with heavy atoms

There are two separate reasons for PNC studies in an atom: to search for new physics beyond the standard model of
the electroweak interaction by precise evaluation of the weak charge Qw, and to probe parity violation in the nucleus



by evaluating the nuclear anapole moment. The study of PNC in cesium involving both high-precision measurement
[1] and several high-precision calculations provided an atomic-physics test of the standard model of the electroweak
interactions [2]. To conduct such a test, both high-precision theory and experiment were required.

The precise measurement of PNC amplitudes in Cs [1] also led to an experimental value of the small contribution
from the nuclear-spin dependent PNC accurate to 14%. The constraints on weak nucleon-nucleon coupling constants
derived from this experiment and calculations in Cs were found to be inconsistent with constraints from deep inelastic
scattering and other nuclear experiments [3, 4]. This analysis was based on the calculations of the spin-depended PNC
amplitude from [5, 6].

The spin-dependent contribution to the PNC amplitude has three distinct sources: the nuclear anapole moment, the Z
exchange interaction from nucleon axial-vector currents (AnVe), and the combined action of the hyperfine interaction
and spin-independent Z exchange from nucleon vector (VnAe) currents. The anapole moment contribution strongly
dominates. The first two of the above-mentioned interactions can be represented by the same Hamiltonian

H(i) =
G√

2
κi ααα ··· IIIρ(r), (1)

where the subscript i = a,2 refers to the anapole moment and the axial-vector contributions, respectively. In the
equation above, G is the universal weak coupling constant, III is the nuclear spin, and ρ(r) is a normalized density
function. The dimensionless constant κa is used to characterize anapole moment [4].

We have carried out preliminary all-order calculation of the spin-dependent PNC amplitude in Cs in an attempt to
understand discrepancies in weak nucleon-nucleon coupling constants derived from atomic and nuclear experiments.
We find that individual PNC matrix elements significantly change with more complete inclusion of the correlation
corrections, whereas changes in the total spin-dependent PNC amplitude are relatively small. Our preliminary value
of the anapole coupling constant κa = 0.88(12) Ref. [7] is only 5% lower than the value used by Haxton and Wieman
[3].

More PNC experiments in other atomic systems, such as Ba+, Yb, Fr are currently in progress. The experiments
in Pb, Bi, and Tl have been conducted but no theoretical calculations of comparable accuracy exist to allow to fully
analyze those experiments to test the standard model.

Another test of the fundamental physics where the atomic physics calculations are important is the search for the
variation of the fundamental constants, such as fine-structure constant [8]. The astrophysical approach to such test
(involving looking at the spectra of distant objects) requires the calculation of the isotope shifts in many systems
since the possible changes in isotopic abundances with time may mimic the variance in the value of the fine-structure
constant. The calculations of the isotope shifts also can be used to infer the difference in the values of the charge
radii between different isotopes which both provides importance information for the nuclear physics and for the PNC
experiments with chains of isotopes.

Quantum Information

Quantum computation is a field of research which is aimed at using quantum nature of matter to produce fundamen-
tally new methods of computation. The quantum computer is a device which manipulates quantum states in order to
solve a computational problem. Quantum computers may be used to solve various problems, ranging from simulating
quantum systems to breaking widely used RSA encryption, currently intractable on the best classical computers.

There are various approaches to the experimental realization of the quantum computation. In the quantum compu-
tation scheme with neutral atoms the qubits are realized as internal states of neutral atoms trapped in optical lattices
or microtraps. This approach to quantum computation has many advantages, such as scalability, possible massive par-
allelism, long decoherence times of the internal states of the atoms, flexibility in controlling atomic interactions, and
well-developed experimental techniques.

One of the possible quantum logic gates to be considered is a Rydberg gate [9], realized by excitations to Rydberg
states. The choice of this particular scheme results from its potential for fast (sub-microsecond) gate operations. In the
Rydberg gate scheme, the basic qubit is based on two ground hyperfine states of neutral atoms confined in an optical
lattice. A two-qubit phase gate may be realized by conditionally exciting two atoms to relatively low-lying Rydberg
states.

One of the requirements for the experimental realization of the scalable quantum computer is the design of quantum
gate with low error rate which will allow for error correction. Therefore, it is important to study various decoherence



mechanisms and search for ways to optimize gate performance. The atomic calculations are needed for understanding
of various decoherence mechanisms and realizing schemes for optimization of gate operations.

