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We experimentally and theoretically determine the magic wavelength of the ð5s2Þ1S0 − ð5s5pÞ3P0 clock
transition of 111Cd to be 419.88(14) and 420.1(7) nm. To perform Lamb-Dicke spectroscopy of the clock
transition, we use narrow-line laser cooling on the 1S0 − 3P1 transition to cool the atoms to 6 μK and load
them into an optical lattice. Cadmium is an attractive candidate for optical lattice clocks because it has a
small sensitivity to blackbody radiation and its efficient narrow-line cooling mitigates higher order
light shifts. We calculate the blackbody shift, including the dynamic correction, to be fractionally
2.83ð8Þ × 10−16 at 300 K, an order of magnitude smaller than that of Sr and Yb. We also report calculations
of the Cd 1P1 lifetime and the ground state C6 coefficient.
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State-of-the-art optical atomic clocks deliver a fractional
accuracy and frequency stability of the order of 10−18

[1–5]. Such advanced atomic clocks motivate an optical
redefinition of the second [6] and open up new applications,
such as chronometric leveling [7,8] and laboratory searches
for variations of fundamental constants [9,10]. At this
accuracy level, one of the limiting systematic uncertainties
is the ac Stark shift of atomic clock transitions induced by
blackbody radiation (BBR) [1,3,4]. While interrogating
atoms in a cryogenic environment has successfully reduced
the BBR shift in a Hgþ clock [11], a Cs microwave clock
[12], and Sr and Yb optical lattice clocks [2,13], a number
of atoms have smaller sensitivities to BBR, which can
enable simpler approaches and improved accuracy. These
include optical lattice clocks based on Hg, Mg, Tm, and
Cd [14–19], ion clocks with Alþ, Ybþ, Inþ, and Luþ

[3,20–22], Th3þ nuclear clock [23,24], and highly charged
ion clocks [25,26].
Among the candidates for optical lattice clocks, Cd is

unique in having all of several desirable attributes. Two
isotopes, 111Cd and 113Cd, both with ≳12% natural abun-
dance, have a nuclear spin of 1=2, which precludes tensor
light shifts from the lattice light and provides hyperfine-
induced clock transitions with natural linewidths of
Γ0=2π ¼ 7.0 and 7.6 mHz [27]. Additionally, the λ2 ¼
326 nm spin-forbidden 1S0 − 3P1 transition’s natural line-
width, Γ2=2π ¼ 66.6 kHz [28,29], allows Doppler cooling
to TD2 ¼ 1.58 μK, facilitating good control of higher-order
lattice light shifts [30]. The short wavelength of this near-
ultraviolet narrow cooling transition also has applications
beyond clocks; the small absorption cross section 3λ22=2π

reduces radiation trapping [31] and allows trapping of
dense cold atomic ensembles, which may enable rapid or
even continuous production of quantum degenerate gases
[32–34]. A Cd clock can be constructed using light for all
of the transitions (Fig. 1), including the magic wavelength,
made from direct, or frequency doubled or quadrupled
semiconductor lasers. Along with its insensitivity to BBR,
cadmium’s other favorable properties permit an optical
lattice clock to be accurate, compact, and portable.

FIG. 1. Energy levels of cadmium. Wavelengths λ, natural
linewidths Γ=2π, and, for the cooling and clock transitions,
Doppler limited temperatures TD are indicated. The magic
wavelength for the optical lattice is 419.88 nm, at which the
ac Stark shifts of both states of the 1S0 − 3P0 clock transition are
identical.

PHYSICAL REVIEW LETTERS 123, 113201 (2019)

0031-9007=19=123(11)=113201(6) 113201-1 © 2019 American Physical Society

https://orcid.org/0000-0002-3981-3872
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.123.113201&domain=pdf&date_stamp=2019-09-13
https://doi.org/10.1103/PhysRevLett.123.113201
https://doi.org/10.1103/PhysRevLett.123.113201
https://doi.org/10.1103/PhysRevLett.123.113201
https://doi.org/10.1103/PhysRevLett.123.113201


Here, we demonstrate two-stage laser cooling of Cd
atoms to 6 μK using the 1S0 − 1P1 transition and the spin-
forbidden 1S0 − 3P1 transition, shown in Fig. 1. We load
ultracold 111Cd trapped into an optical lattice and exper-
imentally determine the magic wavelength for the 1S0 − 3P0

clock transition to be 419.88(14) nm, in agreement with
our theoretical prediction 420.1(7) nm. Our theoretical
BBR shift at 300 K is −0.256ð7Þ Hz with an extremely
small dynamic correction, −0.45ð5Þ mHz. The fractional
BBR shift is 2.83ð8Þ × 10−16 at 300 K, consistent with
Refs. [35,36], and allows 4 × 10−19 uncertainty for a
temperature inaccuracy of 0.1 K.
Our experimental schematic is depicted in Fig. 2(a).

