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Abstract— A review of the theoretical calculations of the black-
body radiation (BBR) shifts in various systems of interest to
the atomic clock research in presented. The calculations for
monovalent systems, such as Ca+, Sr+, and Rb are carried out
using the relativistic all-order single-double method where all
single and double excitations of the Dirac-Fock wave function
are included to all orders of perturbation theory. New method
for accurate calculations of BBR shifts for divalent systems such
as Sr is discussed. The new approach combines the relativistic
all-order method and the configuration interaction method. The
evaluation of the uncertainty of the BBR shift values is discussed
in detail.

I. INTRODUCTION

The current definition of a second in the International
System of Units (SI) is based on the microwave transition
between the two hyperfine levels (F = 4 and F = 3) of the
133Cs ground state. The present relative standard uncertainty
of Cs microwave frequency standard is around 4× 10−16 [1].
The operation of atomic clocks is generally carried out at room
temperature, whereas the definition of the second refers to the
clock transition in an atom at absolute zero. This implies that
the clock transition frequency should be corrected in practice
for the effect of finite temperature of which the leading con-
tributor is the blackbody radiation (BBR) shift. The BBR shift
at room temperature affecting the Cs microwave frequency
standard has been calculated to high accuracy (0.35%) in
Refs. [2], [3] implying 6×10−17 fractional uncertainty. These
calculations are in agreement with 0.2% measurement [4].

A significant further improvement in frequency standards
is possible with the use of optical transitions as the fre-
quencies of feasible optical clock transitions are five orders
of magnitude larger than the relevant microwave transition
frequencies. Significant recent progress in optical spectroscopy
and measurement techniques has led to the achievement of
relative standard uncertainties in optical frequency standards
that are comparable to the Cs microwave benchmark. In 2006,
the International Committee for Weights and Measures (CIPM)
recommended that the following transitions frequencies shall
be used as secondary representations of the second [5]:

ground-state hyperfine microwave transition in 87Rb [6], [7],
5s 2S1/2 − 4d 2D5/2 optical transition of the 88Sr+ ion [8],
[9], 5d106s 2S1/2(F = 0) − 5d96s2 2D5/2(F = 2) optical
transition in 199Hg+ ion [10], [11], 6s 2S1/2(F = 0) −
5d 2D5/2(F = 2) optical transition in 171Yb+ ion [12], [13]
and 5s2 1S0 − 5s5p 3P0 transition in 87Sr neutral atom [14],
[15], [16]. With better stability and accuracy as well as
extremely low systematic perturbations such optical frequency
standards can reach a systematic fractional uncertainty of
the order of 10−18 [9], [17]. The ability to develop more
precise optical frequency standards will open ways to improve
global positioning systems and tracking of deep-space probes,
and perform more accurate measurements of the fundamental
constants and testing of physics postulates.

The major contributions to the systematic frequency shifts
come from Stark shifts with the blackbody radiation (BBR)
being one of the most important contributions at room tem-
perature for many of the frequency standards. Experimental
measurements of the BBR shifts are difficult. In this paper, we
review the current status of the theoretical calculations of the
BBR shifts in various systems of interest to the development
of both microwave and optical frequency standards. New pre-
liminary result for the BBR shift of the ground-state hyperfine
microwave transition in 87Rb is presented [18]. The evaluation
of BBR shifts and their uncertainties in optical frequency
standards in monovalent ions, such as as Ca+ and Sr+ [19],
[20] is discussed. New method for accurate calculations of
the BBR shifts for divalent systems such as Sr is discussed.
This approach combines the relativistic all-order method and
the configuration interaction (CI) method [21]. This method is
generally applicable, i.e. not restricted to the specific type of
the system.

II. THEORETICAL CALCULATION OF BBR SHIFTS

The electrical field E radiated by a blackbody at temperature
T , as given by Planck’s law,

E2(ω)dω =
8α3

π

ω3dω

exp(ω/kBT )− 1
, (1)
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induces a nonresonant perturbation of the atomic transitions at
room temperature [22], [23]. The average electric field radiated
by a blackbody at temperature T is

〈E2〉 = (831.9 V/m)2
(

T (K)
300

)4

. (2)

Assuming that the system evolves adiabatically, the frequency
shift of an atomic state due to such an electrical field can be
related to the static electric-dipole polarizability α0 by (see
Ref. [24])

δν = −1
2
(831.9 V/m)2

(
T (K)
300

)4

α0(1 + η), (3)

where η is a small dynamic correction due to the frequency
distribution and only the electric-dipole transition part of the
contribution is considered. The contributions from M1 and E2
transitions are suppressed by factors of α2 [24]. The overall
BBR shift of the clock frequency is then calculated as the
difference between the BBR shifts of the individual levels F
and I involved in the transition.

Therefore, theoretical evaluation of the BBR shift requires
accurate calculation of static scalar polarizabilities of the
relevant states. In the case of the optical transitions, the lowest
(second) order polarizabilities of the clock states are different.
In the case of the ground-state hyperfine microwave frequency
standards, the lowest (second) order polarizabilities of the
clock states are the same and the lowest-order BBR shift is
zero. To evaluate the BBR shift, the third-order F-dependent
polarizabilities have to be calculated. Therefore, we treat these
cases separately. We note that from the theoretical standpoint,
the number of the valence electrons (and the presence of core
holes) defines the type (and final accuracy) of the approach.
For example, the calculations of the BBR shift in Ca+ and
Sr+ are effectively the same, but the treatment of Sr+ and Sr
are completely different. The main sources of uncertainties in
these cases are also different for different types of systems
and are discussed separately for each distinct case.