There are different proposals for specific realization of Rydberg gate citeRgate. In those schemes, either one or both
atoms may occupy the Rydberg state for much of the duration of the gate operation. However, an atom in a Rydberg
state will, in general, move in different optical lattice potential than that experienced by the ground state. Therefore,
the vibrational state of the atom in the lattice may change after the gate operation is completed, leading to decoherence
due to motional heating. The optical potential for a given state depends on its ac polarizability, so we can seek to
minimize this motional heating effect by the choice of a particular Rydberg state or of the lattice photon frequency
ω . We described a method for accomplishing this by matching the frequency-dependent polarizabilities α(ω) of the
atomic ground state and Rydberg state [10].

One of the current goals of the quantum information projects is to design an apparatus capable of interconnecting
"flying" and "stationary" qubits. The ability to trap neutral atoms inside high-Q cavities in the strong coupling regime
is of particular importance for such schemes. In a far-detuned optical dipole trap, the potential experienced by an atom
can be either attractive or repulsive depending on the sign of the ac Stark shift due to the trap light. The excited states
may experience an ac Stark shift with an opposite sign of the ground state Stark shift affecting the fidelity of the
experiments.

We evaluated the magic wavelengths in Na, K, Rb, and Cs atoms for which the ns ground state and either of
the first two np j excited states experience the same optical potential for state-insensitive cooling and trapping [11].
We accomplished this by matching the ac polarizabilities of the atomic ns and np j states. We conducted extensive
calculations of the relevant electric-dipole matrix elements using the relativistic all-order method and evaluated the
uncertainties of the resulting ac polarizabilities.

We also proposed to design schemes to minimize decoherence by using two-color light for state-insensitive trapping
at convenient wavelengths. In such scheme, a combination of trapping and control lasers will allow to minimize the
variance of the potential experienced by the atom in ground and excited states leading to minimizing the resulting
decoherence [12].

Atomic clocks

The current definition of a second in the International System of Units (SI) is based on the microwave transition
between the two hyperfine levels of the ground state of 133Cs [13]. The present relative standard uncertainty of Cs
microwave frequency standard is around 5× 10−16. More precise frequency standards will open ways to improve
global positioning systems and tracking of deep-space probes, and perform more accurate measurements of the
fundamental constants and postulates of physics. The frequencies of feasible optical clock transitions are five orders
of magnitude greater than the standard microwave transitions. Therefore, optical frequency standards may achieve
even smaller relative uncertainties. Significant recent progress in optical spectroscopy and measurement techniques
has led to the achievement of relative standard uncertainties in optical frequency standards that are comparable to
the Cs microwave benchmark. With extremely low systematic perturbations and better stability and accuracy, such
optical frequency standards can reach a systematic fractional uncertainty of the order of 10−18 [14, 15]. Currently, the
ultranarrow electric-dipole forbidden transitions in single trapped 199Hg+ [14, 16], 88Sr+ [17, 18], 171Yb+ ions, and
87Sr [19, 20] atoms have been recommended for secondary realizations of the SI second by a Joint Working Group of
the Consultative Committees for Length (CCL) and Time and Frequency (CCTF).

The operation of atomic clocks is generally carried out at room temperature, whereas the definition of the second
refers to the clock transition in an atom at absolute zero. This implies that the clock transition frequency should be
corrected for effects of finite temperature, of which the leading contributor is the blackbody radiation (BBR) shift. The
BBR shift at room temperature effecting the Cs microwave frequency standard has been calculated to high accuracy
(0.35% and 1%) in Refs. [21, 22], respectively, implying a 6× 10−17 fractional uncertainty. These calculations are
in agreement with a 0.2% measurement [23]. The BBR shift is a major component in the uncertainty budget of the
optical frequency standard based on these trapped ions. Experimental measurements of the BBR shifts are difficult.

We calculated the BBR shifts for optical frequency standards based on the 4s− 3d5/2 transition in Ca+ [24] and
the 5s− 4d5/2 transition in Sr+ [25]. We note that while the calculations were conducted for 43Ca+ and 88Sr+, we
have verified that the final results do not depend on the particular isotope. The calculation of the BBR shift for
these transitions requires the calculation of the lowest-order atomic polarizability (unlike the cases of the hyperfine
transitions, it does not cancel out for optical frequency standards) and the evaluation of the very small dynamic



correction η . Therefore, the evaluation of the BBR shift requires an accurate calculation of static scalar polarizabilities
of the ns1/2 ground and (n−1)d5/2 excited states. The effect of the tensor part of the (n−1)d5/2 polarizability averages
out due to the isotropic nature of the electric field radiated by the blackbody.

