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The combination of the configuration interaction method and all-order single-double coupled-cluster technique
is used to calculate excitation energies, ionization potentials, and static dipole polarizabilities of superheavy
elements nobelium, lawrencium, and rutherfordium. Breit and quantum electrodynamic corrections are also
included. The results for the superheavy elements are compared with earlier calculations where available.
Similar calculations for lighter analogs, ytterbium, lutetium, and hafnium, are used to study the accuracy of the
calculations. The estimated uncertainties of the final results are discussed.
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I. INTRODUCTION

The study of the superheavy elements (nuclear charge
Z > 100) is an important multidisciplinary area of research
involving nuclear physics, atomic physics, and chemistry (see,
e.g., reviews [1–3]). Atomic calculations help to understand
the role of the relativistic and many-body effects and pro-
vide important information for planning and interpreting the
measurements. The need to treat relativistic and correlation
effects to a high level of accuracy makes the calculations a
very challenging task. Relativistic effects are most important
for the structure of the inner electron shells. Their effect
on the spectra of neutral atoms, determined by valence
electrons, is much smaller. A standard approach based on using
Dirac equation and adding Breit and quantum electrodynamic
(QED) corrections gives reasonably good results (see, e.g.,
Refs. [4–7]). Accurate treatment of correlations is a more
difficult task. Most of superheavy elements have open shells
with many valence electrons and strong correlations between
them and between valence electrons and electrons in the
core. Therefore, it is particularly important to establish the
benchmark values for superheavy systems that have one to
four valence electrons which can be treated by the most
high-precision approaches. Such calculations also establish the
importance of various corrections that may be used for more
complicated superheavy atoms. In our previous papers [4–7]
we studied the elements with nuclear charge Z = 112, 119,
and 120, which are heavier analogs of mercury, francium, and
radium respectively. These systems have one or two valence
electrons. In the present paper, we calculate the spectra and
other atomic properties of superheavy atoms with two, three,
and four valence electrons above closed shells: nobelium (Z =
102), lawrencium (Z = 103), and rutherfordium (Z = 104).
These elements are heavier analogs of ytterbium, lutetium,
and hafnium. No, Lr, and Rf were studied theoretically and
experimentally in Refs. [1–3,8–18], but experimental spectra
still have not been measured. Present relativistic calculations
use the combination of the configuration interaction (CI)

method with the linearized single-double coupled cluster
method (CI + SD or CI + all-order) [19]. Correlations between
valence electrons are treated with the CI technique while corre-
lations between core and valence electrons are included via the
single-double coupled-cluster method. This approach provides
the most complete treatment of the interelectron correlations
since it includes core-core, core-valence, and valence-valence
correlations to all orders. We treat nobelium, lawrencium,
and rutherfordium as two-, three-, and four-valence electron
systems respectively. Previous calculations for No [8–10] and
Rf [16,17] considered these atoms as two-valence electron
systems, while calculations for Lr [11–15] treated this atom
as a monovalent system. Such treatments omit important
correlation effects for Lr and Rf. Comparing present and earlier
calculations provides important information on the role of
different types of correlation and relativistic corrections. We
also present calculations of the few first ionization potentials
for No, Lr, and Rf, up to removal of all valence electrons,
and calculate static polarizabilities for all three atoms. In the
next section we describe the method and present results of
calculations for Yb, Lu, and Hf to illustrate the accuracy of
the method. In the last section we present results and detailed
discussion for No, Lr, and Rf.

II. METHOD OF CALCULATION

The calculations are performed using the configuration
interaction method combined with the linearized single-double
coupled-cluster method introduced in Ref. [19]. This CI + all-
order method yielded accurate atomic properties for a number
of divalent systems and trivalent Tl [19–22]. It has been
recently applied to the calculations of four-electron systems
(Sn-like ions) [23].

We use frozen core Dirac-Fock (DF) V N−M potential [24]
as the point of departure for all of our calculations, where
N is the total number of electrons and M is the number of
valence electrons; i.e., the initial DF procedure is carried out
for the closed-shell ion, with all valence electrons removed.
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For the atoms treated here, M = 2 for Yb and No, M = 3
for Lu and Lr, and M = 4 for Hf and Rf. The effective CI
Hamiltonian for states of valence electrons is the sum of
single-electron Hamiltonians and an operator representing the
interaction between the valence electrons,

Ĥ eff =
M∑
i=1

ĥ1(ri) +
∑
i<j

ĥ2(ri,rj ). (1)

The single-electron Hamiltonian for a valence electron has
the form

ĥ1 = cαp + (β − 1)mc2 − Ze2

r
+ V N−M + �̂1, (2)

where �̂1 is the correlation potential operator, which represents
the correlation interaction of a valence electron with the
core. Its matrix elements are related to the single-excitation
amplitudes of the coupled-cluster method via

