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In the recent work by Yamaguchi et al. [Phys. Rev. Lett. 123, 113201 (2019)] Cd was identified as an excellent
candidate for a lattice clock. Here, we carried out computations needed for further clock development and made
an assessment of the higher-order corrections to the light shift of the 5s2 1S0 −5s5p 3Po

0 clock transition. We
carried out calculations of the magnetic dipole and electric quadrupole polarizabilities and linear and circular
hyperpolarizabilities of the 5s2 1S0 and 5s5p 3Po

0 clock states at the magic wavelength and estimated uncertainties
of these quantities. We also evaluated the second-order Zeeman clock transition frequency shift.
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I. INTRODUCTION

The Cd 5s2 1S0 −5s5p 3Po
0 transition has several desirable

attributes for the development of a lattice clock. This clock has
more than an order of magnitude smaller blackbody radiation
(BBR) shift (a Stark shift resulting from the thermal radiation
of the atoms environment, which is generally at 300 K tem-
perature) in comparison with Sr and Yb [1–3]. The size of a
BBR shift is a property of the specific atomic transition used
as a frequency standard and an uncertainty in the BBR shift
is known to be one of the limiting systematic uncertainties in
the clock uncertainty budget [4,5]. Short of cryogenic cooling,
it cannot be suppressed and needs to be quantified with high
accuracy.

Two isotopes, 111Cd and 113Cd, both with 12% natural
abundance, have a nuclear spin of 1/2, which precludes
tensor light shifts from the lattice light, another advantageous
feature. Cd has the narrow 5s2 1S0 −5s5p 3Po

1 intercombi-
nation transition, allowing Doppler cooling to 1.58 μK and
simplifying control of higher-order lattice light shifts [1].
The light for all of the transitions needed for the Cd clock,
including the magic lattice, can be generated by direct or by
frequency-doubled or -quadrupled semiconductor lasers [1].

In 2019, the Cd clock magic wavelength was measured to
be 419.88(14) nm [1], in excellent agreement with a theo-
retical calculation reported in the same work. At the magic
wavelength, upper and lower clock states experience the same
light shift, up to multipolar and higher-order effects consid-
ered in this work. The fractional BBR shift was calculated to
be 2.83(8) × 10−16 at 300 K in Ref. [1], in agreement with
Ref. [3]. Recent progress opens a pathway to rapid progress
in Cd clock development and calls for a detailed investigation
of the clock systematic effects.

In this work we calculated properties needed to quan-
tify higher-order light shifts: magnetic dipole and electric
quadrupole polarizabilities and linear and circular hyperpolar-
izabilities of the 5s2 1S0 and 5s5p 3Po

1 clock states at the magic

wavelength, and estimated uncertainties of these quantities.
We also evaluated the second-order Zeeman clock transition
frequency shift in the presence of a weak magnetic field.

The paper is organized as follows. The general formalism
and main formulas are presented in Sec. II. In Sec. III, we
briefly describe the method of calculation. Section IV is
devoted to a discussion of the results obtained, and Sec. V
contains concluding remarks.

II. GENERAL FORMALISM

We consider the Cd atom in a state |0〉 (with the total
angular momentum J = 0) placed in a field of the lattice
standing wave with the electric-field vector given by

E = 2E0 cos(kx) cos(ωt ). (1)

Here k = ω/c, ω is the lattice laser wave frequency, c is the
speed of light, and the factor 2 accounts for the superposition
of forward and backward traveling along the x-axis waves.
The atom-lattice interaction leads to the optical lattice poten-
tial for the atom that at |kx| � 1 can be approximated as [2,6]

U (ω) ≈ − αE1(ω)(1 − k2x2) E2
0

− {αM1(ω) + αE2(ω)}k2x2 E2
0

− β(ω)(1 − 2k2x2) E4
0 . (2)

Here αE1, αM1, and αE2 are the electric dipole, magnetic
dipole, and electric quadrupole polarizabilities, respectively,
and β is the hyperpolarizability defined below.