The blackbody radiation (BBR) shift of the 5s− 4d5/2 clock transition in 88Sr+ was calculated to be 0.250(9) Hz
at room temperature, T = 300 K, using the relativistic all-order method where all single and double excitations of
the Dirac-Fock wave function are included to all orders of perturbation theory [25]. The BBR shift for the 4s−3d5/2
transition in Ca+ [24] was calculated to be 0.38(1) Hz.

We have significantly improved the accuracy of the BBR shifts in these systems in comparison to previous estimates.
We have increased the accuracy of the polarizability values as compared to any other previous calculation by using
more accurate dipole-matrix element values calculated using relativistic all-order single-double method. Our results
are accurate enough for the present level of projected performance of Ca+ and Sr+ single-ion frequency standards at
room temperature.

ALL-ORDER METHOD

Brief overview

In the coupled-cluster method, the exact many-body wave function is represented in the form [26]

|Ψ〉= exp(S)|Ψ(0)〉, (2)

where |Ψ(0)〉 is the lowest-order atomic state vector. The operator S for an N-electron atom consists of “cluster”
contributions from one-electron, two-electron, · · · , N-electron excitations of the lowest-order state vector |Ψ(0)〉:
S = S1 +S2 + · · ·+SN . The exponential in Eq. (2), when expanded in terms of the n-body excitations Sn, becomes

|Ψ〉=
{

1+S1 +S2 +S3 +
1
2

S2
1 +S1S2 +

1
2

S2
2 + · · ·

}
|Ψ(0)〉. (3)

In the linearized coupled-cluster method described in detail in Refs. [27, 28], all non-linear terms are omitted and the
wave function takes the form

|Ψ〉= {1+S1 +S2 +S3 + · · ·+SN}|Ψ(0)〉 . (4)

Restricting the sum in Eq. (4) to single, double, and valence triple excitations yields the following expansion for the
state vector of a monovalent atom in state v:

|Ψv〉=

[
1+∑

ma
ρmaa†

maa +
1
2 ∑

mnab
ρmnaba†

ma†
nabaa+ (5)

+ ∑
m 6=v

ρmva†
mav + ∑

mna
ρmnvaa†

ma†
naaav +

1
6 ∑

mnrab
ρmnrvaba†

ma†
na†

r abaaav

]
|Ψ(0)

v 〉,

where the indices m, n, and r range over all possible virtual states while indices a and b range over all occupied core
states. The quantities ρma, ρmv are single-excitation coefficients for core and valence electrons and ρmnab and ρmnva are
double-excitation coefficients for core and valence electrons, respectively, and ρmnrvab are the triples valence excitation
coefficients.

We use the relativistic no-pair Hamiltonian H = H0 +VI obtained from QED by Brown and Ravenhall [29]:

H0 = ∑
i

εi : a†
i ai : , (6)

VI =
1
2 ∑

i jkl
vi jkl : a†

i a†
jalak : +∑

i j
(VHF−U)i j : a†

i a j : , (7)

where vi jkl are two-particle matrix elements of the Coulomb interaction gi jkl or Coulomb + Breit interaction gi jkl +
bi jkl , and VHF = ∑a (via ja− viaa j) is frozen-core Dirac-Hartree-Fock potential. The summation index a in VHF ranges



TABLE 1. Comparison of the excited state theoret-
ical scalar α0 and tensor α2 polarizabilities in alkali-
metal atoms with experiment. The experimental values
are from compilation of Ref. [33]. Theoretical all-order
values have been previously published in Ref. [11].

Atom Polarizability Theory Experiment

Na α0(3p1/2) 359.9(4) 359.2(6)
α0(3p3/2) 361.6(4) 360.4(7)
α2(3p3/2) -88.4(10) -88.3(4)

K α0(4p1/2) 606(6) 606.7(6)
α0(4p3/2) 616(6) 614(10)
α2(4p3/2) -109(2) -107(2)

Rb α0(4p1/2) 606(6) 606.7(6)
α0(4p3/2) 616(6) 614(10)
α2(4p3/2) -109(2) -107(2)

over states in the closed core. The quantity εi in Eq. (6) is the eigenvalue of the Dirac equation. We take U to be
frozen-core V N−1 potential, U = VHF . Such choice of the potential greatly simplifies the calculations as the second
term in Eq. (7) vanishes in this case.