�mv = ρmv (̃εv − εm), (3)

where ρmv is an excitation coefficient of the atomic wave
function for the term with excitation from the valence state
v to another excited state m, and εm are Dirac-Fock energies
of corresponding single-electron basis states. The quantities ε̃v

are discussed in detail in Ref. [19]. Briefly, the CI + all-order
approach is based on the Brillouin-Wigner variant of many-
body perturbation theory (MBPT) rather than the Rayleigh-
Schrödinger variant resulting in the energy dependence of
the �. Ideally, the energy ε̃v should be calculated from the
particular eigenvalue of the effective Hamiltonian. In actual
calculations, the simplest and the most practical approach is to
set the energy ε̃v to the Dirac-Fock energy of the lowest orbital
for the particular partial wave. For example, we use ε̃v = ε6s

for all ns orbitals of Yb atom.
The interaction between valence electrons is the sum of the

Coulomb interaction and the correlation correction operator
�̂2:

ĥ2(ri,rj ) = e2

|ri − rj| + �̂2(ri,rj ). (4)

The operator �̂2 represents the screening of the Coulomb
interaction between valence electrons by core electrons. Its
matrix elements are related to the double-excitation coupled-
cluster ρmnvw coefficients via

�mnvw = ρmnvw (̃εv + ε̃w − εm − εn). (5)

The many-electron wave function for the valence electrons
� can be expressed as an expansion over single-determinant
wave functions

� =
∑

i

ci�i(r1, . . . ,rM ). (6)

The functions �i are constructed from the single-electron
valence basis states calculated in the V N−M potential. The
coefficients ci and many-electron energies are found by solving
the matrix eigenvalue problem

(H eff − E)X = 0, (7)

where H eff
ij = 〈�i |Ĥ eff|�j 〉 and X = {c1,c2, . . . ,cn}.

We use the linearized coupled-cluster method to calculate
the correlation correction operators �̂1 and �̂2. The B-spline
technique [25] is used to construct a single-electron basis for
calculation of �̂ and for building many-electron basis states
for the CI calculations. We use 35 B splines of order 7 in a
cavity of radius Rmax = 60aB , where aB is Bohr’s radius. All
sums in the all-order terms are carried out including lmax = 6
partial waves. The contributions from l > 6 partial waves were
estimated and included into the final results.

A. Breit interaction

The Breit interaction is included in present calculations
using the approach developed in Refs. [26,27]. We treat
Breit interaction in the zero-energy transfer approximation.
The Breit Hamiltonian includes magnetic interaction between
moving electrons and retardation

Ĥ B = −α1 · α2 + (α1 · n)(α2 · n)

2r
. (8)

Here r = nr , r is the distance between electrons, and α is the
Dirac matrix.

Similar to the way Coulomb interaction is used to form self-
consistent Coulomb potential, Breit interaction is used to form
self-consistent Breit potential. In other words, Breit interaction
is included into self-consistent Hartree-Fock procedure. Thus
the important relaxation effect is included. The resulting
interelectron potential in Eq. (2) consist of two terms

V̂ = V C + V B , (9)

where V C is the Coulomb potential and V B is the Breit
potential. Coulomb interaction in the second-order correlation
operator �̂ is also modified to include Breit operator (8). The
contribution of the Breit interaction to the energy levels of all
atoms considered here is small, generally less than 100 cm−1.

B. QED corrections

We use the radiative potential method developed in Ref. [28]
to include quantum radiative corrections. This potential has the
form

Vrad(r) = VU (r) + Vg(r) + Ve(r) , (10)

where VU is the Uehling potential, Vg is the potential arising
from the magnetic form factor, and Ve is the potential arising
from the electric form factor. The VU and Ve terms can be
considered as additions to nuclear potential while inclusion
of Vg leads to some modification of the Dirac equation (see
Ref. [28] for details). We find that the QED corrections
are small in comparison with the higher-order correlation
corrections and can be omitted at the present level of accuracy.
We compared the results with and without QED for No as an
illustration.

C. Calculation of polarizabilities

Polarizabilities characterize interaction of atoms with ex-
ternal electric field. The Stark energy shift of atomic state JLn

in the static electric field ε is given by


E(JLn) = −
(

α0 + 3M2 − J (J + 1)

J (2J − 1)
α2

)
ε

2

2
, (11)
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where α0 and α2 are scalar and tensor electric-dipole polariz-
abilities and M is the projection of the total angular momentum
J on the direction of electric field. Scalar polarizability is given
by

α0(JLn) = 2

3(2J + 1)

∑
J ′L′n′

〈JLn||D||J ′L′n′〉2

En′ − En

, (12)

where = − e
∑

i ri is the electric dipole operator. Tensor
polarizability α2 is nonzero only for atomic states with J � 1.
The expression for α2 differs from Eq. (12) by an angular
coefficient:

α2(JLn) =
√

10J (2J − 1)

3(2J + 3)(2J + 1)(J + 1)

×
∑
J ′L′n′

(−1)(J+J ′)
{

1 1 2
J J J ′

}

× 〈JLn||D||J ′L′n′〉2

En′ − En

. (13)