The ac 2K -pole polarizability of the |0〉 state with the
energy E0 is expressed (we use atomic units h̄ = m = |e| = 1)
as [7]

αλK (ω) = K + 1

K

2K + 1

[(2K + 1)!!]2
(α ω)2K−2

×
∑

n

(En − E0)|〈n||TλK ||0〉|2
(En − E0)2 − ω2

, (3)
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where λ stands for electric, λ = E , and magnetic, λ = M,
multipoles and 〈n||TλK ||0〉 are the reduced matrix elements of
the multipole operators, TE1 ≡ D, TM1 ≡ μ, and TE2 ≡ Q.

The expression for the hyperpolarizability of the |0〉 state
depends on the polarization of the lattice wave. Below we con-
sider the cases when the lattice wave is linearly or circularly
polarized, and the fourth-order correction to an atomic energy
is determined by the linear or circular hyperpolarizability,
respectively.

The expression for the linear hyperpolarizability βl (ω) is
given by [6]

βl (ω) = 1

9
Y101(ω) + 2

45
Y121(ω), (4)

with the quantities Y101(ω) and Y121(ω) determined as

Y101(ω) ≡
∑

q

R101(qω, 2qω, qω)

+
∑
q,q′

[R′
101(qω, 0, q′ω) − R1(q′ω)R1(qω, qω)],

Y121(ω)≡
∑

q

⎡
⎣R121(qω, 2qω, qω) +

∑
q′

R121(qω, 0, q′ω)

⎤
⎦,

and q, q′ = ±1.
The circular hyperpolarizability βc(ω) can be written as

βc = 1

9
X101(ω) + 1

18
X111(ω) + 1

15
X121(ω), (5)

where

X101(ω) ≡
∑
q,q′

[R′
101(qω, 0, q′ω) − R1(q′ω)R1(qω, qω)],

X111(ω) ≡
∑
q,q′

(−1)(q+q′ )/2 R111(qω, 0, q′ω),

X121(ω)≡
∑

q

⎡
⎣R121(qω, 2qω, qω)+ 1

6

∑
q′
R121(qω, 0, q′ω)

⎤
⎦,

and

RJmJnJk (ω1, ω2, ω3) ≡
∑

γm,γn,γk

〈γ0J0‖d‖γmJm〉〈γmJm‖d‖γnJn〉〈γnJn‖d‖γkJk〉〈γkJk‖d‖γ0J0〉
(Em − E0 − ω1)(En − E0 − ω2)(Ek − E0 − ω3)

, (6)

RJm (ω) ≡
∑
γm

|〈γ0J0||d||γmJm〉|2
Em − E0 − ω

,

RJk (ω,ω) ≡
∑
γk

|〈γ0J0||d||γkJk〉|2
(Ek − E0 − ω)2

. (7)

The notation R′
101, i.e., the prime over R, means that the term

|γn 0〉 = |γ0 0〉 (where γn includes all other quantum numbers
except J) should be excluded from the summation over γn in
Eq. (6).

The properties of the lattice potential for the Cd atom in its
ground and excited clock states are determined by Eq. (2) and
depend on the frequency. Below we analyze these properties
at the experimentally determined magic wavelength λ∗ =
419.88(14) nm [1]. The magic frequency, ω∗, corresponding
to this wavelength, is ω∗ ≈ 23816 cm−1 ≈ 0.108515 a.u.

At the magic frequency the electric dipole polarizabilities
of the clock 5s2 1S0 and 5s5p 3Po

0 states are equal to each
other, i.e., αE1

1S0
(ω∗) = αE1

3Po
0
(ω∗). These polarizabilities were

calculated in Ref. [1] to be 63.7(1.9) a.u.
Using the formulas given above, we calculated the M1 and

E2 polarizabilities and the linear and circular hyperpolariz-
abilities βl,c of the clock states at the magic frequency ω∗,
found respective differential polarizabilities and hyperpolar-
izabilities, and determined uncertainties of these values.