To derive equations for the excitation coefficients, the state vector |Ψv〉 is substituted into the many-body
Schrödinger equation H|Ψv〉 = E|Ψv〉, and terms on the left- and right-hand sides are matched, based on the number
and type of operators they contain, leading to the equations for the excitation coefficients given in Ref. [28].

We have completed the addition of all non-linear single-double (SD) terms into the all-order method [30]. It was
shown in Refs. [31] that both non-linear terms and triple excitations have to be added to improve accuracy of the
linearized coupled-cluster SD method. The details of the all-order method and its applications are discussed in our
review Safronova and Johnson [32] and references therein.

The matrix elements for any one-body operator Z = ∑i j zi j a†
i a j are obtained within the framework of the linearized

coupled-cluster method as

Zwv =
〈Ψw|Z|Ψv〉√
〈Ψv|Ψv〉〈Ψw|Ψw〉

, (8)

where |Ψv〉 and |Ψw〉 are given by the expansion (5). In the SD approximation, the resulting expression for the
numerator of Eq. (8) consists of the sum of the DF matrix element zwv and 20 other terms that are linear or quadratic
functions of the excitation coefficients. The all-order method yielded results for the properties of alkali-metal atoms
([28]) in excellent agreement with experiment. The expression in Eq. (8) does not depend on the nature of the operator
Z, only on its rank and parity. Therefore, electric and magnetic multipole transition matrix elements, magnetic-
dipole, electric-quadrupole, and magnetic-octupole hyperfine matrix elements, and nuclear spin-dependent and spin-
independent PNC matrix elements, are all calculated using the same general code.

Table 1 gives comparison of the excited state scalar α0 and tensor α2 polarizabilities in alkali-metal atoms with
experimental values compiled in [33]. The polarizabilities are computed using sum-over-states approach with all-order
values of the matrix elements and experimental energies.

Computational challenges

The derivation of the formulas for the addition of the triple excitations and non-linear terms into the formulation of
the all-order method requires extremely lengthy analytical calculations that involve thousands of terms. Therefore, we
have developed a symbolic computer package that carries out required analytical calculations. The code implements
Wick’s theorem and performs all required simplifications of the resulting expressions. For example, the program will
evaluate the term

gi jklρmnwa : a†
i a†

jalak : : a†
ma†

naaaw : |0〉, (9)



TABLE 2. Uncertainty estimate of
the dominant contribution to the atomic
quadrupole moment of the 3d5/2 state in
Ca+.

Approximation ab initio Scaled

Lowest-order 2.451
Third-order 1.610
LCCSD 1.785 1.849
LCCSDpT 1.837 1.836
CCSD 1.822 1.851
Final 1.849(13)

where |0〉 is the lowest-order core wave function, and produce the following output (LaTex formatted):

gi jklρmnwa : a†
i a†

jalak : : a†
ma†

naaaw : |0〉

= gmnbaρrswc a†
ma†

na†
r a†

s aaabacaw |0〉− g̃cmbaρnrwc a†
ma†

na†
r aaabaw |0〉

+g̃mnasρ̃srwb a†
ma†

na†
r aaabaw |0〉+ g̃wmbaρnrwc a†

ma†
na†

r aaabac |0〉
−g̃cwbaρmnwc a†

ma†
naaab |0〉+2g̃wmarρ̃rnwb a†

ma†
naaab |0〉−2g̃bmarρ̃rnwb a†

ma†
naaaw |0〉

−gmnrsρ̃srwa a†
ma†

naaaw |0〉−2g̃bwanρ̃nmwb a†
maa |0〉− g̃wmnrρ̃rnwa a†

maa |0〉
+g̃amnrρ̃rnwa a†

maw |0〉+ g̃awmnρ̃nmwa |0〉 (10)

The quantity g̃ is given by g̃mnab = gmnab−gmnba.
Even when all possible simplifications are carried out, the number of the terms for the numerical evaluation remains

very large representing a daunting task. Therefore, we have developed a computer code that is capable of generating
most of the needed FORTRAN subroutines for subsequent numerical evaluation.