The expressions (12) and (13) are exact if |JLn〉 and |J ′L′n′〉
are exact many-electron wave functions. In practice, atomic
electrons are divided into core and valence electrons and the
expression for scalar polarizability becomes a sum of three
terms

α0 = αc + αcv + αv. (14)

Here αc is the polarizability of atomic core, and αcv is
the contribution caused by Pauli principle, which implies that
the excitations from the core cannot go into occupied valence
states. Therefore, polarizability of the core is different for the
ion, which has no valence electrons and for the neutral atom.
This difference is separated into αcv . Usually this contribution
is small and needs to be taken into account only in very precise
calculations. We neglect it in present work. The term αv is the
dominant contribution due to the valence electrons. The core
contribution is given by

αc = 2

3

∑
cm

〈cm||d||m〉〈m||d + δVcore||c〉
εc − εm

, (15)

where summation goes over core states c and a complete set
of single-electron states m. The energies εc and εm are the
single-electron energies of the basis states. The operator d =
−er in Eq. (15) is the single-electron electric dipole operator;
δVcore is the correction to the self-consistent core potential
due to the effect of electric field. It is also known as the core
polarization correction or random-phase approximation (RPA)
correction. This correction is calculated by solving the RPA-
type equations for atomic core

(Ĥ0 − εc)δψc = −ψc(d + δVcore), (16)

where Ĥ0 is the Hartree-Fock Hamiltonian and δψc is the
correction to the core state ψc due to the effect of external
electric field. The equations (16) are solved self-consistently
for all states in the core and the correction to the core potential
δVcore is found. The core contribution is small, ranging from
3.20 a.u. for Hf to 8.46 a.u. for No. The core does not contribute
to the tensor polarizability since the total angular momentum
of the closed shell core is zero.

The expressions for the valence contributions to the scalar
and tensor polarizabilities are very similar to Eqs. (12) and
(13) with a few modifications. The many-electron states |JLn〉
and |J ′L′n′〉 are now the valence states, the summation in the
electric dipole operator D goes over only valence electrons, and
every single-electron electric dipole operator d is modified to
include core polarization correction, d̃ = d + δVcore.

To perform summation in Eqs. (12) and (13) over the
complete set of many-valence-electrons states we use the
method suggested by Dalgarno and Lewis [29]. The summa-
tion over intermediate states n is reduced to calculation of the
correction |ã〉 to the ground-state wave function. Summation
over n includes summation over different values of the total
angular momentum which satisfy electric vector selection rules
(Jn = Ja,Ja ± 1). The correction |ã〉 can be written as a sum
of three terms |ã〉 = |ã〉Ja

+ |ã〉Ja+1 + |ã〉Ja−1. Each of these
terms |ã〉Jn

satisfy the inhomogeneous equation

(H eff − Ea)|ã〉Jn
= −D̃|a〉Ja

. (17)

The polarizability is then calculated as

α = −2〈a|D̃z|ã〉. (18)

More detailed formulas including angular coefficients can be
found in Ref. [30]. The H eff term in (17) is the effective CI
Hamiltonian presented in a matrix form while |ã〉Jn

is a vector
of expansion coefficients over single-determinant basis states.
Solving the system of linear equations (17) and substituting
the result into (18) is equivalent to summation over all possible

TABLE I. Energies (E, cm−1) and g factors of the lowest states
of ytterbium (energies are taken from Ref. [31]). Comparison of
calculations with experiment [32]. Nonrelativistic values of g factors
(gnr) are given by Eq. (19).

Energy g factors

Conf. Term Expt. Present Diff. Expt. nr Present

6s2 1S0 0 0 0 0 0

6s6p 3P o
0 17288 17561 −273 0 0

3P o
1 17992 18261 −269 1.49282 1.5000 1.4921

3P o
2 19710 20010 −300 1.50 1.5000 1.5000

5d6s 3D1 24489 24505 −16 0.50 0.5000 0.5000
3D2 24752 24863 −111 1.16 1.1667 1.1634
3D3 25271 25343 −72 1.34 1.3333 1.3333

6s6p 1P o
1 25068 25816 −748 1.035 1.0000 1.0087

5d6s 1D2 27678 27991 −313 1.01 1.0000 1.0036
6s7s 3S1 32695 32970 −275 2.01 2.0000 1.9998
6s7s 1S0 34351 34579 −228 0 0
6s7p 3P o

0 38091 38377 −286 0 0
3P o

1 38174 38440 −266 1.14 1.5000 1.4399
3P o

2 38552 38821 −269 1.50 1.5000 1.4999

6s6d 3D1 39809 40053 −244 0.50 0.5000 0.5001
3D2 39838 40147 −309 1.16 1.1667 1.1414
3D3 39966 40205 −239 1.33 1.3333 1.3333

6s6d 1D2 40062 40089 −27 1.03 1.0000 1.1423

6s7p 1P o
1 40564 39150 1414 1.01 1.0000 1.0598

6s8s 3S1 41615 41997 −382 2.02 2.0000 1.9994
6s8s 1S0 41940 42397 −457 0 0
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many electron states which can be constructed from the given
single-electron basis.

