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Optical clocks based on the Cf15+ and Cf17+ ions
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Recent experimental progress in cooling, trapping, and quantum logic spectroscopy of highly charged ions
(HCIs) made HCIs accessible for high-resolution spectroscopy and precision fundamental studies. Based on
these achievements, we explore a possibility to develop optical clocks using transitions between the ground and
a low-lying excited state in Cf15+ and Cf17+ ions. Using a high-accuracy relativistic method of calculation, we
predicted the wavelengths of clock transitions, calculated relevant atomic properties, and analyzed a number
of systematic effects (such as the electric quadrupole, micromotion, and quadratic Zeeman shifts of the clock
transitions) that affect the accuracy and stability of the optical clocks. We also calculated magnetic dipole
hyperfine-structure constants of the clock states and the blackbody radiation shifts of the clock transitions.
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I. INTRODUCTION

Recent years marked a rapid development of both highly
charged ion (HCI) theory and experiment. An experimen-
tal progress in cooling and trapping of HCIs using sym-
pathetic cooling made them accessible for high-resolution
spectroscopy and precision fundamental studies [1–3].

The pioneering works of Schiller [4] and Berengut et al.
[5] proposed to use optical transitions in HCIs for frequency
metrology and tests for a variation of the fundamental con-
stants. In a number of subsequent theoretical studies (see the
recent review [2] and references therein) it was demonstrated
that a number of HCIs have narrow transitions lying in the
optical frequency range, which can be used for developing
high-accuracy clocks as well as other properties desirable for
precision frequency metrology.

In comparison to neutral atoms, HCIs have several advan-
tages. They have a more compact size and, hence, are less
sensitive to external electric field perturbations. Preliminary
estimates of a systematic uncertainty that can be obtained
using shift mitigation and cancellation strategies suggest that
the uncertainties well below 10−18 may be achievable [6–8].
The sensitivity of an HCI clock transition to a variation of
the fine-structure constant α is expected to be higher than in
neutral atoms as a consequence of strong relativistic effects
and high ionization energies [5]. Such a sensitivity to α

variation is essential to search for hypothetical oscillations
and occasional jumps of α due to topological defects [9] and
cosmological fields, including dark matter [10,11].

The theoretical efforts were supported by the development
of experimental techniques allowing to decelerate, trap, cool,
and control HCIs. It was demonstrated that HCIs produced in
an electron-beam ion trap (EBIT) can be ejected, decelerated,
and stopped inside of a Coulomb crystal of laser-cooled Be+

ions confined in a cryogenic Paul trap [12,13]. Sympathetic
cooling allowed to decrease the temperature of HCIs to a
millikelvin regime [1]. The sympathetic cooling of a single
Ar13+ to the motional ground state was demonstrated in a new
cryogenic Paul trap experiment [14,15]. Recently, coherent
laser spectroscopy of highly charged 40Ar13+ using quantum
logic was demonstrated, achieving an increase in precision of
HCI frequency measurement by eight orders of magnitude [3].

In this work we explore a possibility to develop optical
clocks using the transitions between the ground and a low-
lying excited state of the highly charged Cf15+ and Cf17+

ions. Three out of eight main Cf isotopes have a long half-life:
A = 249, I = 9/2 (351 yr), A = 250, I = 0 (13.1 yr), and
A = 251, I = 1/2 (898 yr), where A is the number of nucleons
and I is the nuclear spin.

Both Cf15+ and Cf17+ ions have the [1s2, . . . , 5d10, 6s2]
core. The former, Cf15+, is a Bi-like ion with three valence
electrons above the core, while Cf17+ has one valence electron
above the core, allowing to consider it as a univalent element.
But as a detailed analysis shows, more correct and accurate
results are obtained if we consider Cf17+ as a trivalent ion
including both 6s electrons into the valence field. This is
particularly important for correct determination of lowest-
lying even-parity energy levels whose main configuration,
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according to our calculation, is (6s5 f 2); i.e., it contains an
unpaired 6s electron.

Both the Cf17+ and Cf15+ ions were studied previously in
Refs. [16,17] and found to be particularly good candidates for
testing variation of the fine-structure constant. The calculation
carried out in Ref. [17] identified the ground and first excited
state of Cf15+ as the states with a high sensitivity to α vari-
ation and convenient clock wavelength. The dimensionless
sensitivity factor |�K| to a variation of α for the Cf17+ and
Cf15+ clock pair was predicted to be 107 (see Ref. [2]), while
the largest |�K| factor for any of the currently operating clock
pairs is 7 (for E3 and E2 transitions in Yb+) and most are
below 1.