EVALUATION OF THE THEORETICAL UNCERTAINTY

The applications listed above also require evaluation of the uncertainties of the theoretical results. Firstly, the evaluation
of the theoretical uncertainty is necessary for the analysis of the PNC experiments. Secondly, recommended values
that are produced with the all-order method have more value when they contain uncertainty estimates. Uncertainty
bounds of recommended values are important for use by both experimentalists and other theorists in their research and
for making benchmark comparisons. Accuracy estimates of theoretical data are particularly important when significant
discrepancies exist between results from different experiments.

Evaluation of theoretical uncertainties is a very difficult problem since it essentially involves evaluation of the
quantity that is not known beforehand. Several strategies can be used in evaluating the uncertainties of the all-order
results:

• approximate evaluation of the size of the correlation correction;
• evaluation of the size of the higher-order corrections;
• study of the order-by-order convergence of perturbation theory;
• study of the breakdown of the various all-order contributions and identification of the most important terms;
• semi-empirical determination of important missing contributions.

We illustrate the evaluation of the uncertainty in the theoretical values on the example of the atomic quadrupole
moment of the 3d5/2 state in Ca+ [34]. Summary of the uncertainty estimate of the dominant contribution to this
quantity is given in Table 2in atomic units. The quadrupole moment is defined as as

Θ(γJ) =
(2J)!√

(2J−2)!(2J +3)!
〈Ψ(γJ)‖Q‖Ψ(γJ)〉. (11)

The following values are listed: lowest-order Dirac-Hartree-Fock, third-order relativistic many-body perturbation
theory (RMBPT), linearized coupled-cluster with single-double excitations (LCCSD), linearized coupled-cluster with



TABLE 3. Comparison of the CI, CI+MBPT and CI+all-order ab initio re-
sults for the two-electron binding energies of Mg, Ca, Zn, Sr, Cd, Ba, and Hg
with experiment. The experimental energies are given in cm−1. The relative dif-
ferences of the CI, CI+MBPT, CI + all-order values [44] with experimental data
are given in the last three columns in %.

Element State Experiment Differences with experiment (%)
CI CI + MBPT CI + all-order

Mg 3s2 1S0 182939 1.86 0.12 0.03
Ca 4s2 1S0 145058 4.13 -0.64 -0.32
Zn 4s2 1S0 220662 7.51 0.97 0.55
Sr 5s2 1S0 134896 5.22 -0.88 -0.32
Cd 5s2 1S0 208915 9.59 -0.86 0.14
Ba 6s2 1S0 122721 6.37 -1.82 -0.52
Hg 6s2 1S0 235469 11.81 -2.41 -0.49

single-double and partial triple excitations (LCCSDp), full coupled-cluster with single-double excitations (CCSD),
and the corresponding scaled all-order values. The final error of the dominant correlation correction is obtained as the
maximum difference of the final (LCCSD scaled) value and LCCSDpT, LCCSDpT scaled, and CCSD scaled results.
A detailed knowledge of the more important correlation corrections is crucial in developing procedures for estimating
uncertainties in theoretical data, especially in cases where one wishes to provide recommended values.

DEVELOPMENT OF CI + ALL-ORDER METHOD

The all-order method described above is designed to treat core-core and core-valence correlations with high accuracy.
Precision calculations for atoms with several valence electrons require an accurate treatment of the very strong valence-
valence correlation. A perturbative approach leads to significant difficulties. The complexity of the all-order formalism
for matrix elements also increases drastically as the number of valence electrons increases making it impractical
to attempt direct extensions of the all-order approach to more complicated systems. For example, the expression
for all-order matrix elements in divalent systems contains several hundred terms instead of the twenty terms in the
corresponding monovalent expression. Moreover, use of the Rayleigh-Schrödinger RMBPT for heavy systems with
more than one valence electron leads to a non-symmetric effective Hamiltonian and to the problem of “intruder states”.

A combination of the configuration-interaction method and perturbation theory was developed in Ref. [35] and later
applied to the calculation of atomic properties of various systems in a number of works (see [36, 37, 38, 39, 40, 41,
42, 43] and references therein).