D. Results for Yb, Lu, and Hf

First, we carry out the calculations for “reference” atoms
Yb, Lu, and Hf which have the closest electronic structure
to the superheavy No, Lr, and Rf, respectively. Since the
energies of Yb, Lu, and Hf are known experimentally, such
calculation provides the benchmark test of our method. Further
comparison of correlation corrections in “reference” and
superheavy atoms allows us to predict the accuracy of our
approach for superheavy elements.

Our calculated energy levels of Yb, Lu and Hf are compared
with experiment in Tables I, II, and III, respectively. Yb energy
levels have been presented in Ref. [31]. Comparison shows
that relative theoretical errors in excitation energies are rather
similar for Yb, Lu, and Hf, with somewhat better accuracy for
two-electron Yb.

The difference with experiment is 0.1–1.6% for Yb with the
exception of the singlet 6s6p 1P 1 and 6s7p 1P 1 states, where
it is 3–3.5%. The lower accuracy of the singlet states arises
when there is significant difference in the position of the triplet
and singlet energy levels, such as in 1P 1 and 3P 1 cases. It is

TABLE II. Energies (E, cm−1) and g factors of the lowest
states of lutetium. Comparison of calculations with experiment [32].
Nonrelativistic values of g factors (gnr) are given by Eq. (19).

Energy g factors

Conf. Term Expt. Present Diff. Expt. nr Present

5d6s2 2D3/2 0 0 0 0.79921 0.8000 0.8000
2D5/2 1993 2014 −21 1.20040 1.2000 1.1999

6s26p 2P o
1/2 4136 3910 226 0.66 0.6666 0.6661

2P o
3/2 7476 7228 248 1.33 1.3333 1.3333

5d6s6p 4F o
3/2 17427 17723 −296 0.59 0.4000 0.4525

4F o
5/2 18504 18789 −285 1.07 1.0286 1.0586

4F o
7/2 20432 20731 −299 1.22 1.2381 1.2424

4F o
9/2 22609 22911 −302 1.30 1.3333 1.3332

5d26s 4F 3/2 18851 19182 −331 0.4000 0.4109
4F 5/2 19403 19737 −334 1.0286 1.0305
4F 7/2 20247 20578 −331 1.2381 1.2368
4F 9/2 21242 21591 −349 1.0 1.3333 1.3313

5d6s6p 4Do
1/2 20762 20995 −233 0.00 0.0000 0.0353

4Do
3/2 21195 21448 −253 1.19 1.2000 1.1551

4Do
5/2 22221 22504 −283 1.39 1.3714 1.3799

4Do
7/2 23524 23795 −271 1.41 1.4286 1.4171

5d6s6p 2Do
5/2 21462 21735 −273 1.23 1.2000 1.2107

2Do
3/2 22124 22376 −252 0.874 0.8000 0.8591

5d26s 4P 1/2 21472 21860 −388 2.6667 2.6098
4P 3/2 22467 22849 −382 1.73 1.7333 1.7016
4P 5/2 22802 23242 −440 1.6000 1.4749

5d6s6p 4P o
1/2 24108 24520 −412 2.6667 2.6264

4P o
3/2 24308 24786 −478 1.67 1.7333 1.6530

4P o
5/2 25191 25774 −583 1.53 1.6000 1.5267

5d26s 2D3/2 24518 25015 −497 0.8000 0.8379

TABLE III. Energies (E, cm−1) and g factors of the lowest states
of hafnium. Nonrelativistic values of g factors (gnr) are given by
Eq. (19). Comparison of calculations with experiment [32]. Result
with “*” is by Sansonetti and Martin [33].

Energy g factors

Conf. Term Expt. Present Diff. Expt. nr Present

5d26s2 3F 2 0. 0 0.695 0.667 0.6936
3F 3 2357 2343 14 1.083 1.083 1.0832
3F 4 4568 4617 −49 1.240 1.250 1.2425

5d26s2 3P 0 5522 5611 −89 0.00 0.00 0.00
3P 1 6573 6594 −21 1.500 1.500 1.5000
3P 2 8984 9151 −167 1.300 1.500 1.2783

5d26s2 1D2 5639 5842 −203 1.165 1.000 1.1947

5d6s26p 1Do
2 10509∗ 10095 414 1.000 0.8173

5d26s2 1G4 10533 11411 −878 1.008 1.000 1.0073

5d6s26p 3Do
1 14018 13718 300 0.55 0.500 0.5384

3Do
2 16163 15840 323 1.17 1.167 1.1714

3Do
3 18381 18084 297 1.29 1.333 1.2980

5d36s 5F 1 14092 14445 −353 0.00 0.00 0.0217
5F 2 14741 15079 −338 1.00 1.000 1.0038
5F 3 15673 15996 −323 1.25 1.250 1.2485
5F 4 16767 17099 −332 1.36 1.350 1.3445

5d6s26p 3F o
2 14435 14019 416 0.89 0.666 0.8914

3F o
3 14542 14210 332 1.08 1.083 1.0877

3F o
4 18225 17887 338 1.24 1.250 1.2451

5d6s26p 3P o
1 18143 17932 211 1.43 1.500 1.4401

3P o
2 19791 19584 207 1.41 1.500 1.4192

5d26s6p 5Go
2 18011 17996 15 0.40 0.333 0.3874

5Go
3 19293 19262 31 0.95 0.917 0.9375

5Go
4 20960 20935 25 1.16 1.150 1.1597

1.1–2.2% for Lu, with the exception of 6s26p states, where it
is 3–5%.