III. METHOD OF CALCULATION

We carried out calculations in the framework of high-
accuracy relativistic methods combining configuration inter-
action (CI) with (i) many-body perturbation theory (CI +
MBPT method [8]) and (ii) the linearized coupled-cluster

approach (CI + all-order method) [9]. In these methods the
energies and wave functions are found from the multiparticle
Schrödinger equation

Heff (En)�n = En�n, (8)

where the effective Hamiltonian is defined as

Heff (E ) = HFC + �(E ). (9)

Here, HFC is the Hamiltonian in the frozen core approximation
and � is the energy-dependent correction, which takes into
account virtual core excitations in the second order of the
perturbation theory (the CI + MBPT method) or in all orders
of the perturbation theory (the CI + all-order method).

To accurately calculate the valence parts of the polarizabil-
ities and hyperpolarizabilities, we solve the inhomogeneous
equation using the Sternheimer [10] or Dalgarno-Lewis [11]
method following the formalism developed in Ref. [12]. We
use an effective (or “dressed”) electric-dipole operator in our
calculations that includes the random-phase approximation
(RPA). To calculate such complicated quantities as RJmJnJk

and carry out accurately three summations over intermediate
states, we solve the inhomogeneous equation twice. A detailed
description of this approach is given in Ref. [6].

IV. RESULTS AND DISCUSSION

We carried out calculations of the M1 and E2 polariz-
abilities and the hyperpolarizabilities in the CI + MBPT and
CI + all-order approximations. In both cases the theoretical
energies were used. The CI + all-order calculations include
higher-order terms in comparison with the CI + MBPT
calculations and are more accurate. The difference of these
two calculations gives us an estimate of the uncertainty of
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the results. This method in evaluating uncertainties has been
extensively tested in calculating clock-related properties (in-
cluding hyperpolarizabilities) of other divalent elements such
as Sr [6,13], Lu+ [14], and Yb [15].

A. Linear and circular hyperpolarizabilities of the
1S0 and 3Po

0 clock states

In calculating quantities given by Eqs. (6) and (7) a main
contribution comes from valence electrons. The core electrons
contribution is much smaller and we included it only to R1(ω)
terms. As seen from Eq. (7), R1(ω) can be treated as the
quantity proportional to the scalar static polarizability of the
|γ0J0〉 state with the energy E0 shifted as E0 + ω. A break-
down of different contributions (including core contribution)
to the static polarizabilities of the clock states with estimates
of their uncertainties is provided in Ref. [1].

As follows from Eq. (7), the quantity R1(ω,ω) can be
treated as the derivative of R1(ω) over ω, i.e.,

R1(ω,ω) = ∂R1(ω)

∂ω
= lim


→0

R1(ω + 
) − R1(ω)



.

Since the core contribution to R1(ω) is rather insensitive to
ω and 
 is small, the core contributions to R1(ω + 
) and

R1(ω) are practically identical and cancel each other in the
expression for R1(ω,ω).

Taking into account the uncertainty of our results for the
1S0 and 3Po

0 hyperpolarizabilities, we assume that the core
contribution to the R1Jn1(ω1, ω2, ω3) terms is also negligible.
This assumption is based on the calculation of the static
hyperpolarizability for the Sr2+ ground state that was found
to be 62.6 a.u. [16]. This is negligibly small compared to the
valence contribution to R1Jn1(ω1, ω2, ω3) in the case of the
quite similar 5s2 1S0 and 5s5p 3Po

0 clock states in Sr [6].
The results of calculation of the linear and circular hy-

perpolarizabilities of the 1S0 and 3Po
0 clock states are pre-

sented in Table I. Our recommended value of differential
linear hyperpolarizability, 
βl (ω∗) = −1.85(50) × 105 a.u.,
is two orders of magnitude smaller (in absolute value) than
the analogous differential hyperpolarizability for Sr, 
βl =
−1.5(4) × 107 a.u. [6]. In the case of Cd, the absolute values
of the contributing terms are generally smaller than in Sr, and
there are significant cancellations between them.