In the configuration-interaction (CI) method, the many-electron wave function is obtained as a linear combination
of all distinct states of a given angular momentum J and parity [41]

ΨJ = ∑
i

ciΦi, (12)

i.e. a linear combination of Slater determinants from a model subspace [35]. Energies and wave functions of low-
lying states are determined by diagonalizing the effective Hamiltonian. Then, the resulting wave functions are used to
calculate matrix elements. The precision of the CI method is drastically limited for large systems by the number of
the configurations that can be included. As a result, core excitations are neglected or only a small number of them are
included, leading to a significant loss of accuracy for heavy atoms. The CI + MBPT approach allows one to incorporate
core excitations in the CI method by constructing an effective Hamiltonian that incorporates certain perturbation theory
terms. The CI method is then applied to the modified Heff to obtain improved energies and wave functions.

The Hamiltonian given by the Eqs. (6, 7) separates into a sum of the one-body and two-body interactions,

H = H1 +H2.

In the above equation, H2 contains the Coulomb (or Coulomb + Breit) matrix elements vi jkl . In the CI+MBPT
approach, the one-body part H1 is modified to include the correlation potential Σ1 that accounts for part of the core-
valence correlations, H1→ H1 +Σ1. Either the second-order expression for Σ

(2)
1 or all-order chains of such terms can



TABLE 4. Comparison of the CI, CI+MBPT and CI+all-order ab initio results
for the energy levels of Mg, Ca, and Cd [44] with experiment. The experimental
values are given in cm−1. The energies are counted from the ground state. The
relative difference with experimental values is given in the last three columns in
%.

Element State Experiment Differences with experiment (%)
CI CI+MBPT CI+all-order

Mg 3s4s3S1 41197 1.91 0.16 0.05
3s4s1S0 43503 1.87 0.10 0.00
3s3d 1D2 46403 2.77 0.18 0.04
3s3d 3D1 47957 2.05 0.14 0.04
3s3d 3D2 47957 2.05 0.14 0.04
3s3d 3D3 47957 2.05 0.14 0.04
3s3p3P0 21850 4.32 0.32 0.08
3s3p3P1 21870 4.32 0.32 0.08
3s3p3P2 21911 4.31 0.30 0.07
3s3p1P1 35051 1.61 0.00 -0.04

Ca 3d4s3D1 20335 -19.00 2.01 0.00
3d4s3D2 20349 -18.93 1.97 -0.03
3d4s3D3 20371 -18.81 1.91 -0.07
3d4s1D2 21850 -9.17 1.05 -0.53
4s5s3S1 31539 4.42 -0.72 -0.49
4s5s1S0 33317 4.27 -0.70 -0.45
4s4p3P0 15158 10.88 -2.08 -1.19
4s4p3P1 15210 10.87 -2.09 -1.15
4s4p3P2 15316 10.85 -2.10 -1.19
4s4p1P1 23652 2.54 -0.50 -0.32

Cd 5s6s3S1 51484 14.48 -0.84 0.17
5s6s1S0 53310 13.43 -0.90 0.07
5s5d 1D2 59220 14.50 -0.81 0.35
5s5d 3D1 59486 13.77 -0.66 0.38
5s5d 3D2 59498 13.77 -0.66 0.38
5s5d 3D3 59516 13.77 -0.66 0.38
5s5p3P0 30114 18.92 -2.62 -0.09
5s5p3P1 30656 18.86 -2.59 0.03
5s5p3P2 31827 18.83 -2.60 -0.03
5s5p1P1 43692 10.96 -0.64 0.20

be used (see, for example, Ref. [45]). The two-body Coulomb interaction term in H2 is modified by including the
two-body part of core-valence interaction that represents screening of the Coulomb interaction by valence electrons;
H2→H2 +Σ2. The quantity Σ2 is calculated in second-order MBPT. The CI+MBPT approach is based on the Brilloiun-
Wigner variant of the MBPT, rather than the Rayleigh-Schrödinger variant. In the Brilloiun-Wigner variant of MBPT,
the effective Hamiltonian is symmetric and accidentally small denominators do not arise; however, Σ1 and Σ2 became
energy dependent.

The CI+MBPT approach includes only a limited number of the core-valence excitation terms (mostly in second
order) and deteriorates in accuracy for heavier, more complicated systems.

In the CI+all-order approach, the effective Hamiltonian is constructed using fully converged all-order excitations
coefficients ρma, ρmnab, ρmv, and ρmnva. Therefore, the core-core and core-valence sectors of the correlation corrections
for systems with few valence electrons will be treated with the same accuracy as in the all-order approach for the
monovalent systems. The CI method will then be used to treat valence-valence correlations. This method will yield
accurate wave functions for subsequent calculations of matrix elements (PNC, transition E1, E2, M1, hyperfine, · · · ).