III. MICROWAVE FREQUENCY STANDARDS

The third-order F-dependent static polarizability α
(3)
F (0)

required for the evaluation of the BBR shift for the microwave
frequency standards in Rb and Cs can be evaluated as [24]

α
(3)
F (0) = AgIµn (2T + C + R) , (4)

where A is an angular coefficient, gI is the nuclear gyromag-
netic ratio, and µn is nuclear magneton. The quantities T , C,
and R contain terms with two electric-dipole reduced matrix
elements 〈i‖D‖j〉 and one matrix element of the magnetic
hyperfine operator 〈i‖T (1)‖j〉 . For example, term T is given
by [24]

T =
∑
m6=v

∑
n6=v

A1δjnjv

〈v‖D‖m〉〈m‖D‖n〉〈n‖T (1)‖v〉
(Em − Ev) (En − Ev)

, (5)

where A1 is an angular coefficient and sums over m, n run
over all possible states allowed by the selection rules. The

sums are made finite with the use of finite B-spline basis
set in a spherical cavity. Two other terms, C and R, contain
sums of the DT (1)D and T (1)D2 terms. It is practical to
separate sum over states to the main contribution calculated
using the high-precision all-order (or experimental) matrix
elements and experimental energies, and the remainder (“tail”)
calculated using either Dirac-Fock or random-phase (RPA)
approximation. In Cs calculation [24], the main term contained
sum over orbitals with the principal quantum number n ≤ 12.
While tail contributions is small, it is significant (on the order
of 7% in Cs [24]).

Therefore, the calculation of the BBR shift reduces to the
evaluation of the electric-dipole and magnetic hyperfine matrix
elements. Accurate evaluation of these quantities, in partic-
ular for heavy systems, requires all-order type approaches
where dominant electronic correlation terms are summed to
all orders of many-body perturbation theory. Two such ap-
proaches implemented in significantly different ways have
been used for the calculation of the blackbody radiation
shifts: the relativistic all-order method (or linearized coupled-
cluster method LCCSD[pT] method) [3], [18], [25], [26], [27]
and perturbation theory in the screened Coulomb interaction
(PTSCI) [2], [28] (also referred to as the correlation potential
method). We describe the LCCSD[pT] method briefly below
and summarize PTSCI method in Section III-C.

The relativistic all-order method including single, double,
and partial valence triple excitations (or LCCSDpT) was
applied to accurate calculations of energies, transition am-
plitudes, hyperfine constants, static and dynamic electric-
dipole polarizabilities, quadrupole and octupole polarizabil-
ities, magic wavelengths, atomic quadrupole moments, C3

and C6 coefficients, isotope shifts and other properties of
monovalent atoms (Li, Na, Mg II, Al III, Si IV, P V, S VI,
K, Ca II, In, In-like ions, Ga, Ga-like ions, Rb, Cs, Ba II,
Tl, Fr, Th IV, U V, other Fr-like ions, Ra II ) as well as
the calculation of parity-violating amplitudes in Cs, Fr, and
Ra+. We refer the reader to review [29] and references therein
for the detail description of this method, its extensions, and
applications. The relativistic all-order method is applicable to
the calculation of the monovalent systems, i.e. alkali-metal
atoms, Ca+, Sr+, Zn+, etc. For example, it can be used to
evaluate the properties of the ground or 5d106p excited state
of Hg+, but not the properties involving 5d96s2 configuration
in Hg+ since it is not a single valence electron state (but two-
particle and one-hole state). We discuss an all-order approach
capable of treating more complicated systems in Section V.

A. The all-order LCCSD[pT] method

In the linearized LCCSDpT approach, the atomic wave
function of a monovalent atom in a state v is given by an
expansion

|Ψv〉 =

[
1 +

∑
ma

ρmaa†maa +
1
2

∑
mnab

ρmnaba
†
ma†nabaa+ (6)

+
∑
m6=v

ρmva†mav +
∑
mna

ρmnvaa†ma†naaav
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+
1
6

∑
mnrab

ρmnrvaba
†
ma†na†rabaaav

]
a†v|ΨC〉,

where |ΨC〉 is the lowest-order frozen-core wave function;
a†i , ai are creation and annihilation operators. In Eq. (6), the
indices m, n, and r range over all possible virtual states
while indices a and b range over all occupied core states.
The quantities ρ are excitation coefficients. In single-double
(LCCSD) implementation of the all-order method, only single
and double excitations are included. In the LCCSDpT variant
of the all-order method, valence triple excitations are included
perturbatively as described in Ref. [30]. Shorter designation
SD and SDpT are used some of the other works on the all-
order method, indicating exactly the same quantities.

The equations for the correlation energy and all excitation
coefficients are solved iteratively. Every iteration picks up
correlation terms that correspond to the next order of perturba-
tion theory until the correlation energy converges to sufficient
numerical accuracy. Therefore, the all-order approach includes
dominant many-body perturbation theory (MBPT) terms to all
orders.