The circular hyperpolarizability of the 3Po
0 state is two

orders of magnitude larger in absolute value than the circular
hyperpolarizability of the 1S0 state and the linear hyperpolar-
izability of the 3Po

0 state. This is explained as follows: the main
contribution to βc(3Po

0 )(ω∗) comes from the term

R111(ω∗, 0, ω∗) ≡
∑

γm,γn,γk

〈3Po
0 ||d||γmJm = 1〉〈γmJm = 1||d||γnJn = 1〉〈γnJn = 1||d||γkJk = 1〉〈γkJk = 1||d|| 3Po

0 〉
(Em − E3Po

0
− ω∗)(En − E3Po

0
)(Ek − E3Po

0
− ω∗)

.

In the sum over γn there is the intermediate state 5s5p
3Po

1 separated from 3Po
0 by the fine-structure interval. In this

case the energy denominator E3Po
1
− E3Po

0
≈ 542 cm−1 is small

and, consequently, the contribution of this term is large,
leading to much larger hyperpolarizability for the circular
polarization.

We compare our results with those obtained in Ref. [2]
in Table I. There is a reasonable agreement for differential
circular hyperpolarizability while our differential linear hy-
perpolarizability is five times smaller in absolute value than
that found in Ref. [2].

B. M1 and E2 polarizabilities at the magic frequency

To accurately calculate the valence part of the E2 po-
larizabilities of the clock states at the magic frequency, we
solved inhomogeneous equation with the electric quadrupole
operator Q in the right-hand side. As in the case of hy-
perpolarizability, we calculated these quantities using both
the CI + all-order and CI + MBPT methods, including
the RPA corrections to the operator Q. The core contribu-
tions were calculated in the RPA. For the M1 polarizabil-
ities, only a few low-lying intermediate states give dom-
inant contributions, and it is sufficient to calculate their
sum. We estimate the uncertainties of the results as the
difference between the CI + all-order and CI + MBPT
values.

The final values of the polarizabilities and their uncertain-
ties are listed in Table II. We also determined the recom-

mended value of 
αQM ≡ 
αE2 + 
αM1, where


αM1 ≡ αM1
(

3Po
0

) − αM1
(

1S0
)
,


αE2 ≡ αE2
(

3Po
0

) − αE2
(

1S0
)
.

(10)

To determine the uncertainty of 
αQM we note that the
αM1(1S0) polarizability is very small and we can neglect it.
The αM1(3Po

0 ) polarizability is more than three orders of mag-
nitude larger in absolute value than αM1(1S0), but still an order
of magnitude smaller than 
αE2. Therefore, the uncertainty of

αQM is mostly determined by the uncertainty in 
αE2 and
we estimate it to be 4%. Comparing our recommended value
for 
αQM with the result obtained in Ref. [2], we see that there
is a fair agreement between them.

C. Second-order Zeeman shift

In this section we consider a systematic effect due to
second-order Zeeman shift which both clock states experience
in the presence of a weak uniform external magnetic field. If
an atom is placed in a such magnetic field B, the interaction
Hamiltonian can be written as [17] (we use the cgs system of
units),

H = −μ · B + e2

8mc2

Z∑
i=1

(B × ri )
2, (11)

where (B × ri ) is the vector product of B and ri. The atomic
magnetic moment μ is mostly determined by the electronic
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TABLE I. Contributions to the linear and circular hyperpolar-
izabilities βl,c(5s2 1S0 ) and βl,c(5s5p 3Po

0 ) (in a.u.) calculated in
the CI+all-order (labeled as “CI+All”) and CI+MBPT (labeled as
“CI+PT”) approximations at the magic frequency ω∗ = 0.108 515
a.u.. The “Total” values are obtained according to Eqs. (4) and (5).