A 111Cd dispenser, enriched to 93%, is located 2 cm from
the magneto-optical trap (MOT). We first cool and trap
111Cd atoms using the 1S0 − 1P1 transition, for which λ1 ¼
229 nm and the natural linewidth is Γ1=2π ¼ 90.9 MHz
[37]. This is referred to as the first MOT [38], which uses a
magnetic field gradient of 17 mT=cm along the axis of the
anti-Helmholtz coils. It uses 6 laser beams with 1=e2 radii
of 1 mm and intensities of 0.2I1 for each, where I1 ¼
988 mW=cm2 is the saturation intensity of the transition.
The total laser power for the first MOT is 30 mW, which is
generated by two successive second-harmonic generation
(SHG) stages [19] fed by an external cavity diode laser
(ECDL) and tapered amplifier at 4λ1 ¼ 916 nm.

Figure 2(b) shows the experimental timing sequence.
Operating the first MOT for 200 ms, we typically capture
106 atoms. We then switch to the second MOT [39] on the
narrow λ2 ¼ 326 nm 1S0 − 3P1 transition to further cool
the atoms. The laser beam 1=e2 radii are 2.5 mm and the
total intensity of the six beams is 310I2, with a saturation
intensity I2 ¼ 252 μW=cm2. The total laser power of
50 mW is generated by SHG of a tapered amplifier seeded
by an ECDL. At the beginning of the second MOT, the
magnetic field gradient is reduced to 0.1 mT=cm. To
capture velocities beyond the natural linewidth Γ2, the
laser frequency, tuned 3.965 MHz below the 1S0 − 3P1

resonance, is sinusoidally modulated at 50 kHz with a
peak-to-peak amplitude of 7.400 MHz by an acousto-optic
modulator. After 20 ms, the magnetic field gradient
increases to 0.3 mT=cm in 100 ms to make a compact
cloud to efficiently load atoms into the optical lattice. In the
last 20 ms, for optimum cooling, we inhibit the frequency
modulation and set the detuning to −3Γ2 and lower the
intensity to 19I2.
Figure 3 shows the temperature of atoms from the second

MOT as a function of the total laser intensity for a detuning
of −3Γ2. We measure the temperature of atoms via the
Doppler broadening of the 1S0 − 3P0 clock transition, as
shown in the inset. The lowest temperature is 6ð1Þ μK for
an intensity of 19I2. At higher intensities, the atomic
temperature increases, as expected for a higher heating
rate from photon scattering in Doppler cooling [40].
We load ultracoldCd into a one-dimensional optical lattice

in a horizontal power enhancement cavity. The cavity finesse
is 200 and the 1=e2 beam radius is 71 μm. The lattice light,
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FIG. 3. Temperature of 111Cd versus laser intensity for a
detuning of −3Γ2. The temperature is derived from the Dop-
pler-broadening of the 1S0 − 3P0 clock transition (see inset). A
Gaussian fit (solid curve) gives a minimum temperature of 6 μK
for a total intensity of 19I2.

FIG. 2. (a) Cadmium clock schematic. The cooling and trapping
lasers at 229 and 326 nm enter through antireflection-coated fused-
silica view ports. The lattice light builds up in an enhancement
cavity with fused-silica Brewster windows and external mirrors.
(b) Sequence for laser cooling, spectroscopy, and detection.
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tunable around 420 nm, is made by SHG of light from a Ti:
sapphire laser. The transfer efficiency from the second MOT
to the lattice is about 15%, loading several thousand atoms in
the lattice. The 1S0 − 3P0 clock transition is excited by the
clock laser propagating along the lattice axis, as shown in
Fig. 2(a). The 2mW clock laser at λ0 ¼ 332 nm is generated
by SHG of an ECDL stabilized to a reference cavity.We note
that the subharmonic of the Cd clock transition, 4λ0 ¼
1328 nm, corresponds to a telecommunication wavelength,
allowing dissemination of the clock signal via telecommu-
nication fiber networks without an optical frequency comb
[7]. After applying a clock laser pulse with an intensity of
25 mW=cm2 for 100 ms, the excitation is observed with
electron shelving [41], using the second MOT. The clock
spectrum is detected as a decrease of the MOT fluorescence,
which is measured with a 100 ms exposure on an electron-
multiplying charge-coupled device (EMCCD) camera.
To measure the lattice-trap depth, the axial trap fre-