This paper is a guide for future experimental work, pro-
viding a detailed assessment of both ions for the clock de-
velopment missing so far for most of the suggested HCI clock
candidates, as noted in the recent review [2]. In Secs. II and III
we briefly describe the method of calculation and discuss the
properties of the low-lying states, such as energies, lifetimes,
and transition wavelengths. In Sec. IV we explore a number
of systematic effects, such as the electric quadrupole, micro-
motion, and quadratic Zeeman shifts of the clock transitions,
which affect the accuracy of optical clocks. We also present
the results of calculation of the magnetic dipole hyperfine-
structure (hfs) constants of the clock states and the blackbody
radiation (BBR) shifts of the clock transitions. The final
section contains concluding remarks.

II. METHOD OF CALCULATION

We consider Cf15+ and Cf17+ as the ions with three
valence electrons above closed cores [1s2, . . . , 5d106s2] and
[1s2, . . . , 5d10], respectively. We start from solution of the
Dirac-Hartree-Fock (DHF) equations in the V N−3 approxi-
mation for both ions, where N is the total number of elec-
trons. The initial self-consistency procedure was carried out
for the core electrons and then the 5 f , 6p, 6d , 7s, and 7p
orbitals (and also 6s in case of Cf17+) were constructed in
the frozen-core potential. The remaining virtual orbitals were
formed using a recurrent procedure described in Refs. [18,19],
when the large component of the radial Dirac bispinor, fn′l ′ j′ ,
was obtained from a previously constructed function fnl j by
multiplying it by rl ′−l sin(kr), where l ′ and l are the orbital
quantum numbers of the new and old orbitals (l ′ � l) and
the coefficient k is determined by the properties of the radial
grid. The small component gn′l ′ j′ was found from the kinetic
balance condition. The newly constructed functions were then
orthonormalized with respect to the functions of the same
symmetry.

For both ions, the basis sets included in total seven partial
waves (lmax = 6) and orbitals with principal quantum number
n up to 25. We included the Breit interaction on the same
footing as the Coulomb interaction at the stage of constructing
the basis set. QED corrections were also included following
Refs. [20,21].

We use a hybrid approach combining configuration inter-
action (CI) (that takes into account an interaction between
valence electrons) and a method accounting for core-valence
correlations [22,23]. The wave functions and energy levels of
the valence electrons were found by solving the multiparticle

FIG. 1. The level scheme for low-lying odd-parity levels of Cf17+.

relativistic equation [22],

Heff (En)�n = En�n, (1)

where the effective Hamiltonian is defined as

Heff (E ) = HFC + �(E ), (2)

with HFC being the Hamiltonian in the frozen-core approx-
imation. The energy-dependent operator �(E ) accounts for
virtual excitations of the core electrons. We constructed it in
three ways: using (i) the second-order many-body perturba-
tion theory (MBPT) over residual Coulomb interaction [22],
(ii) the linearized coupled-cluster single-double (LCCSD)
method [23,24], and (iii) the coupled-cluster single double
(valence) triple (CCSDT) method. In the last case, using
the expressions for cluster amplitudes derived in Ref. [25],
we included the nonlinear (NL) terms and valence triple
excitations into the formalism of the CI+all-order method
developed in Ref. [23]. We note that the equations for the
valence triples are solved iteratively. In the following we
refer to these approaches as the CI+MBPT, CI+LCCSD, and
CI+CCSDT methods.

The sets of Cf15+ configurations for the odd- and even-
parity states were constructed by allowing single and double
excitations from the 5 f 6p2 and 5 f 26p configurations and
from the 6p26d , 5 f 6p6d , and 5 f 26d configurations, respec-
tively, to 7-20s, 7-20p, 7-20d , 6-19 f , and 5-13g shells (we
designate it as [20spd19 f 13g]). The sets of Cf17+ configura-
tions for the odd- and even-parity states were formed allowing
single and double excitations from the 6s25 f and 6s26p and
from the 6s5 f 2 and 6s5 f 6p configurations, respectively, to
[20spd19 f 13g]. We checked for both ions that if we allowed
the single and double excitations to higher-lying f and g shells
and also triple excitations from the main configurations, the
energies (counted from the ground state) changed only by a
few tens of cm−1.