βl,c ≡ βl,c(3Po

0 ) − βl,c(1S0) is the difference of the “Total” 3Po
0

and 1S0 values. Numbers in brackets represent powers of 10. The
uncertainties are given in parentheses.

5s2 1S0 5s5p 3Po
0

Contrib. CI+All CI+PT CI+All CI+PT

βl
1
9Y101(ω) 3.61[4] 2.71[4] −5.30[5] −5.37[5]
2
45Y121(ω) 5.64[4] 5.08[4] 4.37[5] 4.81[5]

Total 9.24[4] 7.80[4] −9.23[4] −5.61[4]

βl −1.85[5] −1.34[5]

Recommended −1.85(50) × 105

Ref. [2] −10.2 × 105

βc
1
9 X101(ω) −1.98[4] −1.88[4] −6.03[5] −5.95[5]
1
18 X111(ω) 41 34 7.21[6] 6.61[6]
1
15 X121(ω) 6.21[4] 5.53[4] −1.45[6] −1.11[6]

Total 4.23[4] 3.66[4] 5.15[6] 4.90[6]

βc 5.11[6] 4.86[6]

Recommended 5.11(25) × 106

Ref. [2] 3.65 × 106

magnetic moment and is given by

μ = −μ0(J + S), (12)

where J and S are the total and spin angular momenta of the
atomic state and μ0 is the Bohr magneton defined as μ0 =
|e|h̄/(2mc). Here e and m are the electron charge and mass, c
is the speed of light, and h̄ is the Plank constant. In the second
term of Eq. (11) the summation goes over all electrons in the
atom and the vector potential A is chosen in the form A(ri ) =
1
2 (B × ri ).

Directing the external magnetic field B along the z-axis
(B = Bz ≡ B), we can find the second-order Zeeman shift,

E (1), due to the first term in Eq. (11) (in the absence of

TABLE II. The dynamic M1 and E2 polarizabilities (in a.u.) of
the 5s2 1S0 and 5s5p 3Po

0 states at the magic frequency, calculated in
the CI+MBPT (labeled as “CI+MBPT”) and CI+all-order (labeled
as “CI+All”) approximations. The recommended value of 
αQM is
given in the line “Recom. 
αQM .” The uncertainties are given in
parentheses.

Polarizability CI+MBPT CI+All

αM1(1S0) 1.5 × 10−9 1.6 × 10−9

αM1(3Po
0 ) −4.0 × 10−6 −3.9 × 10−6


αM1 −4.0 × 10−6 −3.9 × 10−6

αE2(1S0 ) 2.29 × 10−5 2.43(14) × 10−5

αE2(3Po
0 ) 8.97 × 10−5 8.88(8) × 10−5


αE2 6.68 × 10−5 6.45(23) × 10−5


αQM 6.28 × 10−5 6.05(23) × 10−5

Recom. 
αQM 6.05(23) × 10−5

Ref. [2] 3.13 × 10−5

hyperfine interaction) as


E (1) = −1

2
αM1B2, (13)

where αM1 is the magnetic-dipole polarizability. For a state
|J = 0〉 it is reduced to the scalar polarizability, given by

αM1 = 2

3

∑
n

|〈n||μ||J = 0〉|2
En − E0

. (14)

To estimate the second-order Zeeman shift for the clock
transition


ν (1) ≡ 
E (1)
(

3Po
0

) − 
E (1)
(

1S0
)

h

we note that the αM1(1S0) polarizability is negligibly
small compared to αM1(3Po

0 ), so we can write 
ν (1) ≈

E (1)(3Po

0 )/h.
For an estimate of αM1(3Po

0 ) we take into account that
the main contribution to this polarizability comes from the
intermediate state 5s5p 3Po

1 . Then, from Eq. (14) we obtain

αM1
(

3Po
0

) ≈ 2

3

〈3
Po

1

∣∣|μ|∣∣ 3Po
0

〉2
E3Po

1
− E3Po

0

. (15)

The matrix element 〈3Po
1 ||μ|| 3Po

0 〉 can be found if we note
that the total angular momentum operator J does not mix the
states with different J , while the operator S acts only on the
spin variables and its matrix element can be calculated using
an analytical formula valid in the (LSJM) representation [18].
Then, we obtain

〈3
Po

1

∣∣|μ|∣∣ 3Po
0

〉 = −μ0
〈3
Po

1

∣∣|S|∣∣ 3Po
0

〉 =
√

2 μ0.

