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Abstract
The blackbody-radiation (BBR) shift of the 5s–4d5/2 clock transition in 88Sr+ is calculated to
be 0.250(9) Hz at room temperature, T = 300 K, using the relativistic all-order method where
all single and double excitations of the Dirac–Fock wavefunction are included to all orders of
perturbation theory. The BBR shift is a major component in the uncertainty budget of the
optical frequency standard based on the 88Sr+ trapped ion. The scalar polarizabilities of the 5s
and 4d5/2 levels, as well as the tensor polarizability of the 4d5/2 level, are presented together
with the evaluation of their uncertainties. The lifetimes of the 4d3/2, 4d5/2, 5p1/2 and 5p3/2

states are calculated and compared with experimental values.

1. Introduction

The current definition of a second in the International
System of Units (SI) is based on the microwave transition
between the two hyperfine levels of the ground state of
133Cs. The present relative standard uncertainty of Cs
microwave frequency standard is around 4 × 10−16 [1]. Since
the frequencies of feasible optical clock transitions are five
orders of magnitude greater than the standard microwave
transitions, optical frequency standards may achieve even
smaller relative uncertainties. Significant recent progress in
optical spectroscopy and measurement techniques has led to
the achievement of relative standard uncertainties in optical
frequency standards that are comparable to the Cs microwave
benchmark.

In 2006, the International Committee for Weights and
Measures (CIPM) recommended that the following transitions
frequencies shall be used as secondary representations of
the second [2]: ground-state hyperfine microwave transition
in 87Rb [3, 4], 5s 2S1/2–4d 2D5/2 optical transition of the
88Sr+ ion [5, 6], 5d106s 2S1/2(F = 0)–5d96s2 2D5/2(F = 2)

optical transition in the 199Hg+ ion [7, 8], 6s 2S1/2(F =
0)–5d 2D5/2(F = 2) optical transition in the 171Yb+ ion
[9, 10] and 5s2 1S0–5s5p 3P0 transition in the 87Sr neutral atom
[11–13]. With extremely low systematic perturbations and
better stability and accuracy, such optical frequency standards
can reach a systematic fractional uncertainty of the order of

10−18 [14, 6]. More precise frequency standards will open
ways to improve global positioning systems and tracking of
deep-space probes, and perform more accurate measurements
of the fundamental constants and testing of physics postulates.

In this paper, we treat one of the optical transitions
recommended as the secondary standard: the 5s 2S1/2–
4d 2D5/2 electric-quadrupole transition of 88Sr+ at 445 THz
(674 nm). The reported frequency measurements of this
transition in a single trapped 88Sr+ ion have achieved a spectral
resolution of better than 1.5 Hz [5, 6, 15, 16]. Methods
based on this transition have the potential to reduce relative
systematic uncertainty to the level of 10−17 or below [6].

The accuracy of optical frequency standards is limited
by the frequency shift in the clock transition caused by
the interactions of the ion with external fields. The linear
Zeeman shift in the 88Sr+ system can be eliminated by use
of the line centre of symmetric Zeeman states; the second-
order Zeeman shift is around 1 mHz and is negligible at the
current level of precision [5]. The second-order Doppler
shifts due to micromotion of the trapped ion are estimated
to be less than 0.01 Hz [6]. The major contributions to the
systematic frequency shifts come from Stark shifts with the
blackbody radiation (BBR) Stark shift being one of the most
important contributions at room temperature. Experimental
measurements of the BBR radiation shifts are difficult. Here,
we present theoretical calculations that result in an estimate
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of this shift that reduces the previous uncertainty [5, 6] by a
factor of 10.

In this paper, we present a relativistic all-order calculation
of the static polarizabilities of the 5s1/2 and 4d5/2 states of
88Sr+. The relativistic all-order method used here is one of
the most accurate methods used for the calculation of atomic
properties of monovalent systems. Readers are referred to
[17] and references therein for a review of this method and
its applications. We use these polarizability values to evaluate
the BBR shift of the clock transition at room temperature.
The dynamic correction to the electric-dipole contribution
and multipolar corrections due to M1 and E2 transitions
are incorporated. The uncertainty of the final BBR shift is
estimated to be 3.6%. Lifetimes of the low-lying excited
4d3/2, 4d5/2, 5p1/2 and 5p3/2 states are also calculated and
compared with experiments.