The matrix elements of any one-body operator Z =∑
ij zij a†iaj are obtained within the framework of the all-

order method as

Zwv =
〈Ψw|Z|Ψv〉√

〈Ψv|Ψv〉〈Ψw|Ψw〉
, (7)

where |Ψv〉 and |Ψw〉 are given by the expansion (6). In the
SD approximation, the resulting expression for the numerator
of Eq. (7) consists of the sum of the DF matrix element zwv

and 20 other terms that are linear or quadratic functions of the
excitation coefficients. The advantage of this approach is that
the matrix elements of any one-body operators (for example,
electric-dipole and magnetic hyperfine ones needed for the
evaluation of the BBR shifts) are calculated with the same
general code.

B. Evaluation of the uncertainties

There are two distinct sources of uncertainties in the eval-
uation of the α

(3)
F (0) given by Eqs. (4-5):

(1) uncertainty in the values of the individual matrix ele-
ments used in the calculation of the main terms and

(2) uncertainty of the remaining tail contribution.
Stability checks have to be also carried out to ensure that
no significant cancellations are present in the sums that may
adversely affect the accuracy. In such tests, sets of completely
ab initio LCCSD or LCCSDpT values are used in place
of the experimental data and the final results are compared
[3]. The uncertainty of the experimental energy values [31],
[32] is negligible. Where the experimental (electric-dipole
or hyperfine) matrix elements were used, the experimental
uncertainties were taken. The uncertainty of the theoretical
matrix elements were assigned based on comparison of the
theoretical and experimental values, estimation of the size of
the correlation corrections, and importance of the higher-order
terms for the particular matrix elements. The estimation of

the uncertainty of the tail contribution can be either carried
out in the same fashion (by assigning the uncertainties to the
individual terms) of by estimating the accuracy of the DHF
approach for the entire tail.

C. Summary of the results

Following the designations of the Ref. [3], we give the
summary of the results for the Stark shift coefficient k in
10−10 Hz/(V/m)2 and the blackbody radiation shift parameter
β. The Stark coefficient k is defined as

δν = kE2, (8)

where δν is the frequency shift in the static electric field. The
Stark coefficient for the transition between states F and I is
related to the polarizability as

k = −1
2
[α0(F )− α0(I)]. (9)

The parameter β of the relative temperature-dependent BBR
shift of the microwave frequency standard is defined as

δν

ν0
= β

(
T (K)

T0

)4
(

1 + ε

(
T (K)

T0

)2
)

, (10)

where T0 is generally taken to be room temperature, 300K,
ε parameterizes the lowest-order (in T) contribution to the
dynamic correction η in Eq. (3), and ν0 is clock transition
frequency. The parameter β is calculated directly from the
Stark-shift coefficient k defined by Eqs. (8-9) as

β =
k

ν0
(831.9 V/m)2 . (11)

Small parameter ε has been calculated in Ref. [28] to be equal
to 0.011 for 87Rb, 0.013 for 133Cs, 0.004 for 137Ba+, 0.002
for 171Yb+, and 0.0005 for 199Hg+.

Recent high-precision theoretical results [2], [3], [18], [26],
[27], [28] for the Stark shift coefficient k in 10−10 Hz/(V/m)2

and the blackbody radiation shift parameter β are summarized
in Table I. We use [pT] designation to indicate that valence
triple excitations were taken into account were LCCSDpT data
were expected to be more accurate that the LCCSD ones. The
result for Yb+ from Ref. [25] is obtained using relativistic
third-order perturbation theory (RMBPT3). Theoretical results
are compared with experimental data from Refs. [33], [4],
[34]. The most complete comparison with other theory and
experimental results for Cs is given in Ref. [28].

New preliminary ab initio β value [18] for the 87Rb
frequency standards obtained using LCCSD[pT] method is
presented. We have also evaluated the Stark shift coefficient k
and parameter β for 23Na to study how these quantities vary
among alkali-metal atoms. We find that β for Na is nearly
identical to that of Li and is significantly (by a factor of 3.4)
smaller than β(Cs).

Theoretical results are in good agreement with each other.
We note that both of the approaches contain all-order corre-
lation corrections. However, these methods include somewhat
different types of the high-order correlation terms. The imple-
mentation of the all-order approaches is quite different. In the
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TABLE I
SUMMARY OF THE RECENT THEORETICAL CALCULATIONS OF THE STARK SHIFT COEFFICIENT k IN 10−10 HZ/(V/M)2 AND THE BLACKBODY RADIATION

SHIFT PARAMETER β FOR TRANSITIONS BETWEEN THE GROUND HYPERFINE STATES AND COMPARISON WITH EXPERIMENT.

Atom Transition Ref. k β

7Li 2s (F = 2 ↔ F = 1) Theory, LCCSD[pT] [26] -0.05824 -0.5017×10−14

Experiment [33] -0.061(2)
23Na 3s (F = 2 ↔ F = 1) Theory, LCCSD[pT] Present -0.1285 -0.5019×10−14

Experiment [33] -0.124(3)
39K 4s (F = 2 ↔ F = 1) Theory, LCCSD[pT] [27] -0.0746 -1.118×10−14

Experiment [33] -0.071(2)
87Rb 5s (F = 2 ↔ F = 1) Theory, LCCSD[pT] Present, [18] -1.272* -1.287×10−14

Theory, PTSCI [28] -1.24(1) -1.26(1)×10−14

Experiment [33] -1.23(3)
133Cs 6s (F = 4 ↔ F = 3) Theory, LCCSD[pT] [3] -2.271(8) -1.710(6)×10−14