We note that the numerical calculation of this matrix element
gives the value 1.412μ0, which is very close to the analytical
result.

Substituting it into Eq. (13) we find


E (1)( 3Po
0

) ≈ −2

3

μ2
0

E3Po
1
− E3Po

0

B2, (16)

in agreement with the result obtained in Ref. [19].
Using the experimental value of the energy difference

E3Po
1
− E3Po

0
≈ 542 cm−1, we arrive at


ν (1) ≈ −80 B2,

where 
ν (1) is in mHz and the magnetic field B is in G.
Due to smallness of the energy difference between the fine-

structure levels in Eq. (16), the first term in Eq. (11) usually
gives a larger contribution to the second-order Zeeman shift
than the second term [17]. To estimate the contribution of the
second term we note that

(B × r)2 = B2r2sin2θ = B2(r2 − r2
z ), (17)

where we omitted the subscript i for brevity. Forming the
zz component of the second-order rank tensor R as Rzz =
R20 = r2

z − r2/3 and taking into account that, according to
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the Wigner-Eckart theorm, 〈0 |R20| 0〉 = 0 for a state |0〉 ≡
|γ , J = 0〉, we have

〈0 |r2
z | 0〉 = 1

3
〈0 |r2| 0〉 (18)

arriving at


E (2) ≡ e2

8mc2

Z∑
i=1

〈0∣∣(B × ri )
2
∣∣0〉

= e2B2

12mc2

Z∑
i=1

〈0∣∣r2
i

∣∣0〉. (19)

The respective contribution to the second-order Zeeman
shift of the clock transition is


ν (2) ≡ e2B2

12mhc2

Z∑
i=1

{〈 3Po
0

∣∣r2
i

∣∣ 3Po
0

〉 − 〈 1S0

∣∣r2
i

∣∣ 1S0
〉}

. (20)

To carry out summation over all atomic electrons and
estimate the matrix elements in Eq. (20) we used the CI
method, in which all 48 electrons were placed in the valence
field and several most important configurations were included
in consideration. According to our estimate,

Z∑
i=1

{〈 3Po
0

∣∣r2
i

∣∣ 3Po
0

〉 − 〈 1S0

∣∣r2
i

∣∣ 1S0
〉} ≈ 7 a2

0, (21)

(where a0 is the Bohr radius) and finally 
ν (2)[mHz] ≈ 0.7 B2

(with the magnetic field B is in G). Thus, 
ν (2) is two orders
of magnitude smaller in absolute value than 
ν (1).

V. CONCLUSION

We carried out calculations of the magnetic dipole and
electric quadrupole polarizabilities as well as linear and cir-
cular hyperpolarizabilities of the clock 5s2 1S0 and 5s5p 3Po

0
states at the magic wavelength and compared them with other
available data. We also evaluated the second-order Zeeman
shift for the clock transition frequency. These values are
required for an assessment of the higher-order corrections
to the light shift of the 5s2 1S0 −5s5p 3Po

0 clock transition.
We have demonstrated that the linear differential hyperpo-
larizability for the clock transition for Cd is two orders of
magnitude smaller than for Sr and Yb. We also found the
circular hyperpolarizability to be much larger than the linear
hyperpolarizability and explained the source of this differ-
ence. Knowledge of the multipolar polarizabilities and hyper-
polarizabilities at different polarizations of the lattice wave is
needed for further Cd clock development and selection of the
lattice configurations to minimize the higher-order light shifts.
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