2. Method

The electrical field E radiated by a blackbody at temperature
T, as given by Planck’s law,

E2(ω) dω = 8α3

π

ω3 dω

exp(ω/kBT ) − 1
, (1)

induces a nonresonant perturbation of the optical transition
at room temperature [18]. Assuming that the system evolves
adiabatically, the frequency shift of an atomic state due to such
an electrical field can be related to the static electric-dipole
polarizability α0 by (see [19])

�v = −1

2
(831.9 V m−1)2

(
T (K)

300

)4

α0(1 + η). (2)

Here η is a small dynamic correction due to the frequency
distribution. Only the electric-dipole transition part of
the contribution is considered in the formula because the
contributions from M1 and E2 transitions are suppressed by
a factor of α2 [19]. We estimate these multipolar corrections
together with the dynamic correction η in section 5 of this
work. The overall BBR shift of the clock transition frequency
is then calculated as the difference between the BBR shifts of
the individual levels involved in the transition:

�BBR(5s → 4d5/2) = −1

2
[α0(4d5/2) − α0(5s1/2)]

× (831.9 V m−1)2

(
T (K)

300

)4

. (3)

Therefore, the evaluation of the BBR shift requires accurate
calculation of static scalar polarizabilities of 88Sr+ in the 5s1/2

ground and 4d5/2 excited states. The static tensor polarizability
of the 4d5/2 state is also calculated in the present work though
the effect of the tensor part of polarizability is averaged out
due to the isotropic nature of the electric field radiated by the
blackbody.

The calculation of the scalar polarizability of a
monovalent atom can be separated into three parts: the
contribution of the electrons in the ionic core, αcore; a
small term, αvc, that changes the core polarizability due
to the presence of the valence electron and the dominant
contribution, αv , from the valence electron. The ionic core

polarizability used here was calculated using the random-phase
approximation (RPA) [20]. We calculate the αvc contribution
in the RPA as well for consistency with the ionic core value.
The valence scalar α0 and tensor α2 polarizabilities of an atom
in a state v can be expressed as the sum over all intermediate
states k allowed by the electric-dipole selection rules:

α0 = 2

3(2jv + 1)

∑
k

〈k‖D‖v〉2

Ek − Ev

, (4)

α2 = −4C
∑

k

(−1)jv+jk+1

{
jv 1 jk

1 jv 2

} 〈k‖D‖v〉2
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,

(5)

C =
(

5jv(2jv − 1)

6(jv + 2)(2jv + 1)(2jv + 3)

)1/2

,

where 〈k‖D‖v〉 are the reduced electric-dipole (E1) matrix
elements, and Ei is the energy of the ith state. We also
separate the valence polarizability into two parts, the main
term αmain containing the first few dominant contributions and
the remainder αtail. We use electric-dipole matrix elements
calculated using the relativistic single–double (SD) all-order
method (see [17] for detail) and experimental energies from
[21] for the calculations of the main term. Triple excitations
are included partially where needed; the resulting values are
referred to as SDpT (single, double, partial triple) data.

The tail contribution for the 5s state is negligible and is
estimated in the lowest-order Dirac–Fock (DF) approximation.
Significantly, larger tail contribution to the 4d5/2 polarizability
is evaluated in both the DF and the random phase (RP)
approximations and scaled to account for other missing
correlation corrections.

In this work, we use atomic units (au), in which,
e,me, 4πε0 and the reduced Planck constant h̄ have the
numerical value 1. Polarizability in au has the dimension
of volume, and its numerical values presented here are thus
expressed in units of a3

0 , where a0 ≈ 0.052 918 nm is the Bohr
radius. The atomic units for α can be converted to SI units
via α/h (Hz (Vm−1)−2) = 2.488 32 × 10−8α(au), where the
conversion coefficient is 4πε0a

3
0/h, and the Planck constant h

is factored out.
We have used the B-spline method to construct a finite

basis set for radial Dirac equations as introduced in [22].
Seventy B-splines of order k = 8 are constrained to a
spherical cavity with R = 220 au for each angular momentum.
Such a large cavity is chosen to accurately evaluate as many
4d5/2–nf7/2 transitions as practically possible to reduce the
uncertainty in the remainder.