The level schemes for low-lying levels of Cf17+ and Cf15+

are given in Figs. 1 and 2.
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FIG. 2. The level scheme for low-lying odd-parity levels of Cf15+.

III. ENERGY LEVELS

The energies of the lowest-lying states of Cf15+ and Cf17+

obtained in different approximations are listed in Table I. The
energies of the excited states (in cm−1) are counted from
the ground state. The assignments of the Cf15+ odd levels
are from Ref. [17]. For designation of all other terms we use
the main configuration and the total angular momentum J
of the state as a subscript.

In the third and forth columns we present the pure CI
and CI+MBPT values. Contributions from higher-order (HO)
correlations (difference of the CI+LCCSD and CI+MBPT
calculations) and from the NL terms and triple excitations
(difference of the CI+CCSDT and CI+LCCSD calculations)
are given separately in columns labeled “HO” and “NLTr.”
Following an empiric rule obtained for Ag-like ions in
Ref. [26] and applied for Cd-like and Sn-like ions in Ref. [27]
we estimate the contribution of the higher (l > 6) partial
waves as the contribution of the l = 6 partial wave obtained as
the difference of two calculations where all intermediate sums
in the all-order and MBPT terms are restricted to lmax = 6
and lmax = 5. This contribution is listed in Table I in column
labeled “Extrap.” The final theoretical results, listed in the
“Final” column, are obtained as the sum of the CI+MBPT
values and HO, NLTr, and Extrap corrections.

TABLE I. The energies of the excited states (in cm−1), counted from the ground state, calculated in the CI and CI+MBPT approximations.
Contributions from higher-order (HO) correlations (difference of the CI+LCCSD and CI+MBPT calculations) and from the NL terms and
triple excitations (difference of the CI+CCSDT and CI+LCCSD calculations) and estimated contributions of higher partial waves (l > 6)
are given separately in columns HO, NLTr, and Extrap. The final values, given in the column labeled “Final,” are obtained as the sum of the
CI+MBPT values and HO, NLTr, and Extrap corrections. We use the main configuration and the total angular momentum J as a subscript to
designate the Cf15+ even-parity levels and the levels of Cf17+.

Level CI CI+MBPT HO NLTr Extrap. Final Ref. [16] Ref. [21] Ref. [17]

Cf15+ 5 f 6p2 2F o
5/2 0 0 0 0 0 0 0 0

5 f 26p 4Io
9/2 28930 10549 2907 3675 −959 16172 12898 12314

5 f 6p2 2F o
7/2 22269 22388 −107 486 −158 22610 22018 21947

5 f 26p 2F o
5/2 43441 25803 2242 3741 −802 30984 27127 26665

5 f 26p 2Do
3/2 45515 26984 2483 3855 −969 32353 27750

5 f 26p 2Go
7/2 43552 28809 1276 3081 −765 32400 29214 28875

5 f 26p 4Io
11/2 51995 35979 1715 3717 −961 40450 37081 36564

5 f 26p 4Ho
9/2 52793 37304 1522 3564 −934 41457 37901 37392

(6p26d )3/2 520444 544228 −3419 −4383 1089 537515
(5 f 6p6d )9/2 534519 545581 −1612 −2445 249 541773
(5 f 6p6d )7/2 538082 548797 −1634 −2152 235 545245
(5 f 6p6d )5/2 538863 549387 −1508 −2156 216 545939
(5 f 6p6d )3/2 547123 556562 −1207 −1907 190 553637

Cf17+ (6s2 5 f )o
5/2 0 0 0 0 0 0 0

(6s2 6p)o
1/2 10104 22118 −1402 −1126 1021 20611 18686

(6s2 5 f )o
7/2 19682 22116 −1102 −152 33 20895 21848

(6s2 6p)o
3/2 228778 245070 −1783 −1341 1136 243081 242811

(6s 5 f 2)7/2 206421 202671 −496 −340 −945 200890
(6s 5 f 2)9/2 211719 208829 −707 −415 −942 206765
(6s 5 f 2)3/2 212749 210608 −860 −414 −833 208501
(6s 5 f 2)5/2 219342 213728 −1663 −1524 −359 210182

(6s 5 f 6p)5/2 206500 220621 −1855 −1252 −463 217050
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TABLE II. The wavelengths between the ground and excited
states (in nm) and the excited states lifetimes (in s).