An explanation for poor accuracy for the 1P o
1 states of

ytterbium was given in Ref. [34]. It is caused by the mixing of
these states with the odd state at E = 38422 cm−1. This state is
assumed to belong to the 4f 135d26s configuration [32]. It has
an excitation of the core electron from the 4f subshell. Such
states are not included into the configuration interaction (CI)
matrix. Core-valence excitations are treated perturbatively via
the correlation operator �̂ (3,5). This might be insufficient
when mixing is strong. Judging by the single-electron spectra,
excitation energy from the 5f state of No is expected to be
about 10% smaller than in Yb. Since the lowest excitation
correspond to the 5f -6d transition, some odd states of No
might be affected by mixing with these states in a similar
way as for Yb. Core excitation energies for Lu, Hf, Lr, and
Rf are large and unlikely to have pronounced effect on the
calculations.

A common problem of the CI calculation with four valence
electrons is a rapid increase of the number of many-electron
basis states with the increase in the number of valence electrons
usually leading to omitting configurations which correspond
to multiple excitations of valence electrons from the ground
state to high-lying states. This helps to reduce the CI matrix
to a manageable size but leads to deterioration of the accuracy
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TABLE IV. Energies (E, cm−1) and g factors of the lowest
states of nobelium. Nonrelativistic values of g factors (gnr) are
given by Eq. (19). Comparison with theoretical results presented
by Borschevsky et al. [9] and Liu et al. [10].

Energy Energy g factors

Conf. Term Present +Lamb Ref. [9] Ref. [10] Present nr

7s2 1S0 0 0 0 0 0 0

7s7p 3P o
0 19682 19567 18879 19798 0 0

3P o
1 21156 21042 20454 21329 1.4577 1.500

3P o
2 26225 26113 25374 26186 1.4998 1.500

7s7p 1P o
1 30304 30203 30056 30069 1.0409 1.000

7s6d 3D1 28587 28436 28338 0.5000 0.500
3D2 29098 28942 28778 1.1606 1.167
3D3 30322 30183 29897 1.3332 1.333

7s6d 1D2 33657 33504 32892 1.0071 1.000

7s8s 3S1 35815 35731 35092 1.9994 2.000

7s8s 1S0 37444 37360 36538 0.0000 0.000

7s8p 3P o
0 41365 41266 40576 0.0000 0.000

3P o
1 41481 41382 40692 1.4083 1.500

3P o
2 42582 42484 42837 1.4999 1.500

7s8p 1P o
1 43011 42910 42285 1.0917 1.000

7s7d 3D1 43522 43422 42726 0.5002 0.500
3D2 43581 43481 42758 1.1452 1.167
3D3 43830 43730 43033 1.3333 1.333

7s7d 1D2 44099 43999 43079 1.0216 1.000

7s9s 3S1 44894 44794 44247 1.9994 2.000

7s6f 3F o
2 46795 46695 0.6669 0.667

3F o
3 46788 46688 1.0072 1.083

3F o
4 46810 46710 1.2500 1.250

7s6f 1F o
3 46806 46706 1.0762 1.000

of the calculations. However, we were able to saturate the
four-electron CI space by carrying out several very large CI

calculations with different types of excitations, then selecting
the configuration with the largest weights from each of
the runs, and combining them to produce nearly complete
configuration space. Comparing results with increasing num-
ber of selected important configurations produced estimated
uncertainty due to configuration space of less than 50 cm−1

for most states. As a result, we do not observe significant
deterioration of results between Lu and Hf. The difference with
experiment is 0.1–2.9% for Hf with the exception of the singlet
1D2 and 1G4 states, where it is 4% and 8%, respectively. Note,
that in contrast to Yb, mixing with states having a hole in the
4f subshell cannot explain poor accuracy for these states. Core
excitation energy is large for Lu and Hf, and corresponding
states that lie high in the spectrum cannot be strongly mixed
with low states.

We also present the values of calculated and nonrelativistic
magnetic g factors in Tables I, II, and III. Nonrelativistic (nr)
values are given by

gnr = 1 + J (J + 1) − L(L + 1) + S(S + 1)

2J (J + 1)
, (19)

where J is total angular momentum of the atom, L is its angular
momentum, and S is the spin (J = L + S). The g factors are
useful for identification of the states.