Theory, PTSCI [2] -2.26(2) -1.70(2)×10−14

Experiment [4] -2.271(4) -1.710(3)×10−14

Experiment [34] -2.05(5) -1.54(4)×10−14

137Ba+ 6s (F = 2 ↔ F = 1) Theory, PTSCI [28] -0.284(3) -0.245(2)×10−14

171Yb+ 6s (F = 1 ↔ F = 0) Theory, RMBPT3 [25] -0.1796 -0.0983×10−14

Theory, PTSCI [28] -0.171(9) -0.094(5)×10−14

199Hg+ 6s (F = 1 ↔ F = 0) Theory, PTSCI [28] -0.060(3) -0.0102(5)×10−14

*Preliminary value

PTSCI (or correlation potential) method used in Refs. [2], [28]
the calculations start from the relativistic Hartree-Fock method
in the V N−1 approximation. The correlations are incorporated
by means of the correlation potential Σ. The correlation
potential is used to build a new set of single-electron states
for subsequent evaluation of the hyperfine and electric-dipole
matrix elements using the random-phase approximation. Struc-
ture radiation and the normalization corrections are included
for hyperfine matrix elements. Hg+ and Yb+ calculations
were carried out with the correlation potential calculated in
second-order and rescaled to fit the experimental energies. For
the other systems, two classes of terms are included in the
correlation potential to all orders: screening of the Coulomb
interaction and hole-particle interactions. The resulting cor-
relation potential is scaled to fit the experimental energies.
Scaling of the all-order correlation potential leads to only small
adjustments and serves as a part of the uncertainty evaluation.
For Rb, Cs, and Ba+ scaling of both second-order and all-order
correlation potential operator was carried out for additional
confirmation of the quoted uncertainties. The assignment of
the uncertainty values was also based on the comparison of
the polarizabilities and hyperfine constants with experimental
values.

The agreement of results in Table I obtained with distinct
high-precision approaches gives another estimate of the accu-
racy of the theoretical values. The evaluation of the uncertainty
of the Rb LCCSD[pT] result is in progress [18]. Table I also
illustrates the relative size of the electrostatic frequency shifts
for the ground state hyperfine transitions in various systems.
199Hg+ has both the lowest value of β and the lowest resulting

fractional uncertainty in the frequency standard (5 × 10−18)
due to BBR shift among the systems listed in Table I.

IV. OPTICAL FREQUENCY STANDARDS WITH CA+ AND
SR+ IONS

In this section, we discuss the calculation of the BBR shifts
for the optical frequency standards based on the 4s − 3d5/2

transition in Ca+ [19] and the 5s − 4d5/2 transition in Sr+

[20]. We note that while the calculations were conducted for
43Ca+ and 88Sr+ we have verified that the results given in
this section do not depend on the particular isotope. There-
fore, we will omit the A labels in text and tables below.
According to Eq. (3), the calculation of the BBR shift for these
transitions requires the calculation of the lowest-order atomic
polarizability (unlike the cases of the hyperfine transitions,
it does not cancel out for optical frequency standards) and
the evaluation of the dynamic correction η. The third-order
F-dependent polarizability was verified in Ref. [19] to give
negligible contribution to the BBR shift.

Therefore, the evaluation of the BBR shift requires accurate
calculation of static scalar polarizabilities of the ns1/2 ground
and (n − 1)d5/2 excited states. The effect of the tensor part
of the (n − 1)d5/2 polarizability is averaged out due to the
isotropic nature of the electric field radiated by the blackbody.

A. Calculation of the ground state and nd5/2 state polariz-
abilities

The calculation of the scalar polarizability of a monovalent
atom can be separated into three parts: the contribution of
the electrons in the ionic core, αcore; a small term, αvc, that
changes the core polarizability due to the presence of the
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TABLE II
CONTRIBUTIONS TO THE GROUND STATE STATIC SCALAR

POLARIZABILITIES IN CA+ AND SR+ IN UNITS OF a3
0 .

Ca+ α(4s) Sr+ α(5s)

4s1/2 − 4p1/2 24.4 5s1/2 − 5p1/2 29.23

4s1/2 − 4p3/2 48.4 5s1/2 − 5p3/2 56.48

4s1/2 − (5, 6)p1/2 0.014 5s1/2 − (6− 8)p1/2 0.008

4s1/2 − (5, 6)p3/2 0.022 5s1/2 − (6− 8)p3/2 0.008

αtail 0.006 αtail 0.02

αcore+vc 3.25 αcore+vc 5.55

αtotal 76.1 αtotal 91.30

TABLE III
CONTRIBUTIONS TO THE 3d5/2 AND 4d5/2 STATIC SCALAR

POLARIZABILITIES IN CA+ AND SR+ , RESPECTIVELY, IN UNITS OF a3
0 .