This work Ref. [17]
Level λ (nm) τ (s) λ (nm) τ (s)

Cf15+ 5 f 26p 4Io
9/2 618 1322 812 6900

5 f 6p2 2F o
7/2 442 0.009 456 0.012

5 f 26p 2F o
5/2 323 0.18 375 0.26

5 f 26p 4Io
11/2 247 0.003 273 0.003

Cf17+ (6s2 6p)o
1/2 485 6.0

(6s2 5 f )o
7/2 479 0.0095

(6s2 6p)o
3/2 41 7 × 10−6

We find that the clock transition energies between the
ground and first excited state are very sensitive to different
corrections for both ions. The CI+MBPT value differs from
the CI value by more than a factor of 2 for both ions; i.e., the
contribution of the core-valence correlation corrections is as
large as the CI result. An inclusion of the HO corrections,
the NL terms, and valence triples in the framework of the
CI+LCCSD and CI+CCSDT methods further changed the
energies by several thousands of cm−1.

The Cf15+ clock transition energy found at the CI+LCCSD
stage is in a reasonable agreement with the results of
Refs. [17,21]. The quadratic NL terms and valence triples,
contributing 3675 cm−1 to the transition energy, were not
taken into account in Refs. [17,21], which explains a differ-
ence between the present result and the clock transition energy
predicted in those works. Taking into account an importance
of the NL terms and valence triple excitations and also noting
that the present calculation still omits the core triples and
higher-order NL terms, we estimate the uncertainty of the
clock transition energies as a half of the difference between
the CI+CCSDT and CI+LCCSD values.

This conservative estimate is based on a conclusion drawn
from calculations for Na [28] and Cs [29] that the contribution
from the valence triples and NL terms is (much) larger than
the contribution from core triples. Thus, the uncertainty of the
clock transition energy is ∼1800 cm−1 for Cf15+ and ∼600
cm−1 for Cf17+. Taking these uncertainties into account we
neglect corrections to the transition energies due to effective
three-particle interactions between valence electrons. These
corrections were found to be at the level of 100 cm−1 or less
for the low-lying states of Cf15+ [21].

In Table II we present the wavelengths between the
ground and excited states (in nanometers) and the excited
states lifetimes (in seconds) for Cf15+ and Cf17+ obtained
in the CI+CCSDT approximation and compare with other
calculations where available. The Cf15+ first excited state,
5 f 26p 4Io

9/2, has a rather long lifetime, 22 min. This is because
it decays to the ground state through a weak E2 transition.
Our predicted lifetime of the 4Io

9/2 state is five times smaller
than the value obtained in Ref. [17], mostly due to a change
in the predicted clock transition energy, since the probability
of the E2 transition is proportional to (�E )5. The lifetimes
of other listed excited states are several orders of magnitude
smaller. In particular, 5 f 6p2 2F o

5/2 and 2F o
7/2 are the fine-

structure levels of the same manifold and there is a relatively

strong M1 2F o
7/2 - 2F o

5/2 transition. The same is true for the
5 f 26p 4Io

9/2 and 4Io
11/2 pair of levels.

For Cf17+, the 6s2 6p1/2 clock excited state also decays
to the ground state through the E2 transition. The proba-
bility of this transition is 0.17 s−1 leading to the lifetime
of this state, τ ≈ 6.0 s. We note that the probability of the
M3 6s2 6p1/2–6s2 5 f7/2 transition is negligible.

IV. SYSTEMATIC EFFECTS

In this section we consider a number of systematic ef-
fects relevant to the clock 5 f 26p 4Io

9/2 –5 f 6p2 2F o
5/2 and

6s2 6p1/2–6s2 5 f5/2 transitions in Cf15+ and Cf17+, respec-
tively. We use wave functions obtained in the CI+CCSDT
approximation in all subsequent calculations for both ions. We
also simplify notation for the Cf17+ clock states as 6s2 5 f5/2 ≡
5 f5/2 and 6s2 6p1/2 ≡ 6p1/2. In calculating matrix elements
(MEs) of different operators the random phase approximation
(RPA) corrections were included.

A. Electric quadrupole shift

The Hamiltonian, HQ, describing the interaction of the
external electric-field gradient with the quadrupole moment
of an atomic state |γ JIFM〉 (where J is the total angular
momentum of the electrons, I is the nuclear spin, F = J + I, M
is the projection of F, and γ encapsulates all other electronic
quantum numbers) is given by

HQ =
2∑

q=−2

(−1)q∇E (2)
q Q−q, (3)

where the single-electron electric quadrupole operator is de-
termined as Qq = −|e|r2C2q(n) and C2q are the normalized
spherical harmonics [30].