III. RESULTS AND DISCUSSION

A. Energy levels of No, Lr, and Rf and estimates of their
uncertainties

Calculated energy levels and magnetic g factors for No, Lr,
and Rf are presented in Tables IV, V, and VI together with
the results of earlier calculations [8–17]. We observe good
agreement between the theoretical results for most of the states.
We compare No results with and without the QED correction
in Table IV. The value of the QED correction is of the order of
100 cm−1 for most of the states while maximum value of the
correction is slightly larger than 200 cm−1. This is smaller than

TABLE V. Calculated energies (E, cm−1) and g factors of the lowest states of lawrencium. Comparison with other calculations.
Nonrelativistic values of g factors (gnr) are given by Eq. (19).

Present work Other energy

Config. Term J Energy g gnr Ref. [12] Ref. [13] Ref. [14] Ref. [15]

7s27p 2P o 1/2 0 0.6652 0.6666 0 0 0 0
3/2 8495 1.3333 1.3333 8273 8935 8138 8389

7s26d 2D 3/2 1555 0.8002 0.8000 1263 1127 1331 1408
5/2 5423 1.2001 1.2000 5062 4187 5082

7s7p6d 4F o 3/2 21288 0.4803 0.4000 20886
5/2 23530 1.0668 1.0286 23155
7/2 28320 1.2468 1.2381 27276
9/2 34212 1.3266 1.3333 32775

7s28s 2S 1/2 20253 2.0163 2.0000 20405 20131

7s28p 2P o 1/2 25912 0.6161 0.6666 26104
3/2 27079 1.3174 1.3333 27491

7s6d2 4P 1/2 25409 2.4737 2.6667
7s6d2 3/2 26327 1.5286 1.7333
7s6d2 5/2 27397 1.3148 1.6000
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the uncertainty due to correlations (see the difference between
theory and experiment for Yb, Lu, and Hf in Tables I, II, III).
Therefore, we do not include QED corrections for Lr and Rf.

The accuracy of the calculations was discussed in the
previous section for the case of Yb, Lu, and Hf atoms.
However, since relativistic and correlational effects are larger
in the superheavy elements it is reasonable to assume that the
uncertainties for No, Lr, and Rf are slightly larger than for
Yb, Lu, and Hf. We verified that the contribution of the Breit
interaction to the energy levels in Tables I–VI is small in all
cases (generally less than 100 cm−1).

To estimate the accuracy of our values, we directly compare
the correlation effects in Lu and Lr, since these dominate the
uncertainty of the calculations. We carry out an additional
calculations for both atoms using a combination of the config-
uration interaction and second-order many-body perturbation
theory (CI + MBPT) methods [35]. In this approach, the
�1 and �2 of the effective Hamiltonian are built using
the second-order perturbation theory instead of the coupled-
cluster method. The difference of the CI + MBPT and CI + all-
order values gives the estimate of the third and higher-order
corrections. We note that Lu and Lr have different types of
ground-state configurations, 6s25d 2D3/2 and 7s27p 2P 1/2.
Therefore, we first directly compare the higher-order corre-

TABLE VI. Energies (E, cm−1) and g factors of the lowest states
of rutherfordium. Nonrelativistic values of g factors (gnr) are given by
Eq. (19). Comparison with results by Eliav et al. [16] and Mosyagin
et al. [18].

Energy g factors

Conf. Term Present [16] [18] Present nr

7s26d2 3F 2 0 0 0 0.7291 0.667
3F 3 4904 4855 4869 1.0834 1.083
3F 4 8625 7542 8597 1.2062 1.250

7s27p6d 3F o
2 2547 2210 3923 0.7869 0.667

3F o
3 11390 11905 12953 1.1041 1.083

3F o
4 20477 1.2489 1.250

7s26d2 3P 0 5034 5932 0.0 0.0
3P 1 8348 8776 10051 1.4996 1.500
3P 2 7398 7542 8704 1.1853 1.500

7s27p6d 3Do
1 8288 8373 9201 0.6794 0.500

3Do
2 11273 10905 12889 1.1493 1.167

3Do
3 18029 1.2016 1.333

7s26d2 1D2 13630 1.2531 1.000
7s26d2 1G4 14476 1.0439 1.000
7s27p6d 1Do

2 14403 1.0650 1.000
7s26d2 1S0 18679 0.0 0.0

7s27p6d 1F o
3 24634 1.1077 1.000

7s6d3 5F 1 21552 0.0962 0.000
5F 2 23079 1.0289 1.000
5F 3 25432 1.2475 1.250

7s27p6d 3P o
1 16551 1.2712 1.500

3P o
2 21480 1.2267 1.500

7s6d27p 5Go
2 20347 0.5067 0.333

5Go
3 23325 0.9523 0.917

lation contributions to the three-electron removal energies of
Lu and Lr, which are given in Table VII. Columns CI + MBPT
and CI + all give trivalent removal energies calculated in the
respective approximations. The difference of these values give
the estimate of the higher-order correlation correction given in
column labeled “Diff.” The last column labeled “Diff∗” gives
the higher-order correlations relative to the corresponding
ground states. We find that while the energies are similar for Lu
and Lr, the higher-order correlation corrections significantly
increase from Lu (2000–3200 cm−1) to Lr (3800–6300 cm−1).
However, we observe that the correlation increases for all of
the states and when the ground-state values are subtracted
out, the remaining higher-order corrections, listed in the last
column of Table VII, are very similar for Lu and Lr. Only for
the three states, 7s26d 2D3/2 and 7s6d2 4D3/2,5/2, the remaining
contributions are larger than for Lu cases, which may result in
somewhat lower accuracy for their states.