quency is determined from the sideband spectrum of the
clock transition, as shown in Fig. 4 for a lattice wavelength
λL ¼ 419.9 nm and peak intensity IL ∼ 250 kW=cm2. The
sideband spectra are enhanced by exciting the 3P0 − 3S1
transition at λ3 ¼ 468 nm (see Fig. 1) to pump 51% of the
atoms in the 3P0 state to the 3P2 metastable state [42]. We
alternately apply 2 ms pumping and clock laser pulses, to
avoid light shifts and broadening, accumulating more
atoms in the 3P2 state and further depleting the ground
state. In Fig. 4, the blue and red curves are fits to the blue
and red motional sidebands [43]. They yield a trap
frequency of 209(8) kHz, corresponding to a lattice depth
of 51ð4Þ μK, or 105ð8ÞER, with the lattice photon recoil
energy ER ¼ h2=2mλ2L ¼ kB × 0.49 μK. The asymmetry
of the sideband spectra in Fig. 4 indicates an atom
temperature of 8ð2Þ μK, consistent with the Doppler
broadening measurement.
To determine the magic wavelength, we measure the

lattice-trap-depth dependent light shift. Figure 5(a) shows

the light shift as a function of the trap depth, for six lattice
wavelengths λL, where the trap depth is extracted from
sideband spectra as in Fig. 4. For clock frequency mea-
surements, we use a single Rabi clock pulse and inhibit the
468 nm laser pulses. At each lattice wavelength, the light
shifts are linearly fitted and the frequency offset of each
linear fit is subtracted so that all fits intersect at zero trap
depth. The typical frequency drift of the clock laser is less
than 1.5 kHz in 30 min, the time required for light shift
measurements at a single lattice wavelength. The error bars
in Fig. 5(a) include the statistical uncertainty of the fit to the
center of the clock excitation spectrum and the frequency
drift of the clock laser. The lattice wavelength is measured
by a calibrated wave meter with an uncertainty much less
than 1 ppm.
Figure 5(b) shows the lattice light shift per lattice-photon

recoil-energy ER, as a function of the lattice wavelength λL.
The error bars are the 1σ fit uncertainties from Fig. 5(a).
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FIG. 4. Sideband spectrum of the clock transition for a lattice
wavelength λL ¼ 419.9 nm. The blue and red curves are fits to
the blue and red motional sidebands, which determines the axial
trap frequency to be 209(8) kHz.
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FIG. 5. (a) Light shifts for six lattice wavelengths at three lattice
trap depths. At each wavelength the three measured light shifts
are linearly fit to extract the light shift coefficient. The slowly
drifting frequency offset is subtracted at each wavelength.
(b) Light shift coefficient versus lattice wavelength. This gives
a magic wavelength of 419.88(14) nm, where the light shift
coefficient goes to zero.

PHYSICAL REVIEW LETTERS 123, 113201 (2019)

113201-3



With a linear fit to all the light shift coefficients, the magic
wavelength for the 1S0 − 3P0 transition in 111Cd is λL ¼
419.88ð14Þ nm (in vacuum). The nonlinearity of the light
shift is estimated to be less than 0.2% over a wavelength
range of about 10 nm. The experimentally determined
magic wavelength agrees with our theoretical prediction of
420.1(7) nm described below, and with a prior semi-
empirical 420 nm prediction [44]. From the linear fit of
the data in Fig. 5(b), the sensitivity of the linear ac Stark
shift to the lattice laser wavelength and trap depth
is 0.40ð2Þ kHz=ER=nm.
Our theoretical calculation of the magic wavelength, and

other Cd properties important for clock development, uses a
hybrid approach that combines configuration interaction
(CI) and an all-order linearized coupled-cluster method [45].
In this CIþ all-order method, an effective Hamiltonian is
constructed from a coupled-cluster calculation to account
for the valence-core (vc), and core-core, correlations. This
effective Hamiltonian is subsequently used in the CI calcu-
lation of the valence-valence correlations, to obtain thewave
functions and the low-lying energy levels by solving
the multiparticle relativistic equation Heff jΨi ¼ EjΨi. The
valence contribution to the polarizability comes from the
solution of the inhomogeneous equation from a perturbation
theory of the valence space [46]. The core polarizability and a
small vc correction are calculated using the random-phase
approximation. This method yielded high-precision predic-
tions of clock-related properties of Yb [47] and Sr [48].
To estimate the uncertainty of our theoretical predictions, we
repeat the calculations with an effective Hamiltonian con-
structed from second-order perturbation theory (MBPT).The
difference between this CIþMBPT and the CIþ all-order
gives the contributions of the dominant third and higher order
terms and serves as estimates of the theoretical uncertainties.
We also compare to calculations for Sr, where several matrix
elements are now known with good precision, to make final
estimates of our uncertainties.
The contributions to static and dynamic polarizabilities