The q = 0 component of ∇E (2) can be written as [31,32]

∇E (2)
0 = −1

2

∂Ez

∂z
. (4)

Coupling of this field gradient to the quadrupole moment of
the atomic state leads to the energy shift:

�E = −1

2
〈Q0〉 ∂Ez

∂z
, (5)

where 〈Q0〉 ≡ 〈γ JIFM|Q0|γ JIFM〉.
The fractional electric quadrupole shift of the clock transi-

tion is then
�ν

νclock
= − 1

2hνclock
�〈Q0〉 ∂Ez

∂z
, (6)

where νclock is the clock transition frequency, h is the Planck
constant, and �〈Q0〉 is the difference of the expectation values
of Q0 for the upper and lower clock states.

The ME 〈γ JIFM|Q0|γ JIFM〉 can be written as

〈γ JIFM|Q0|γ JIFM〉 = (−1)I+J+F [3M2 − F (F + 1)]

×
√

2F + 1

(2F + 3)(F + 1)F (2F − 1)

×
{

J 2 J
F I F

}
〈γ J||Q||γ J〉, (7)

012802-4



OPTICAL CLOCKS BASED ON THE Cf15+ AND … PHYSICAL REVIEW A 102, 012802 (2020)

where 〈γ J||Q||γ J〉 is the reduced ME of the electric
quadrupole operator.

Our calculation gives〈
2F o

5/2||Q||2F o
5/2

〉 ≈ 0.31 |e| a2
0,

(8)〈
4Io

9/2||Q||4Io
9/2

〉 ≈ 0.53 |e| a2
0,

for the ground and first excited states of Cf15+, where e is the
electron charge and a0 is the Bohr radius.

Using these MEs and the expression for the quadrupole
moment � of an atomic state |γ J〉 given by

� = 2 〈γ J, MJ = J|Q0|γ J, MJ = J〉

= 2

√
J (2J − 1)

(2J + 3)(J + 1)(2J + 1)
〈γ J||Q||γ J〉, (9)

we can find the quadrupole moments of the clock states to be

�
(

2F o
5/2

) ≈ 0.15 |e| a2
0,

�
(

4Io
9/2

) ≈ 0.25 |e| a2
0. (10)

As follows from Eq. (7), the quadrupole shift turns to
zero when 3M2 = F (F + 1). For both fermionic 249 and
251 isotopes of Cf with I = 9/2 and I = 1/2, there are
sublevels of the ground state with F = 3, M = ±2 for which
the quadrupole shift disappears. For the 249 isotope, the total
angular momentum F of the upper clock state ranges from 0 to
9. If we also choose F = 3, M = ±2 for this state, the clock
transition is not affected by the quadrupole shift. Averaging
over the M = ±2 transitions furthermore eliminates the linear
Zeeman shift. For the 251 isotope, the upper state total angular
momentum F can be equal to 4 or 5. Averaging over all
pairs of ±|M| in this excited state will make the difference
3M2 − F (F + 1) vanish to suppress the electric quadrupole
shift [33].

In general, as follows from Eq. (7),∑
M

〈γ JIFM|Q0|γ JIFM〉 = 0, (11)

and the same is true for the HQ operator given by Eq. (3)
[32]. Thus, the quadrupole shift vanishes when averaged over
all M. This technique has been employed in singly charged
frequency standards [34–36] to suppress the uncertainty in
this shift by up to four orders of magnitude [37].

To get an upper limit for the quadrupole shift we put M =
0 in Eq. (7) and choose such values of F for the upper and
lower clock states to maximize |�〈Q0〉|. It gives us |�〈Q0〉| ∼
0.1 |e| a2

0. Substituting it into Eq. (6) and using for an estimate
∂Ez/∂z ≈ 1 kV/cm2 ≈ 1.029 × 10−15 a.u., we obtain for the
quadrupole shift

�ν

νclock
� 7 × 10−16. (12)

Even in this (worst) case, a three- to four-order-of-magnitude
suppression will make the electric quadrupole shift well below
10−18.

For Cf17+, the quadrupole moment of the upper clock state
6p1/2 is equal to zero. For the ground 5 f5/2 state we obtain

〈5 f5/2||Q||5 f5/2〉 ≈ 0.80 |e| a2
0,

�(5 f5/2) ≈ 0.39 |e| a2
0. (13)

For both 249 and 251 isotopes there is the sublevel of the
ground state with F = 3, M = ±2 for which the quadrupole
shift vanishes. As a result, it vanishes also for the clock
transition.