Ca+ α(3d5/2) Sr+ α(4d5/2)

3d5/2 − 4p3/2 22.78(25) 4d5/2 − 5p3/2 44.16(29)

3d5/2 − 5p3/2 0.011(2) 4d5/2 − 6p3/2 0.012(2)

3d5/2 − 6p3/2 0.004 4d5/2 − 7p3/2 0.003

3d5/2 − 4f5/2 0.120(3) 4d5/2 − 4f5/2 0.329(4)

3d5/2 − 5f5/2 0.039(2) 4d5/2 − 5f5/2 0.085(2)

3d5/2 − 6f5/2 0.018(1) 4d5/2 − 6f5/2 0.035

3d5/2 − (7-12)f5/2 0.027 4d5/2 − (7-12)f5/2 0.045

3d5/2 − 4f7/2 2.392(53) 4d5/2 − 4f7/2 6.576(70)

3d5/2 − 5f7/2 0.773(33) 4d5/2 − 5f7/2 1.699(30)

3d5/2 − 6f7/2 0.350(12) 4d5/2 − 6f7/2 0.698(11)

3d5/2 − 7f7/2 0.191(7) 4d5/2 − 7f7/2 0.360(5)

3d5/2 − 8f7/2 0.117(4) 4d5/2 − 8f7/2 0.212(4)

3d5/2 − 9f7/2 0.077(3) 4d5/2 − 9f7/2 0.136(2)

3d5/2 − 10f7/2 0.054(2) 4d5/2 − 10f7/2 0.093(1)

3d5/2 − 11f7/2 0.039(1) 4d5/2 − 11f7/2 0.067(1)

3d5/2 − 12f7/2 0.029(1) 4d5/2 − 12f7/2 0.050(1)

αtail 1.7(1.1) αtail 2.06(20)

αcore+vc 3.25(17) αcore+vc 5.41(31)

αtotal 32.0(1.1) αtotal 62.0(5)

valence electron; and the dominant contribution, αv , from the
valence electron. The ionic core polarizability used here was
calculated using the random-phase approximation (RPA) [35].
We calculate the αvc contribution in the RPA approximation
as well for consistency with the ionic core value. The valence
scalar polarizability α0 of an atom in a state v can be expressed
as the sum over all excited intermediate states n allowed by
the electric-dipole selection rules:

α0 =
2

3(2jv + 1)

∑
n

〈n‖D‖v〉2

En − Ev
, (12)

where 〈n‖D‖v〉 are the reduced electric-dipole matrix ele-
ments and Ei is the energy of the ith state. Just as in the
case of the third-order sums in the previous section, the
valence polarizability is separated into two parts, the main
term containing the first few dominant contributions and the

remainder αtail. The matrix elements are calculated using
the all-order LCCSD or LCCSDpT approaches described in
Section III-A.

Contributions to the ground state static scalar polarizabilities
in Ca+ and Sr+ in units of a3

0 are listed in Table II. The
tail contributions are grouped together as αtail. For the main
contribution, we use our ab initio LCCSD all-order values of
the matrix elements and experimental energies from Ref. [31].
The first ns − np transitions contribute over 99.9% to the
valence polarizability. Contributions to the 3d5/2 and 4d5/2

static scalar polarizabilities in Ca+ and Sr+, respectively,
are listed in Table III. Unlike the case of the ground state
polarizabilities, the contribution from other excited states are
significant for the nd5/2 − n′f7/2 transition contributions that
converge very slowly. To improve accuracy, contributions up
to n > 13 were included in the main term and evaluated using
the all-order approach. The evaluation of the uncertainties of
the ground state and nd5/2 polarizabilities is discussed in the
next section.

B. Evaluation of the uncertainties

There are three sources of the uncertainties contributing to
the polarizabilities of Ca+ and Sr+ in the ground and nd5/2

states. The ionic core contribution taken from Ref. [35] is
relatively small and is expected to be accurate to better than
5%, based on the comparison of the RPA and experimental
polarizability values for noble gases. Its uncertainty is, how-
ever, irrelevant to the evaluation of the uncertainty of the BBR
shift since the core polarizability is the same for both clock
states. The small compensating term αvc is different for the
two states, but its entire contribution is below the present
uncertainty of the other terms.

(1) Ground state polarizability. The uncertainties in the
values of the 4s − 4p1/2,3/2 and the 5s − 5p1/2,3/2 matrix
elements for Ca+ and Sr+, respectively, completely determine
the uncertainty in the valence ground state polarizability values
since they contribute over 99.9%. The LCCSD values for the
primary ns−np transitions in Li, Na, K, Rb, and Cs agree with
various types of high-precision experiments to 0.1% - 0.4%
[30]. There is no reason to expect reduced theoretical accuracy
in the cases of either Ca+ or Sr+ and 0.5% uncertainty was
assigned to the 5s−5p1/2 and 5s−5p3/2 Sr+ matrix elements
[20]. The resulting uncertainty of the 5s polarizability is
1%. Our theoretical LCCSD 5p1/2,3/2 lifetimes [20] are in
agreement with 1% experiment conducted in 1995 [36]. The
contribution of the 5s − 5p transitions to the lifetimes is
dominant (94%). However, the theoretical lifetimes of the
Ca+ 4p1/2,3/2 states calculated by exactly the same approach
in [19] are in significant (over 3%) disagreement with 1993
0.3% measurement [37]. This issue is discussed in detail in
Ref. [19]. Unfortunately, we know of no way to accurately
estimate the missing additional contributions to the dominant
correlation correction to these transitions as it can be done
for some other transitions (see discussion below). Accurate
new measurements of the np lifetimes or ns − np oscillator
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TABLE IV
EVALUATION OF THE UNCERTAINTIES OF ELECTRIC-DIPOLE MATRIX ELEMENTS IMPORTANT FOR BBR SHIFT CALCULATION IN CA+ AND SR+ .

ABSOLUTE VALUES IN A.U. ARE GIVEN.