at the theoretical value of the magic wavelength are listed in
Table I. Our approach gives the total valence polarizability.
Nonetheless, it is insightful to extract several of the
dominant contributions, from the lowest states. The exper-
imental transition wavelengths λ (in nm) and dipole matrix
elements D (in a.u.) are given for these. The remaining
contributions are grouped together as “other.” While the
theoretical and experimental energies agree well [49], it is
important to use accurate experimental energies [51] to
calculate the dynamical polarizability near the magic
wavelength. Because the contributions from the 5s5p 3P0 −
5s6s 3S1 and 5s5p 3P0 − 5s5d 3D1 transitions largely
cancel and both resonances are close to the magic wave-
length, the small experimental energy corrections can
significantly shift the magic wavelength. For consistency,
we use experimental energies for the seven contributions
listed in Table I. We note that these corrections change the

static polarizabilities by much less. We calculate a magic
wavelength of 420.1(7) nm, where the uncertainty is the
difference between theCI+all-order and CIþMBPT values.
We use the static differential clock polarizability to

calculate the static contribution to the blackbody radiation
shift ΔνstBBR ¼ −0.255ð7Þ Hz. The dynamic correction to
the BBR shift is ΔνdynBBR ¼ −0.45ð5Þ mHz, a factor of 330
smaller than that for Sr clocks. This gives a small fractional
BBR shift ΔνBBR=ν0 ¼ −2.83ð8Þ × 10−16. The calcula-
tions of polarizabilities and the BBR shift are described
in more detail in Ref. [49].
We calculate the Cd 1S0 − 1S0 ground state C6 coefficient

to be 401(8) a.u., following Ref. [52]. Using the theoretical
5s5p 1P1 − 5s2 1S0 matrix element, we predict the 1P1

lifetime to be 1.500(15) ns. We compared the calculation
of 5s5p 1P1 − 5s2 1S0 matrix element in Cd and Sr [48] and
find similar sign and size of the higher-order correlation
effects. Because of the similarity of these two cases, con-
firmed by theory, we use the difference of the Sr value with
the experiment (−0.46%) to slightly improve the prediction
of the central value of the 1P1 Cd lifetime. Making the
−0.46% adjustment to the Cd matrix element gives lifetimes
of 3.424 a.u., or 1.514(15) ns. The predicted 1P1 lifetime is in
agreement with the experimental value of 1.75(0.2) ns [37].
In summary, we have demonstrated two-stage laser cool-

ing that simply and efficiently cools neutral Cd to 6 μK.
Loading the ultracold Cd atoms into an optical lattice, we
perform Lamb-Dicke spectroscopy on the 1S0 − 3P0 clock
transition and determine the magic wavelength to be 419.88
(14) nm, in agreement with our theoretical prediction of
420.1(7) nm. We calculate the Cd blackbody shift to be
2.83ð8Þ × 10−16 at 300 K, in addition to other properties of

TABLE I. Contributions to static and dynamic polarizabilities
(in a.u.) at the theoretical value of the magic wavelength,
420.1 nm. The experimental transition wavelengths λ (in nm)
and theoretical dipole matrix elements D (in a.u.) are given for
several leading contributions. The last column is the differential
static clock-state polarizability.

State Contr. λ D α0 α0ðλmagicÞ
5s2 1S0 5s5p 3P1 326.2 0.158(14) 0.12(2) 0.30(5)

5s5p 1P1 228.9 3.440(17) 39.62(40) 56.35(56)
5s6p 1P1 166.9 0.689(14) 1.16(5) 1.38(5)
Other 0.70(5) 0.78(5)

Coreþ vc 4.92(25) 4.92(25)

Total 46.53(47) 63.73(62)
5s5p 3P0 5s6s 3S1 467.9 1.491(11) 15.22(23) −63.21ð95Þ

5s5d 3D1 340.5 2.318(23) 26.76(54) 78.0(1.6)
5s7s 3S1 308.2 0.433(2) 0.84(1) 1.83(2)
5s6d 3D1 283.8 1.061(5) 4.67(5) 8.59(9)
Other 24.00(23) 33.81(46)

Coreþ vc 4.70(24) 4.70(24)
Total 76.20(67) 63.7(1.9)

Δð3P0 − 1S0Þ 29.67(82)
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Cd. A Cd optical lattice clock therefore can significantly
improve the uncertainty originating from BBR, which
currently limits the accuracy of Sr and Yb clocks.
Assuming a 16-μK-deep lattice, a two-photon-ionization
rate is calculated to be 2 mHz for the 3P0 clock state [35] and
the Raman scattering rate to be 0.8 Hz allowing a quality
factor of the clock transition of Q ∼ 1.1 × 1015. The con-
venient implementation of deep laser cooling into an optical
lattice, the insensitivity to BBR, and abundant nuclear spin
1=2 isotopes make Cd an attractive candidate for compact
and transportable optical clocks [53]. Further experimental
investigation of higher-order polarizabilities is required to
ascertain if Cd clocks can operate with lattice light shift
uncertainties less than 10−18.
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