3. Polarizabilities

Table 1 shows the contributions of the individual transitions
to the ground-state scalar polarizability α0. The main
contributions are listed separately along with the respective
values of the electric-dipole matrix elements. The tail
contributions are grouped together as αtail. For the main
contributions, we use our ab initio SD all-order values of
the matrix elements and experimental energies from [21]. The
5s1/2–5p1/2 and 5s1/2–5p3/2 transitions contribute over 99.9%
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Table 1. Contributions to the 5s 2S1/2 scalar (α0) static polarizability
in 88Sr+ and their uncertainties in units of a3

0 . The values of
corresponding E1 matrix elements are given in ea0.

Contribution 〈k‖D‖5s1/2〉 α0

5s1/2–5p1/2 3.078 29.23
5s1/2–6p1/2 0.025 0.001
5s1/2–7p1/2 0.063 0.004
5s1/2–8p1/2 0.054 0.003
5s1/2–5p3/2 4.351 56.48
5s1/2–6p3/2 0.034 0.002
5s1/2–7p3/2 0.053 0.003
5s1/2–8p3/2 0.054 0.003
αcore 5.81
αvc −0.26
αtail 0.02
αtotal 91.30

to the valence polarizability and 94% of the total polarizability
value. The same calculation of these transitions in Rb agrees
with the high-precision experiment to 0.26% [23]. In fact, the
SD values for the primary ns–np transitions in Li, Na, K, Rb
and Cs agree with various types of high-precision experiments
to 0.1%–0.4% [23]. There is no reason to expect reduced
accuracy in the case of Sr+, and we take the uncertainty of
these matrix element values to be 0.5%. Unfortunately, we
know of no way to accurately estimate the missing additional
contributions to the dominant correlation correction to these
transitions, unlike the case of the 4d–5p and 5s–4d transitions,
where semi-empirical scaling makes possible an uncertainty
estimate that does not directly depend upon comparison with
the experiment.

The core contribution taken from [20] is estimated to
be accurate to 5%, based on the comparison of the RPA
and experimental polarizability values for noble gases. The
tail contribution is calculated using the DF approximation
and is negligible in comparison with the total polarizability.
The error of the tail is taken to be 100%. As a result, all
uncertainties except those associated with the 5s–5p matrix
elements are negligible. The resulting final uncertainty of
the 5s polarizability is thus estimated to be 1%. We note that
accurate measurement of either 5s–5p oscillator strengths or 5p
lifetimes (5p–4d contributions are small and can be accurately
calculated) will help to significantly reduce this uncertainty.

Table 2 shows the contributions from the individual
transitions to the 4d5/2 polarizability. Three types of
transitions contribute to the 4d5/2 polarizability: 4d5/2–
np3/2, 4d5/2–nf5/2 and 4d5/2–nf7/2. The sum over the 4d5/2–
np3/2 transitions converges very quickly with the 4d5/2–
5p3/2 term being overwhelmingly dominant. We obtain an
accurate value for this matrix element using a semi-empirical
scaling procedure that evaluates some classes of correlation
corrections omitted by the current all-order calculations. The
scaling procedure is described in [24, 25]. Briefly, the single
valence excitation coefficients are multiplied by the ratio of
the corresponding experimental and theoretical correlation
energies, and the matrix element calculation is repeated with
the modified excitation coefficients. The scaling procedure
is particularly suitable for this transition because the matrix
element contribution containing the single valence excitation

Table 2. Contributions to the 4d5/2 scalar (α0) and tensor (α2) static
polarizabilities in 88Sr+ and their uncertainties in units of a3

0 . The
absolute values of corresponding E1 reduced matrix elements are
given in ea0.