The comparison of the CI, CI+MBPT and CI+all-order ab initio results [44] for the two-electron binding energies of
Mg, Ca, Zn, Sr, Cd, Ba, and Hg with experiment [46] is given in Table 3. The experimental energies are given in cm−1.
The relative differences of the CI, CI+MBPT, CI + all-order values [44] with experimental data is given in the last



three columns in %. Comparison of the CI, CI+MBPT and CI+all-order ab initio results for the energy levels of Mg,
Ca, and Cd [44] with experiment [46] is given in Table 4. The energies are counted from the ground state. The relative
difference with experimental values is given in the last three columns in %. We find that the all-order two-electron
binding energy results are in significantly better agreement with experiment in comparison with the CI+MBPT values
even in the case of Mg where the agreement with experiment is already excellent in the CI+MBPT approach. We
also find almost no deterioration in the accuracy of the two-electron binding energies from Ca to Hg; the all-order
method reduces the differences with experiment by about factor of three in comparison with the second-order data.
Similar improvements are observed for most of the excited states listed in Table 4. We refer the reader to Ref. [44] for
a detailed discussion of the CI+all-order approach.

CONCLUSION

We reviewed selected modern applications of the atomic calculations ranging from the study of fundamental in-
teractions to applications of atomic physics to future technological developments. The coupled-cluster approach to
high-precision calculation of various atomic properties of monovalent systems is discussed. The computational chal-
lenges in the implementation of the all-order approach including the development of the computer programs capable
of performing complicated symbolic calculations and automatic generation of the computer codes were discussed.
New high-precision method combining the all-order approach currently used in precision calculations of properties of
monovalent atoms with the configuration-interaction method is presented. This method has been tested on the calcu-
lation of energy levels of divalent systems from Mg to Hg. We have demonstrated an improvement of at least a factor
of three in agreement with experimental values for the two-electron binding energies and most excited state energies
in comparison with the CI + MBPT method.

ACKNOWLEDGMENTS

This work was supported in part by US National Science Foundation Grant No. PHY-07-58088. This research was
performed in part under the sponsorship of the US Department of Commerce, National Institute of Standards and
Technology. Various parts of the research mentioned in this talk were carried out in collaboration with Dansha Jiang,
Rupsi Pal, Bindiya Arora, Eugeniya Iskrenova-Tchoukova, Charles W. Clark, M. G. Kozlov, U. I. Safronova, and W.
R. Johnson.

REFERENCES

1. C. S. Wood, S. C. Bennett, D. Cho, B. P. Masterson, J. L. Roberts, C. E. Tanner, and C. E. Wieman, Science 275, 1759 (1997).
2. S. G. Porsev, K. Beloy, and A. Derevianko, Phys. Rev. Lett. 102, 181601 (2009).
3. W. C. Haxton, and C. E. Wieman, Ann. Rev. Nucl. Part. Sci. 51, 261 (2001).
4. W. C. Haxton, C.-P. Liu, and M. J. Ramsey-Musolf, Phys. Rev. Lett. 86, 5247 (2001).
5. P. A. Frantsuzov, and I. B. Khriplovich, Z. Phys. D 7, 297 (1998).
6. A. Y. Kraftmaker, Phys. Rev. Lett. 132, 167 (1988).
7. M. Safronova, R. Pal, D. Jiang, M. Kozlov, W. Johnson, and U. Safronova, Nucl. Phys. A 827, 411c (2009).
8. J. K. Webb, M. T. Murphy, V. V. Flambaum, V. A. Dzuba, J. D. Barrow, C. W. Churchill, J. X. Prochaska, and A. M. Wolfe,

Phys. Rev. Lett. 87, 091301 (2001).
9. D. Jaksch, H.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, Phys. Rev. Lett. 82, 1975 (1999).
10. M. Safronova, C. J. Williams, and C. W. Clark, Phys. Rev. A 67, 040303 (2003).
11. B. Arora, M. S. Safronova, and C. W. Clark, Phys. Rev. A 76, 052509 (2007).
12. B. Arora, M. S. Safronova, and C. W. Clark (2009), to be submitted to Phys. Rev. A.
13. M. Lombardi, T. Heavner, and S. Jefferts, Measure: J. Meas. Sci. 2, 74 (2007).
14. S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates,

K. R. Vogel, and D. J. Wineland, Science 293, 825 (2001).
15. H. S. Margolis, G. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, Science 306, 19 (2004).
16. M. Petersen, R. Chicireanu, S. T. Dawkins, D. V. Magalhães, C. Mandache, Y. L. Coq, A. Clairon, and S. Bize, Phys. Rev.