Atom Transition LCCSD LCCSDsc LCCSDpT LCCSDpTsc Final

Ca+ 3d5/2 − 4p3/2 3.245 3.306 3.313 3.288 3.306(18)

3d5/2 − 4f5/2 0.501 0.516 0.517 0.511 0.516(6)

3d5/2 − 4f7/2 2.238 2.309 2.310 2.284 2.309(25)

Sr+ 4d5/2 − 5p3/2 4.150 4.187 4.198 4.173 4.187(14)

4d5/2 − 4f5/2 0.779 0.789 0.790 0.785 0.789(4)

4d5/2 − 4f7/2 3.486 3.528 3.536 3.509 3.528(19)

4d3/2 − 5p1/2 3.083 3.112 3.119 3.102 3.112(10)

4d3/2 − 5p3/2 1.369 1.383 1.386 1.378 1.383(5)

strengths in Ca+ and Sr+ are needed to resolve this issue and
improve final BBR shift results.

(2) Excited nd5/2 state polarizability: the main term.
Uncertainty of the main term of the nd5/2 state polariz-
ability is dominated by a very few terms as illustrated by
Table III. We obtain accurate values for these matrix elements
using a semi-empirical scaling procedure that evaluates some
classes of correlation corrections omitted by the current all-
order calculations. The scaling procedure is described in
Ref. [29]. We conduct the scaling starting from both LCCSD
and LCCSDpT approximations. The scaling factors for the
LCCSD and LCCSDpT calculations are different, and we take
scaled LCCSD values to be the final results based on the
comparisons of similar calculations in alkali-metal atoms with
experiments [38], [39], [40]. The uncertainty evaluation of the
reduced matrix elements that give significant contributions to
the polarizabilities is illustrated in Table IV, scaled values are
listed with subscript “sc”. The uncertainties are determined as
the maximum difference between the scaled LCCSD values
and the ab initio LCCSDpT and scaled LCCSDpT values. A
notable feature of this table is close agreement of the scaled
LCCSD and LCCSDpT results.

(3) Excited nd5/2 state polarizability: the tail term. The
tail contribution of the nd5/2 − n′f7/2 terms is particularly
large; its DF value (3.5 a.u.) is 5% of the total polarizability
for Sr+. The uncertainty in the tail dominated the uncertainty
of the Ca+ BBR shift value calculated in Ref. [19]. In a later
work on Sr+, this issue was resolved by performing additional
RPA calculations of the tail and carrying out the rescaling
procedures starting from both DF and RPA approximations.
Since the largest part of the correlation correction for the
4d5/2 − nf7/2 transitions with n > 9 comes from RPA-
like terms, the RPA approximation is expected to produce
a better result than the DF one. We carried out the RPA
calculation of the tail and obtained a lower value of 2.9 a.u.
We also calculated the main terms using the DF and RPA
approximations and compared the results with our all-order
values. The contributions to scalar polarizability of the 4d5/2

state in Sr+ from terms involving 4d5/2 − nf7/2 transitions
with n = 4 − 12 calculated in the DF, RPA, and all-order
approximations are listed in Table V. The relative differences

TABLE V
CONTRIBUTIONS TO THE 4d5/2 STATIC SCALAR POLARIZABILITIES IN

SR+ FROM nf7/2 STATES IN DF, RPA, AND ALL-ORDER

APPROXIMATIONS IN UNITS OF a3
0 . THE RELATIVE DIFFERENCES

BETWEEN DF AND ALL-ORDER RESULTS AND BETWEEN RPA AND

ALL-ORDER RESULTS ARE LISTED IN % IN THE LAST TWO COLUMNS.

DF RPA All-order ∆(DF) ∆(RPA)

4d5/2 − 4f7/2 11.427 10.903 6.576 42.46 39.69

4d5/2 − 5f7/2 2.725 2.545 1.698 37.66 33.26

4d5/2 − 6f7/2 1.089 1.004 0.698 35.91 30.51

4d5/2 − 7f7/2 0.556 0.509 0.359 35.33 29.32

4d5/2 − 8f7/2 0.327 0.297 0.212 35.10 28.70

4d5/2 − 9f7/2 0.210 0.191 0.136 35.08 28.43

4d5/2 − 10f7/2 0.144 0.130 0.093 35.09 28.25

4d5/2 − 11f7/2 0.103 0.093 0.067 35.10 28.14

4d5/2 − 12f7/2 0.077 0.069 0.050 35.15 28.03

Tail 3.48 2.86

Adjusted tail 2.26 2.06

between DF and all-order results and between RPA and
all-order results are listed in % in columns labeled ∆(DF)
and ∆(RPA), respectively. The DF and RPA approximations
overestimate the polarizability contributions by 35% and 28%,
respectively. To improve our accuracy, we scale both DF and
RPA results for the tail by these respective amounts to obtain a
DF-scaled value of 2.26 a.u. and RPA-scaled value of 2.06 a.u.
We take RPA-scaled value as the final one and the difference
of these two values as its uncertainty.