Contribution 〈k‖D‖4d5/2〉 α0 α2

4d5/2–5p3/2 4.187 44.16(29) −44.16(29)
4d5/2–6p3/2 0.142 0.012(2) −0.012(2)
4d5/2–7p3/2 0.078 0.003 −0.003
4d5/2–8p3/2 0.053 0.001 −0.001
4d5/2–4f5/2 0.789 0.329(4) 0.376(4)
4d5/2–5f5/2 0.442 0.085(2) 0.97(2)
4d5/2–6f5/2 0.297 0.035 0.040
4d5/2–7f5/2 0.219 0.018 0.021
4d5/2–8f5/2 0.157 0.009 0.010
4d5/2–9f5/2 0.138 0.007 0.008
4d5/2–10f5/2 0.115 0.005 0.0050
4d5/2–11f5/2 0.098 0.003 0.004
4d5/2–12f5/2 0.085 0.003 0.003
4d5/2–4f7/2 3.528 6.576(70) −2.348(25)
4d5/2–5f7/2 1.979 1.699(30) −0.607(11)
4d5/2–6f7/2 1.329 0.698(11) −0.249(4)
4d5/2–7f7/2 0.979 0.360(5) −0.128(2)
4d5/2–8f7/2 0.764 0.212(4) −0.076(2)
4d5/2–9f7/2 0.619 0.136(2) −0.049(1)
4d5/2–10f7/2 0.517 0.093(1) −0.033
4d5/2–11f7/2 0.440 0.067(1) −0.024
4d5/2–12f7/2 0.381 0.050(1) −0.018
αcore 5.81(29)
αvc −0.40(10)
αtail 2.06(20) −0.59(7)
αtotal 62.0(5) −47.7(3)

Table 3. Reduced electric-dipole transition matrix elements
calculated using different approximations: the Dirac–Fock (DF),
single–double all-order method (SD) and the single–double
all-order method including partial triple-excitation contributions
(SDpT); the label ‘sc’ indicates the corresponding scaled values. All
values are given in atomic units.

Transition DF SD SDpT SDsc SDpTsc Final

4d5/2–5p3/2 5.002 4.150 4.198 4.187 4.173 4.187(14)
4d5/2–4f5/2 0.964 0.779 0.790 0.789 0.785 0.789(4)
4d5/2–4f7/2 4.313 3.486 3.536 3.528 3.509 3.528(19)
4d3/2–5p1/2 3.729 3.083 3.119 3.112 3.102 3.112(10)
4d3/2–5p3/2 1.657 1.369 1.386 1.383 1.378 1.383(5)

coefficients is dominant in this case (but not for the 5s–5p
matrix elements discussed earlier). We conduct the scaling
starting from both the SD and SDpT approximations. The
scaling factors for the SD and SDpT calculations are different,
and we take the scaled SD value as the final result for the
4d5/2–5p3/2 matrix element, based on the comparisons of
similar calculations in alkali-metal atoms with experiments
[26–29]. The absolute values of the reduced 4d5/2–5p3/2

matrix elements calculated in different approximations are
summarized in table 3, together with four other transitions
that represent similar cases. The uncertainties are determined
as the maximum difference between the scaled SD values and
the ab initio SDpT and scaled SDpT values. A notable feature
of this table is a close agreement of the scaled SD and SDpT
results. The sum of the contributions from the 4d5/2–nf5/2 and
4d5/2–nf7/2 transitions converges slowly; therefore, we include
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Table 4. Contributions to the lifetimes of the 5p1/2 and 5p3/2 states.
The transitions rates A are given in 106 s−1 and the lifetimes τ are
given in ns.

5p1/2 5p3/2

A(5p1/2–5s) 128.04 A(5p3/2–5s) 141.29
A(5p1/2–4d3/2) 7.54 A(5p3/2–4d3/2) 0.96∑

A 135.58 A(5p3/2–4d5/2) 8.06∑
A 150.31

τ(5p1/2) τ (5p3/2)
Present 7.376 Present 6.653
Expt [30] 7.39(7) Expt [30] 6.63(7)
Expt [31] 7.47(7) Expt [31] 6.69(7)

as many transitions as realistically possible in the main term
calculation. Scaled values are used for the 4d5/2–4f5/2 and
4d5/2–4f7/2 transitions in the polarizability calculations.