Lett. 101, 183004 (2008).
17. A. A. Madej, J. E. Bernard, P. Dube, and L. Marmet, Phys. Rev. A 70, 012507 (2004).
18. H. S. Margolis, G. Huang, G. barwood, S. N. Lea, H. A. Klein, W. R. C. Rowley, and P. Gill, Phys. Rev. A 67, 032501 (2003).
19. M. M. Boyd, A. D. Ludlow, S. Blatt, S. M. Foreman, T. Ido, T. Zelevinsky, and J. Ye, Phys. Rev. Lett. 98, 083002 (2007).



20. R. L. Targat, X. Baillard, M. Fouché, A. Brusch, O. Tcherbakoff, G. D. Rovera, and P. Lemonde, Phys. Rev. Lett. 97, 130801
(2006).

21. K. Beloy, U. I. Safronova, and A. Derevianko, Phys. Rev. Lett. 97, 040801 (2006).
22. E. J. Angstmann, V. A. Dzuba, and V. Flambaum, Phys. Rev. Lett. 97, 040802 (2006).
23. E. Simon, P. Laurent, and A. Clairon, Phys. Rev. A 57, 426 (1998).
24. B. Arora, M. Safronova, and C. W. Clark, Phys. Rev. A 76, 064501 (2007).
25. D. Jiang, B. Arora, M. Safronova, and C. W. Clark, J. Phys. B 42, 154020 (2009).
26. F. Coester, and H. Kümmel, Nucl. Phys. 17, 477 (1960).
27. S. A. Blundell, W. R. Johnson, and J. Sapirstein, Phys. Rev. A 43, 3407 (1991).
28. M. S. Safronova, W. R. Johnson, and A. Derevianko, Phys. Rev. A 60, 4476 (1999).
29. G. E. Brown, and D. G. Ravenhall, Proc. Roy. Soc. A 208, 552 (1951).
30. R. Pal, M. S. Safronova, W. R. Johnson, A. Derevianko, and S. G. Porsev, Phys. Rev. A 75, 042515 (2007).
31. S. G. Porsev, and A. Derevianko, Phys. Rev. A 73, 012501 (2006).
32. M. S. Safronova, and W. R. Johnson, Adv. At. Mol., OPt. Phys. 55, 191 (2007).
33. C. Zhu, A. Dalgarno, S. G. Porsev, and A. Derevianko, Phys. Rev. A 70, 032722 (2004).
34. D. Jiang, B. Arora, and M. S. Safronova, Phys. Rev. A 78, 022514 (2008).
35. V. A. Dzuba, V. V. Flambaum, and M. G. Kozlov, Phys. Rev. A 54, 3948 (1996).
36. S. G. Porsev, M. G. Kozlov, Y. G. Rakhlina, and A. Derevianko, Phys. Rev. A 64, 012508 (2001).
37. M. G. Kozlov, and S. G. Porsev, Eur. Phys. J. D 5, 59 (1999).
38. M. G. Kozlov, and S. G. Porsev, J. Expt. Theor. Phys. 84, 461 (1997).
39. V. A. Dzuba, and V. V. Flambaum, Phys. Rev. A 75, 052504 (2007).
40. V. A. Dzuba, and V. V. Flambaum, J. Phys. B 40, 227 (2007).
41. I. M. Savukov, and W. R. Johnson, Phys. Rev. A 65, 042503 (2002).
42. I. M. Savukov, W. R. Johnson, and H. G. Berry, Phys. Rev. A 66, 052501 (2002).
43. I. M. Savukov, J. Phys. B 36, 4789 (2003).
44. M. Safronova, M. G. Kozlov, W. Johnson, and D. Jiang, Phys. Rev. A 80, 012516 (2009).
45. V. A. Dzuba, and J. S. M. Ginges, Phys. Rev. A 73, 032503 (2006).
46. C. E. Moore, Atomic Energy Levels, vol. 35 of Natl. Bur. Stand. Ref. Data Ser., U.S. Govt. Print. Off., 1971.