We can compare these results with those obtained for Sr+

where the suppression technique discussed above was applied.
Using the recent measurement of the electric quadrupole
moment of the Sr+ 4d5/2 clock state [38] and noting that our
definition of the quadrupole moment differs by a factor of 2
from that used in Ref. [38], we obtain |〈4d5/2||Q||4d5/2〉| ≈
10.7 |e| a2

0. This value is more than an order of magnitude
larger than the respective MEs for Cf15+ and Cf17+ given by
Eqs. (8) and (13).

B. Blackbody radiation shift

A BBR shift of the clock energy levels is due to an
interaction of thermal photons with the atom. The fractional
shift of the clock transition is given by

�νBBR

νclock
≈ − π2

15 c3h̄4

�α

νclock
(kBT )4

≡ βBBR

(
T

300 K

)4

, (14)

where �α ≡ α(4Io
9/2) − α(2F o

5/2) for Cf15+ and �α ≡
α(6p1/2) − α(5 f5/2) for Cf17+ are the differential scalar static
polarizabilities, c is the speed of light, kB is the Boltzmann
constant, and T is the BBR temperature.

We can present the scalar polarizability α as a sum of
the valence polarizability αv , ionic-core polarizability αc, and
a term αvc that modifies ionic-core polarizability due to the
presence of valence electrons:

α = αv + αc + αvc. (15)

The valence part of the scalar static polarizability of a state
|0〉 with the energy E0 and total angular momentum J0 is
determined as

αv
0 = 2

3(2J0 + 1)

∑
n

|〈0‖D‖n〉|2
En − E0

, (16)

where D is the electric-dipole operator. Instead of direct
summation over all intermediate states we solve the inhomo-
geneous equation in the valence space [39],

(E0 − Heff )|ψ〉 = Dz|0〉, (17)

and then use |ψ〉 to find αv
0 . The core and vc terms are

evaluated in the single-particle approximation including RPA
[40]; αvc are calculated by adding vc contributions from indi-
vidual electrons. Thus, for Cf15+, αvc(2F o

5/2) = αvc(5 f5/2) +
2αvc(6p1/2) and αvc(4Io

9/2) = 2αvc(5 f5/2) + αvc(6p1/2).
The results of calculation of the scalar static polarizabilities

and the parameters βBBR are given in Table III. Only the
valence polarizabilities αv were found in Ref. [17]; these
results are in a reasonable agreement with our values for αv .
We would like to note an enhanced role of the vc terms for
Cf15+. While the core contribution cancels in the differential
polarizability, the vc term does not. It nearly cancels the
valence polarizability and significantly affects the result.
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TABLE III. Contributions αv , αc, and αvc to the scalar static po-
larizabilities of the clock states (in a3

0), the differential polarizabilities
�α, and the parameter βBBR, determined in the text, are presented.
α = αv + αc + αvc.

State This work Ref. [17]

Cf15+ 2F o
5/2 αv 0.323 0.317

αc 0.948
αvc −0.381
α 0.890

4Io
9/2 αv 0.245 0.183

αc 0.948
αvc −0.207
α 0.986

�α 0.096 -0.134
βBBR −1.7 × 10−18 2.9 × 10−18

Cf17+ 5 f5/2 αv 0.645
αc 0.344
αvc −0.028
α 0.961

6p1/2 αv 0.595
αc 0.344
αvc −0.020
α 0.919

�α −0.042
βBBR 5.9 × 10−19

The differential polarizabilities, �α, are very small for
both ions, leading to small values of the static BBR shifts (we
neglect dynamic corrections to them). We note that for both
ions, the scalar static polarizabilities of the clock states are
close in magnitude and by an order of magnitude (in absolute
value) larger than �α. As a result the uncertainty of the
differential polarizabilities is large. For instance for Cf17+, if
α(6p1/2) is increased by 1% while α(5 f5/2) is reduced by 1%,
�α will change by a factor of 2. Thus, one should consider
the values of the differential polarizabilities as estimates.

The BBR shifts of the Cf15+ and Cf17+ clock transitions
are of the order of 10−18 even at T = 300 K. Since the highly
charged ion trap is operated at cryogenic temperature near
T = 4 K [2] the BBR shifts for both ions will be suppressed
by more than seven orders of magnitude, even compared to
small room-temperature values, making them negligible.