The tail contribution of the 4d5/2–nf7/2 terms is
particularly large; its DF value (3.5 au) is 5% of the total
polarizability. Therefore, we carry out several additional
calculations to accurately evaluate the tail contribution and
estimate its uncertainty. Since the largest part of the correlation
correction for the 4d5/2–nf7/2 transitions with n > 9 terms
comes from RPA-like terms, the RPA is expected to produce
a better result than the DF one. We carried out the RPA
calculation of the tail and obtained a lower value of 2.9 au.
We also calculated the last few main terms using the DF and
RP approximations and compared the results with our all-
order values. We found that the DF and RP approximations
overestimate the polarizability contributions by 35% and 28%,
relative to the DF and RPA values. To improve our accuracy,
we scale both the DF and RPA results by these respective
amounts to obtain a DF-scaled value of 2.26 au and a RPA-
scaled value of 2.06 au. We take the RPA-scaled value as
the final one and the difference of these two values as its
uncertainty.

We also list the contributions from various transitions
to the 4d5/2 tensor polarizability α2 in table 2. The 4d5/2–
np3/2 transition gives the dominant contribution to the tensor
polarizability. The tail contribution is smaller yet significant
and is obtained by the same procedure as the tail of the scalar
4d5/2 polarizability.

4. Lifetimes

The contributions to the lifetimes of the 5p1/2 and 5p3/2 states
are given in table 4. Experimental energies from [21] are
used in the evaluation of the transition rates. The lifetime is
calculated as the inverse of the sum of the appropriate Einstein
A-coefficients, which are proportional to the square of the
dipole matrix elements, experimental energies from [21] are
used. Our results are in excellent agreement with experimental
lifetimes τ(5p1/2) = 7.39(7) ns and τ(5p3/2) = 6.63(7) ns by
Pinnington et al measured using a laser-induced fluorescence
method [30], and τ(5p1/2) = 7.47(7) ns and τ(5p3/2) =
6.69(7) ns by Kuske et al measured using the fast-beam-laser
technique [31].

As a further test of accuracy of our approach and accuracy
of our all-order 4d wavefunctions, we carry out the calculation

Table 5. Lifetimes of the 4d3/2 and 4d5/2 levels (s).

Levels Experiment Other calculations Present

4d3/2 0.435(4) [32] 0.443 [33] 0.441(3)
0.455(29) [32] 0.426(8) [34]
0.435(4) [35] 0.422 [32]

0.441 [36]

4d5/2 0.3908(16) [37] 0.404 [33] 0.394(3)
0.408(22) [32] 0.357(12) [34]
0.372(25) [38] 0.384 [32]

0.396 [36]

of the 4d3/2 and 4d5/2 lifetimes that requires evaluation of the
electric-quadrupole and magnetic-dipole transitions.

The lifetime of the 4d3/2 state is calculated to be
0.441(3) s, where the main contribution comes from the
E2(4d3/2–5s1/2) = 11.13(3) au matrix element. The
contribution from 4d3/2–5s1/2 M1 transition is evaluated to
be negligible. The most recent lifetime measurements of the
4d3/2 states of Sr+ include 0.435(4) s result obtained by using
optical pumping and the 0.455(29) s value obtained by using
laser probing as reported in the same work [32]. Our result
agrees with the experimental values within the uncertainty
limits. The lifetime of the 4d5/2 state is calculated to
be 0.394(3) s. The contribution to the A-coefficients from
the 4d5/2–5s1/2 E2 transition overwhelmingly dominates, and
the corresponding reduced matrix element is 13.75(4) au. The
reduced matrix element for the 4d5/2–4d3/2 E2 transition is
5.98(2) au, but its contribution to the lifetime is negligible due
to the small energy interval between these two states. Our
value for the 4d5/2–4d3/2 M1 reduced matrix element, 1.55 au,
is in agreement with the result from [34]. The contributions
from M1 transitions only affect the fifth decimal of the lifetime
result of the 4d5/2 state, and can be neglected at the present level
of accuracy. The two-photon transitions contribute 0.03% to
the 4d lifetimes. Our result is found in good agreement with the
lifetime measurements of 0.3908(16) s and 0.408(22) s done
by Letchumanan et al [37] and Biemont et al [32], respectively.
More experimental and theoretical results for the lifetimes of
these two states are given in table 5.