Therefore, we expect 1–2% accuracy of the energy levels
in No, 1–3% in Lr, and 2–5% for Rf for most of the states
presented here.

B. Ionization potentials

Calculations in the V N−M approximation are very similar
for a neutral atom and negative and positive ions [24]. The
number of valence electrons is the only parameter in the
effective CI Hamiltonian (1), which changes while moving
from a neutral atom to an ion or from one ion to another.

TABLE VII. Comparison of higher-order (III+) correlation con-
tributions to three-electron removal energies of Lu and Lr. Columns
CI + MBPT and CI + all give removal energies calculated in the
respective approximations. The difference of these values give
the estimate of the higher-order correlation correction given in
column labeled Diff. Last column labeled Diff∗ give the higher-order
correlation relative to the corresponding ground states.

Atom Level CI + MBPT CI + all Diff Diff∗

Lu 6s25d 2D3/2 328791 325983 −2808 0
6s25d 2D5/2 326610 323981 −2629 179
5d26s 4F 3/2 309931 306716 −3215 −406
5d26s 4F 5/2 309307 306166 −3141 −333
5d26s 4F 7/2 308356 305330 −3026 −217
5d26s 4F 9/2 307222 304323 −2898 −90

6s26p 2P o
1/2 324182 322187 −1996 812

6s26p 2P o
3/2 320859 318866 −1993 815

5d6s6p 4F o
3/2 310376 308268 −2107 701

Lr 7s26d 2D3/2 337828 331718 −6110 −1422
7s26d 2D5/2 333287 327872 −5415 −726
7s28s 2S1/2 318449 313137 −5311 −623
7s6d2 4P 1/2 311742 307921 −3821 867
7s6d2 4P 3/2 313159 306879 −6280 −1592
7s6d2 4P 5/2 311830 305825 −6005 −1317

7s27p 2P o
1/2 338055 333366 −4688 0

7s27p 2P o
3/2 329645 324877 −4768 −80

7s7p6d 4F o
3/2 316309 311992 −4318 371

7s7p6d 4F o
5/2 314099 309752 −4348 341

7s28p 2P o
1/2 312532 307454 −5079 −391

7s28p 2P o
3/2 311250 306266 −4984 −296
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TABLE VIII. Calculated ground-state energies (EM ) of Yb, Lu, Hf, No, Lr, and Rf neutral atoms and positive ions. M is the number of
valence electrons. The difference 
E = EM−1 − EM gives the ionization potential.

EM 
E Expt.a

Atom/ion Configuration Term M (a.u.) (cm−1) (cm−1)

Yb I 6s2 1S0 2 −0.68232 50768 50443
Yb II 6s 2S1/2 1 −0.45101 98985 98207
Lu I 6s25d 2D3/2 3 −1.48938 43289 43763
Lu II 6s2 1S0 2 −1.29215 113323 112000
Lu III 6s 2S1/2 1 −0.77581 170270 169014
Hf I 6s25d2 3F 0 4 −2.83907 53431 55048
Hf II 6s25d 2D3/2 3 −2.59562 126748 120000
Hf III 6s2 1S0 2 −2.01811 190885 187800
Hf IV 6s 2S1/2 1 −1.14837 252037 269150
No I 7s2 1S0 2 −0.72799 54390
No II 7s 2S1/2 1 −0.48018 105387
Lr I 7s27p 2P o

1/2 3 −1.52543 39801
Lr II 7s2 1S0 2 −1.34408 118058
Lr III 7s 2S1/2 1 −0.80617 176934
Rf I 7s26d2 3F 0 4 −2.79968 46067
Rf II 7s25d 2D3/2 3 −2.58979 116925
Rf III 7s2 1S0 2 −2.05704 193246
Rf IV 7s 2S1/2 1 −1.17654 258220

aReference [32].

All other terms, including the Coulomb potential created by
core electrons and correlation operator �̂, remain the same.
Removing one electron from a neutral atom and comparing
the energy of the resulting ground state with the energy of
the ground state of neutral atom gives first ionization potential
of the atom. Removing one more electron leads to second
ionization potential, etc. This process can be repeated until
all valence electrons are removed. The number of ionization
potentials which can be calculated this way is limited by the
number of valence electrons. To illustrate the accuracy of the
calculations we calculate ionization potentials for Yb, Lu,
and Hf and compare them with experiment. The results are
presented in Table VIII. Then in the same table we present
ionization potentials for No, Lr, and Rf.