C. Micromotion shift

A micromotion driven by the rf-trapping field leads to ac
Stark and second-order Doppler shifts. As it was shown in
Ref. [37], if �α for the clock transition is negative, there is a
“magic” trap drive frequency � given by

� = |e|
Mic

√
−hνclock

�α
(18)

(Mi is the ion mass) at which the micromotion shift vanishes.
Substituting Mi ≈ Amp (where mp is the proton mass and we
use for an estimate A = 251) and the differential polarizability
of Cf17+, �α = −0.042 a3

0, to Eq. (18), we obtain � ≈ 2π ×
155 MHz.

TABLE IV. The values of A/gI (in megahertz) for the clock states
of Cf15+ and Cf17+.

State A/gI

Cf15+ 2F o
5/2 4200

4Io
9/2 21000

Cf17+ 5 f5/2 1900

6p1/2 195000

For Cf15+ we obtained a positive value of �α and a
“magic” trap drive frequency does not exist. But in this case
compensation voltages, allowing to direct the ion back to a
position where radio-frequency field vanishes, can be applied
[41,42]. If these voltages are well controlled the excess mi-
cromotion does not pose a limitation to optical frequency
standards [2].

D. Hyperfine interaction

We also calculated the magnetic-dipole hfs constants A for
the clock states of the Cf15+ and Cf17+ ions. The nuclear mag-
netic moment, μI , is unknown for 251Cf. For the 249 isotope
the results obtained for μI are somewhat contradictory. The
absolute value, |μI | = 0.28(6)μN (where μN is the nuclear
magneton), was experimentally found in Ref. [43] while the
theoretical calculation carried out in that work gave μI =
−0.49μN . For this reason, we present our results in the form
A/gI , keeping the nuclear g factor, gI ≡ μI/(I μN ), as a mul-
tiplier. The values of A/gI , which are approximately the same
for both 249 and 251 isotopes, are listed in Table IV. Based
on the differences between the CI+MBPT and CI+CCSDT
values and also roughly estimating the corrections beyond
the RPA (the core Brueckner, two-particle, structure radiation,
and normalization corrections [44]), we estimate the calcula-
tion accuracy of the hfs constants at the level of 20–30 %.

E. Zeeman shift

In the presence of an external magnetic field B atomic en-
ergy levels (and transition frequencies) experience the linear
and quadratic Zeeman shifts. The former scales linearly with
the magnetic quantum number M. It equals zero at M = 0 and
can be suppressed in other cases if the frequency is averaged
over two or more transitions with linear Zeeman shifts equal
in absolute value but having the opposite signs [45].

To determine the quadratic Zeeman shift in the case of a
weak magnetic field, we have to consider both hyperfine and
Zeeman interactions:

H = Hhfs − μatB (19)

with μat = −μBgJJ − μN gI I. Here, μB is the Bohr magneton
and gJ is the electron g factor, given in the nonrelativistic
approximation by the formula

gJ = 3

2
+ S(S + 1) − L(L + 1)

2J (J + 1)
. (20)
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Below, we estimate this effect for 251Cf, which has the
nuclear spin I = 1/2. In this case,

Hhfs = hA IJ, (21)

where A is the magnetic dipole hyperfine-structure constant
(in hertz).

If I = 1/2, the total angular momentum F = J ± 1/2. For
the case of J = 1/2, F = I ± 1/2, the resulting energy shift
was obtained by Breit and Rabi in Ref. [46]. Following the
approach of Ref. [46], we obtain for the energy shift

�EF=J±1/2 = − h�W

2(2J + 1)
+ μB gJ mF B

±1

2

√
(h�W )2 + 2mF h�W y

J + 1/2
+ y2, (22)

where

y ≡ (μN gI − μBgJ )B

and �W ≡ A(J + 1/2) is the splitting (in hertz) between two
hyperfine sublevels in the absence of the magnetic field.

If the magnetic field is weak, B ∼ 10−5 T, then |y| 

h�W . It follows from Eq. (22) that the contribution quadratic
in B to �EF=J±1/2 (we designate it as �E (2)

F=J±1/2) is propor-
tional to y2 and is given by

�E (2)
F=J±1/2 = ± y2

4 h�W
≈ ± 1

2(2J + 1)

(μBgJ )2

hA
B2.