C. Results for the BBR shifts

The scalar polarizability values are used to evaluate the BBR
shifts in the Ca+ and Sr+ clock transitions at T = 300 K
using Eq. (3) [19], [20]. The dynamic correction was estimated
for Sr+ to be η = 0.0013 and η = 0.0064 for the 5s and
4d3/2 states, respectively using the formulas from [24]. The
resulting correction to Sr+ BBR shift is −0.002 Hz and the
final value for the BBR shift is 0.250(9) Hz [20]. The M1
and E2 contributions to the Sr+ BBR shift were evaluated in
[20] using the approach described in Ref. [24] and found to be
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TABLE VI
THE BBR SHIFT δν AT T = 300K , CLOCK TRANSITION FREQUENCY ν0 ,

FRACTIONAL UNCERTAINTIES δν/ν0 DUE TO BBR SHIFT, AND THE

FRACTIONAL ERROR IN THE ABSOLUTE TRANSITION FREQUENCY

INDUCED BY THE BBR SHIFT UNCERTAINTY.

Ion δν (Hz) ν0 (Hz) δν/ν0 Uncertainty

Ca+ 0.38(1) [19] 4.11×1014 9.24×10−16 2.4×10−17

Sr+ 0.250(9) [20] 4.45×1014 5.62×10−16 2.0×10−17

negligible (below 0.01%). The comparisons of the LCCSD[pT]
BBR shift values with other theoretical results are given in
Ref. [19] and Ref. [20], for Ca+ and Sr+, respectively.

The results for the BBR shift δν at T = 300K, the cor-
responding fractional uncertainties δν/ν0, and the fractional
error in the absolute transition frequency induced by the BBR
shift uncertainties are listed in Table VI. We note that relative
uncertainty in the BBR shift is significantly larger than the
polarizability uncertainties owing to the cancellation between
the values of the polarizabilities of the clock states.

Further improvement in the BBR shift values will require
settling the issue of the accuracy of the primary ns − np
matrix elements as well as experimental determination of
the np3/2 − (n − 1)d5/2 matrix elements, where ns is the
ground state. The types of experiments that can provide better
understanding of the theoretical uncertainties or extraction of
the specific matrix elements for more accurate evaluation of
the BBR shifts include np lifetime (or ns − np oscillator
strength) measurements, light shift ratio measurements [41],
or ac or dc Stark shift measurements on the any of the
lines involving ns, np, or (n− 1)d states. We estimated that
the experimental determination of the ns − np1/2,3/2 matrix
elements, where ns is a ground state accurate to 0.15% (or
0.3% np1/2,3/2 lifetime measurement) would reduce fractional
error in the absolute transition frequency induced by the BBR
shift uncertainty by a factor of 2.

V. OPTICAL FREQUENCY STANDARDS WITH DIVALENT
ATOMS

BBR shifts for optical lattice clocks based on the ns2 1S0−
nsnp 3P0 transitions in divalent atoms were calculated for
Mg, Ca, Sr, and Yb in Ref. [24] and for Hg in Ref. [42].
The evaluation of the BBR shift in these systems requires
evaluation of the ground and nsnp 3P0 state polarizabilities.
Different theoretical methods have to used for the evaluation
of these polarizabilities in comparison with the monovalent
systems discussed in the previous sections. The CI + MBPT
approach initially developed in Ref. [43] that combines the
configuration-interaction (CI) method and perturbation theory
was used in Refs. [24], [42]. Experimental data were used
where available for dominant contributions. Sr BBR shift was
later investigated in more detail in Ref. [44] using the same
approach.

In the CI method, the many-electron wave function is
obtained as a linear combination of all distinct states of a

given angular momentum J and parity:

ΨJ =
∑

i

ciΦi, (13)

in other words, a linear combination of Slater determinants of
a proper symmetry from a model subspace [43].

Energies and wave functions of low-lying states are deter-
mined by diagonalizing the effective Hamiltonian:

Heff = H1 + H2, (14)

where H1 represents the one-body part of the Hamiltonian,
and two-body part H2 contains the Coulomb (or Coulomb +
Breit) matrix elements vijkl. The resulting wave functions are
used to calculate matrix elements and other properties.

The CI + MBPT approach allows one to incorporate core
excitations in the CI method by including certain perturbation
theory terms into an effective Hamiltonian (14). The one-body
part H1 is modified to include the correlation potential Σ1 that
accounts for part of the core-valence correlations,

H1 → H1 + Σ1. (15)

Either the second-order expression, Σ(2)
1 , or all-order chains of

such terms can be used (see, for example, Ref. [45]). The two-
body Coulomb interaction term H2 is modified by including
the two-body part of core-valence interaction that represents
screening of the Coulomb interaction by valence electrons;

H2 → H2 + Σ2, (16)

where Σ2 is calculated in second-order MBPT in CI+MBPT
approach. The CI method is then applied as usual with the
modified Heff to obtain improved energies and wave functions.
Estimated accuracy of BBR values calculated by this approach
was 2.7% for Mg, 1.4% for Ca and Sr, and 10% for Yb [24].
The resulting fractional uncertainties in the clock transition
frequencies ranged from 1 × 10−17 for Mg to 3 × 10−16 for
Yb. The development of more accurate approach is needed for
further improvement of the BBR values for the optical lattice
clocks.

A. CI+ all-order method

MBPT corrections associated with terms Σ1 in Eq. (15)
and Σ2 in Eq. (16) typically grow with nuclear charge Z.
This leads to deterioration of the accuracy of the CI + second
order MBPT results for heavier, more complicated systems (as
illustrated by significantly reduced accuracy of the Yb BBR
in Ref. [24]).