C. Static polarizabilities

Results of calculations of static polarizabilities of Yb, Lu,
Hf, No, Lr, and Rf are presented in Table IX. CI + MBPT and
CI + all-order results are listed in columns labeled “MBPT”
and “All-order,” respectively. The calculations are done as
described in Sec. II C. The result for ytterbium agrees precisely
with our previous calculations [31,36,37], with experimental
constrain presented in Ref. [38], and with most of other
accurate calculations (see, e. g., review [40]); the results for
lutetium and hafnium agree well with the calculations of
Doolen [39]. Estimation of accuracy is based on comparison
of the results obtained with the use of different approaches,
including comparison with experiment for ytterbium, and on
the sensitivity of the results to variation of the parameters
of the computational procedure. The theoretical uncertainties
presented in the parentheses are on the level of 5% for Yb,
Lu, and Hf (see Table IX). We expect similar uncertainty
for No and Rf. Lawrencium represents a special case due to
anomalously small energy interval between ground 2P 1/2 state

and first excited 2D3/2 state. Note that there is an inversion of
the order of these states in Lr as compared to its lighter analog
Lu. The inversion is due to relativistic effects [11–15]. Because
of small value of this energy interval it is very sensitive to
the correlations. Different treatment of correlations leads to
significantly different values of the interval (see Table V).
This in turn leads to large uncertainty in the value of the
polarizabilities of both states of Lr.

The value of the electric dipole transition amplitude
between 7p1/2 and 6d3/2 states of Lr in the calculations is

TABLE IX. Ground-state scalar α0 and tensor α2 polarizabilities
of Yb, Lu, Hf, No, Lr, and Rf. CI + MBPT and CI + all-order results
are listed in columns labeled “MBPT” and “All-order,” respectively.
The last column presents the values of α0 from other sources. All
numbers are in atomic units. To convert them into 10−24cm3 one
should divide the numbers by 6.749.

α0 α2 α0

Atom/atate MBPT All-order MBPT All-order Other

Yb 1S0 141(6)a 141(2)b 0 0 139.3(4.9)c

Lu 2D3/2 137(7) 145 −15(1) −22 148d

Hf 3F 2 103(5) 97 −0.41(2) −0.92 109d

No 1S0 112(6) 110 0 0
Lr 2P 1/2 320(80) 323 0 0
Lr 2D3/2 −12(25) −12 120(25) 119
Rf 3F 2 107(5) 115 2.3(4) 8.9

aAgrees precisely with our previous calculations, Refs. [36,37].
bReference [31].
cExperimental constrain, Ref. [38].
dRelativistic linear response calculations by G. D. Doolen, unpub-
lished, cited from Ref. [39].
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given by

〈7s27p1/2||D||7s26d3/2〉 = 2.02 a.u. (20)

This allows us to separate the contribution due to this transition
from the rest of the sum in Eqs. (12) and (13) and present
polarizabilities in the form

α0(7p1/2) = 126 + 1.35/
E, (21)

α0(6d3/2) = 67 − 0.677/
E, (22)

α2(6d3/2) = 26 + 0.677/
E, (23)

where all values are in atomic units and 
E = E(6d3/2) −
E(7p1/2). Sensitivity of the polarizabilities to the value of
this energy interval is the main source of uncertainty. The
uncertainty assigned to the polarizabilities of lawrencium
(Table IX, MBPT column) are based on the variation of
the energy interval in different calculations (Table V). The
uncertainties for other atoms are smaller due to absence of the
resonance contribution. The most accurate values are those
obtained in the all-order calculations while the difference
between all-order and MBPT results can serve as en estimation
of theoretical uncertainty.

Knowing the value of the electric dipole transition ampli-
tude (20) allows us to calculate lifetime of the 6d3/2 state. It is
0.23 ms if we take the energy interval to be our theoretical value
of 1555 cm−1 (see Table V). This is a long-lived metastable
state. Since lawrencium atoms are not found in nature but
produced on accelerators they can probably be produced

in either of the 7p1/2 or 6d3/2 states. The interaction with
environment is very different for Lr atoms in these two states.
It is isotropic for the atoms in the 7p1/2 state and strongly
anisotropic for atoms in the 6d3/2 state. In the latter case,
the polarizability is dominated by the tensor term. The total
value is positive (α ≈ 100 a.u.) for the case when total atomic
angular momentum is parallel to the electric field (|M| = J )
and it is negative (α ≈ −160 a.u.) for the case when total
atomic angular momentum is perpendicular to the electric field
(M = 0).

IV. CONCLUSION

Energy levels for lowest states of superheavy elements no-
belium, lawrencium, and rutherfordium as well as first few
ionization potentials and static polarizabilities have been cal-
culated using the combination of the configuration interaction
with the all-order single-double method. The accuracy of the
calculations are controlled by performing similar calculations
for lighter analogs of the elements, ytterbium, lutecium,
and hafnium. These calculations provide benchmark data,
critically evaluated for their accuracy, for future experimental
studies.
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