For the Cf15+ clock 4Io
9/2 - 2F o

5/2 transition, we have
gJ (2F o

5/2) = 6/7 and gJ (4Io
9/2) = 8/11. Using the values of

A/gI given in Table IV for the clock states, we obtain after
simple transformations the frequency shift for the 4Io

9/2(F =
5)– 2F o

5/2(F = 3) transition,

|�ν| =
∣∣�E (2)

(
4Io

9/2

) − �E (2)
(

2F o
5/2

)∣∣
h

≈ 2.6 gI
kHz

(mT)2
B2.

Given B = 10 μT, putting gI = 1, and using νclock ≈ 4.8 ×
1014 Hz, we arrive at the estimate for the Cf15+ fractional
clock shift:

|�ν|
νclock

≈ 5 × 10−16. (23)

As follows from Eq. (22), for the 4Io
9/2(F = 4)– 2F o

5/2(F = 2)
transition we will get exactly the same frequency shift �ν

as for the 4Io
9/2(F = 5)– 2F o

5/2(F = 3) transition in absolute
value but with the opposite sign. Thus, an averaging of the
quadratic Zeeman shifts over these two transitions will lead to
complete cancellation of this effect.

Similarly, the Cf17+ clock 6p1/2-5 f5/2 transition frequency
shift is

|�ν| = 1

h
|�E (2)(6p1/2) − �E (2)(5 f5/2)|. (24)

Taking into account that A(6p1/2) is two orders of magni-
tude larger than A(5 f5/2) we can neglect �E (2)(6p1/2) com-
pared to �E (2)(5 f5/2), arriving at

|�ν| ≈ |�E (2)(5 f5/2)|
h

≈ 6.3
kHz

(mT)2
gI B

2. (25)

Substituting gI = 1 and B = 10 μT to Eq. (25) and using
νclock ≈ 6.1 × 1014 Hz, we obtain, for Cf17+,

|�ν|
νclock

≈ 1.0 × 10−15. (26)

At a small magnetic field of ∼10 μT, the fractional clock
shift is with ∼10−15 non-negligible for both ions. We expect
that at these low fields and provided sufficient shielding, the
magnetic field drifts can be reduced to a level of <10 pT
over time scales of several minutes. This results in relative
frequency shifts of the clock transition from the linear Zeeman
effect below 10−17, which can be averaged to zero by probing
pairs of ±|mF | states [45]. The change in the quadratic Zee-
man effect is negligible at the 10−20 level.

To determine the quadratic shift precisely, the mag-
netic field needs to be known with a high accuracy.
The difference of frequencies of the |F, mF 〉-|F ′, m′

F 〉 and
|F,−mF 〉-|F ′,−m′

F 〉 hyperfine transitions will provide an ac-
curate measurement of the B field and its potential fluctuation.
However, in all cases a precise measurement of the nuclear
magnetic moments is required to cancel the shift, which
will require a measurement of the hyperfine structure and
improving the accuracy of the A/gI theoretical calculations.
Alternatively, the g factors can be determined using a co-
trapped logic ion as a reference [47], such as Be+ with a
well-known g factor at the parts-per-million level [48]. The
logic ion can also serve directly as a probe for the magnetic
field during clock operation.

As we discussed above, we can eliminate the electric
quadrupole shift by averaging transitions involving different
Zeeman components. The same approach can be applied when
F = I ± 1/2 to eliminate the quadratic Zeeman shift. This
method works also for cancellation of the linear and quadratic
Zeeman shifts in more general cases [2,37].

V. CONCLUSION

To conclude, we have carried out a systematic study of the
Cf15+ and Cf17+ properties needed for the development of
optical clocks with these ions using the hybrid approach that
combines the CI and coupled-cluster methods. We analyzed a
number of systematic effects (such as the electric quadrupole,
micromotion, and quadratic Zeeman shifts of the clock tran-
sitions) that affect the accuracy and stability of the optical
clocks. We also calculated the hfs magnetic dipole constants
of the clock states and the BBR shifts of the clock transitions.
Based on our calculation and experimental progress in cooling
and trapping HCIs [2,3] we conclude that both the Cf15+

and Cf17+ ions are good candidates for optical clocks. At the
same time the Cf17+ ion looks slightly more attractive because
its level structure is simpler and according to our estimate
there is a “magic” drive frequency allowing to suppress the
micromotion effect. It was demonstrated earlier that such
clocks would have very high sensitivity to a variation of the
fine-structure constant [16,17].
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