In the CI + all-order approach, introduced in Ref. [21],
the corrections to the effective Hamiltonian Σ1 and Σ2 are
calculated using a modified version of the LCCSD all-order
method described in Section III-A. Therefore, the effective
Hamiltonian contains dominant core and core-valence corre-
lation corrections to all orders. The core-core and core-valence
sectors of the correlation corrections for systems with few
valence electrons are treated in the all-order method with the
same accuracy as in the all-order approach for the monovalent
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TABLE VII
COMPARISON OF THE CI + ALL-ORDER RESULTS FOR THE ENERGY

LEVELS IN CM−1 OF SR WITH EXPERIMENT. TWO-ELECTRON BINDING

ENERGY IS GIVEN IN THE FIRST ROW, THE OTHER VALUES ARE COUNTED

FROM THE GROUND STATE.

Level Expt. Present ∆(%)

5s2 1S0 134896 134894 0.001

5s5p 3P0 14318 14301 0.11
5s5p 3P1 14504 14487 0.12
5s5p 3P2 14899 14892 0.04

5s4d 3D1 18159 18148 0.06
5s4d 3D2 18219 18218 0.01
5s4d 3D3 18319 18335 -0.09

5s4d 1D2 20150 20222 -0.36
5s5p 1P1 21698 21746 -0.22
5s6s 3S1 29039 29090 -0.18
5s6s 1S0 30592 30656 -0.21

∆(3D1 − 3P0) 3842 3847 0.14

systems. The CI method is then used to treat valence-valence
correlations.

This approach has been tested on the calculation of energy
levels of Mg, Ca, Sr, Zn, Cd, Ba, and Hg in Ref. [21]. The CI+
all-order method described above treats electronic correlation
in systems with several valence electrons in a significantly
more complete way than the CI + MBPT approach owing to
the inclusion of the additional classes of MBPT terms in Σ1

and addition of all-order (rather than second-order) correction
in Σ2. We also find almost no deterioration in accuracy of the
two-electron binding energies from Ca to Hg with CI+all-order
method. At least factor of three improvement in agreement
with experimental values for the two-electron binding energies
and most excited state energies in comparison with the CI
+ MBPT method was found even when completely ab initio
version of the method was used. The results are brought to very
close agreement with experiment when the energy dependence
of Σ(ε̃v) is used to further improve the wave functions for
subsequent use in the polarizability calculations. The results
for Sr energy levels calculated by the CI + all-order method
with adjusted ε̃v are listed in Table VII for illustration of the
CI + all-order approach. Two-electron binding energy is given
in the first row, the other values are counted from the ground
state. The energies are given in cm−1. The relative difference
with experimental values is given in the last column in %.
Our preliminary calculations of the 3P0 polarizability values
in Ca and Sr indicate better agreement of the CI+all-order
ab initio results with recommended values from Ref. [24] in
comparison with the CI+MBPT approach.

Our further development of this method will include addi-
tion of the all-order terms beyond RPA to the treatment of the
transition matrix elements for precision calculation of BBR
shifts in divalent systems.

TABLE VIII
SUMMARY OF THE FRACTIONAL UNCERTAINTIES δν/ν0 DUE TO BBR
SHIFT AND THE FRACTIONAL ERROR IN THE ABSOLUTE TRANSITION

FREQUENCY INDUCED BY THE BBR SHIFT UNCERTAINTY IN VARIOUS

FREQUENCY STANDARDS.

Atom Clock transition Ref. δν/ν0 Uncertainty
87Rb 5s (F = 2− F = 1) [28] -1.25×10−14 1×10−16

133Cs 6s (F = 4− F = 3) [3] -1.732×10−14 6×10−17

[2] -1.72×10−14 2×10−16

[4] -1.732×10−14 3×10−17

137Ba+ 6s (F = 2− F = 1) [28] -2.46×10−15 2×10−17

171Yb+ 6s (F = 1− F = 0) [28] -9.4×10−16 5×10−17

199Hg+ 6s (F = 1− F = 0) [28] -1.02×10−16 5×10−18

Ca+ 4s− 3d5/2 [19] 9.24×10−16 2×10−17

Sr+ 5s− 4d5/2 [20] 5.62×10−16 2×10−17

Mg 3s2 1S0 − 3s3p3P0 [24] -3.9×10−16 1×10−17

Ca 4s2 1S0 − 4s4p3P0 [24] -2.6×10−15 4×10−17

Sr 5s2 1S0 − 5s5p3P0 [24] -5.5×10−15 7×10−17

Yb 6s2 1S0 − 6s6p3P0 [24] -2.6×10−15 3×10−16

Hg 6s2 1S0 − 6s6p3P0 [42] -1.6×10−16

VI. SUMMARY AND CONCLUSION

In this work, we presented a review of the most recent
high-precision ab initio theoretical calculations of the black-
body radiation (BBR) shifts in various systems of interest to
the atomic clock research. New method that combines the
relativistic all-order method and the configuration interaction
method for accurate calculations of BBR shifts for divalent
systems such as Sr is discussed. The high-precision methods
used in the recent calculations of the BBR shifts are described.
The evaluation of the uncertainties of the BBR shift values
is discussed in detail. The results for fractional uncertainties
δν/ν0 due to BBR shift and the fractional error in the absolute
transition frequencies induced by the BBR shift uncertainty in
various frequency standards are summarized in Table VIII. As
illustrated by Table VIII, the fractional errors in the absolute
transition frequency induced by the BBR shift uncertainty are
still quite large for most of the optical frequency standards.
Both new experiments and improvement in theory accuracy
will be needed for further improvement.
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