5. BBR shift

We use our scalar polarizability values to evaluate the shift
in the clock transition in 88Sr+ due to blackbody radiation
at T = 300 K to be 0.252(9) Hz. The dynamic correction
[19] is estimated to be η = 0.0013 and η = 0.0064 for the
5s and 4d3/2 states, respectively. The resulting correction
to the BBR shift is −0.002 Hz and our final value for the
BBR shift is 0.250(9) Hz. The overall uncertainty in the final
result comes from the uncertainty in the values of the 5s–
5p3/2 and 5p3/2–4d5/2 matrix elements, and 4d5/2–nf7/2 tail.
The first two sources of the uncertainties may be removed
if these values were determined experimentally. The 5s–
5p3/2 and 5p3/2–4d5/2 matrix elements can be obtained via
either lifetime, ground-state polarizability, oscillator strength
or light shift ratio measurements [41], with the first two types of
experiments useful for the first matrix element and the second

4



J. Phys. B: At. Mol. Opt. Phys. 42 (2009) 154020 D Jiang et al

Table 6. Comparison of static scalar polarizabilities for the 5s1/2 and 4d5/2 states and BBR shift for the 5s1/2–4d5/2 transition in the 88Sr+ ion
at T = 300 K. The polarizability values are in a3

0 and the BBR shift is in Hz.

Present work [33] [39] [5] [40] [6]

α0(5s1/2) 91.3(9) 89.88 93.3 84.6(3.6) 91.47
α0(4d5/2) 62.0(5) 61.77 62.92a 57.0 48(12)
BBR shift 0.250(9) 0.242 0.233a 0.31 0.33(0.12) 0.33(9)

a Results are obtained using experimental energies.

two types for both matrix elements. We note that ionic core
uncertainty is not included in the BBR uncertainty since the
core contribution is the same for both levels and subtracts out.
The small term αvc that changes the core polarizability due to
the presence of the valence electron is different for the 5s and
4d5/2 states and contributes 0.5% to the BBR shift. We also
estimated the M1 and E2 contributions to the BBR shift using
the approach described in [19] and found them to be negligible
(below 0.01%).

In table 6, we compare our polarizability and BBR shift
results with other theoretical calculations [5, 6, 33, 39, 40].
We note that our calculation is the most complete one at
present. The calculation of Mitroy et al [33] was carried
out by diagonalizing a semi-empirical Hamiltonian in a large-
dimension single-electron basis that gives a BBR shift of
0.242 Hz. The use of experimental energies changes this result
to 0.233 Hz [33]. The accuracy of the scalar polarizability
of the ground state α0 = 89.88 was estimated to be 2–3%
in [33]. The results of Barklem and O’Mara [39] are derived
from experimental oscillator strengths (note that the core
polarizability of 5.8a3

0 was added to the values listed in
[39]). The results of Madej et al [5] are obtained mainly by
summing over the transition rates calculated in [42] using the
multiconfiguration Hartree–Fock (MCHF) method. Addition
of the core contribution (5.8 au) to the results of [5] leads to
α0(5s) = 90.4 au and α0(4d5/2) = 54 au values that are in
agreement with our results within the uncertainties quoted in
[5]; the α0(4d5/2) value is lower than the present one owing
to the omission of the higher-order transition contributions.
The scalar polarizability of the 5s1/2 state calculated by Patil
and Tang [40] is obtained by evaluating the transition matrix
elements with simple wavefunctions based on the asymptotic
behaviour and on the binding energies of the valence electron.
Our result is in good agreement with their calculation. Another
estimation of the BBR shift is given by Margolis et al in [6],
but the approach is not stated.

6. Conclusion

In summary, we calculated the polarizabilities of the 5s
and 4d5/2 states in 88Sr+, and the value of BBR shift of
the corresponding clock transition at room temperature. The
dynamic correction to the electric-dipole contribution and the
multipolar corrections due to M1 and E2 transitions were
estimated and found to be small at the present level of accuracy.
Lifetimes of the low-lying excited 4d3/2, 4d5/2, 5p1/2 and 5p3/2

states were also calculated and compared with experiments
for further tests of our approach. The uncertainty of the final
BBR value was estimated. The main contributions to the

uncertainties were analysed and possible experiments were
suggested to further reduce the uncertainties of the BBR shift.
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