
PHYSICAL REVIEW A 101, 012509 (2020)

Combining experiments and relativistic theory for establishing accurate radiative quantities in
atoms: The lifetime of the 2P3/2 state in 40Ca+
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We report a precise determination of the lifetime of the (4p) 2P3/2 state of 40Ca+, τP3/2 = 6.639(42) ns, using
a combination of measurements of the induced light shift and scattering rate on a single trapped ion. Good
agreement with the result of a recent high-level theoretical calculation, 6.69(6) ns [M. S. Safronova et al.,
Phys. Rev. A 83, 012503 (2011)], but a 6-σ discrepancy with the most precise previous experimental value,
6.924(19) ns [J. Jin et al., Phys. Rev. Lett. 70, 3213 (1993)], is found. To corroborate the consistency and
accuracy of the new measurements, relativistically corrected ratios of reduced-dipole-matrix elements are used
to directly compare our result with a recent result for the P1/2 state, yielding a good agreement. The application
of the present method to precise determinations of radiative quantities of molecular systems is discussed.
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I. INTRODUCTION

The knowledge of radiative lifetimes, transition rates,
dipole-matrix elements, and branching ratios in atoms and
molecules is of great importance for, e.g., experiments prob-
ing the electroweak force [1–3] in the search of physics
beyond the standard model, for testing and improving atomic
and molecular-structure theories [3,4], for the development of
atomic clocks [3,5,6], and for the interpretation of astronomi-
cal data [7].

Traditionally, measurements of such quantities relied on
atomic beams and short-pulse laser excitations. For instance,
the last experimental evaluation of the radiative lifetime of
the (4p) 2P3/2 state of 40Ca+ is dated 20 years back [8] and
the most precise value was measured more than 25 years ago
[9] using such methods. Meanwhile, advances in experimental
technology have enabled the control of single trapped atomic
ions on the quantum level which led to the development of
extremely precise atomic clocks [10,11] and to a leading
technology for quantum computers [12,13].

Here, we exploit the high-fidelity control achievable over
a single trapped ion to establish a method to measure the
lifetimes, transition rates, and reduced-dipole-matrix elements
of atomic transitions using the complementarity of dispersive
and absorptive light-matter interactions and by combining
precise experimental measurements with high-level theoret-
ical calculations. To illustrate our approach, we determine
the lifetime of the P3/2 state in 40Ca+ with high precision to
τP3/2 = 6.639(42) ns.

While our present value is in excellent agreement with a
recent theoretical prediction using a high-precision relativis-
tic all-order method [4] [6.69(6) ns], it shows a (6-σ )-fold
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discrepancy with the most precise previous value of Ref. [9]
[6.924(19) ns]. Interestingly, a similar discrepancy with these
25-year old results [9] on the one hand and an agreement
with the theoretical calculations [4] on the other hand was
also established in a recent measurement of the lifetime of
the (4p) 2P1/2 state of Ca+ [14].

To corroborate the accuracy of the new measurements,
highly precise theoretical ratios of reduced dipole matrix
elements [4] were used to compare our result of the lifetime
of the P3/2 state with the recent results on the P1/2 state [14]
with good agreement. Conversely, precise values of transition
properties for a variety of states can be determined from
their measurement for just a single state using the theoretical
reduced-dipole-matrix elements. Elaborating on this com-
bination of experiment and theory, previous measurements
of the radiative branching ratios of the P3/2 [15] and P1/2

[16] states in Ca+ were compared with excellent agreement
and improved values of the polarizabilities of the (4s) 2 S1/2,
(3d ) 2D3/2, and (3d ) 2D5/2 states of Ca+ are recommended.
The present approach for establishing values of radiative
quantities can readily be generalized to nonatomic systems.
In particular, it opens up perspectives for precision measure-
ments on molecules discussed at the end of this paper.

The use of a combination of absorptive and dispersive
ion-light interactions to determine dipole-matrix elements and
associated values was first demonstrated by Hettrich et al.
[14]. In this work, a different variant of that technique which
was proposed by Gerritsma et al. [15] and was recently
applied by Arnold et al. [17] to measure the polarizability of
Lu+ was used.

II. EXPERIMENT

Our measurement scheme is depicted in Fig. 1. A probe
beam detuned from the P3/2 ← D5/2 transition at 854 nm by
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FIG. 1. (a) Energy diagram illustrating the present experimental
scheme. (b) Typical measurement instance of the scattering rate from
the “dark” state to “bright” states. Data errors (blue) symbols are
binomial projection-noise errors. The red line is a fit to an exponen-
tial function. Dashed lines are guides indicating the measured value
of the scattering rate. (c) Typical measurement instance of the ac-
Stark shift. Probe-beam on (off) indicated in blue (red). Data errors
are binomial projection noise. Lines are fits to Gaussian functions.
The dashed line indicates the measured ac-Stark shift. (d) Typical
measurement instance of the P3/2 ← D5/2 resonance wavelength. The
blue and red symbols are scattering rate measurements for ions pre-
pared in the D5/2(m = − 5

2 ) and D5/2(m = + 5
2 ) states, respectively.

Errors are 1-σ confidence intervals of the exponential fit to data
similar to the one shown in (b). The solid lines are fits to a parabola.
The dotted lines indicate the resonance wavelength of each Zeeman
transition.

� (in rad/sec) induces an ac-Stark shift, �E , (in joules) of
magnitude

�E/h = 1

2π

�2

4�
. (1)

Here, h is the Planck constant and � is the Rabi frequency
(in rad/sec). The probe beam also transfers population from
the D5/2 “dark” state to the S1/2 and D3/2 “bright” states by
photon scattering via the P3/2 state. The S1/2 and D3/2 states
are considered “bright” since both participate in the closed-
cycle fluorescence transition D3/2 ↔ P1/2 ↔ S1/2. The rate by
which population is transferred is given by

� = (
AP3/2→S1/2 + AP3/2→D3/2

) �2

4�2
. (2)

Here, AP3/2→S1/2 and AP3/2→D3/2 are the transition rates (in s−1)
connecting the excited P3/2 state with the “bright” states.
The scattering rate � (in s−1), also depends on the Rabi
frequency which is difficult to determine with high accuracy
in an experiment due to its dependence on the laser intensity
and polarization. However, the ratio of the scattering rate
and the light shift does not depend on the Rabi frequency
which allows for a direct determination of the transition rates
without the need for precise characterization of the probe-

TABLE I. Systematic shifts and experimental uncertainties. The
symbol < is used to indicate that the calculated absolute value of the
shift is an upper bound. For shifts with a + (−) sign, the measured
value should be increased (decreased) accordingly. Ellipses stand for
no or much smaller value.

Effect Shift (%) Uncertainty (%)

Statistical standard error ... ±0.20
Fit error ... ±0.16

Total statistical error ... ±0.25
Line shape < +0.008 ...
Rotating-wave approximation +0.00005 ...
Other lines −0.0003 ...
D5/2 state lifetime −0.04 ...
Detection threshold ... ±0.04
Finite detection time −0.06 ...
AOM thermal effect +0.41 ±0.14
Motion-induced Doppler shifts < −0.0001 ...
Inelastic scattering (mD = ± 5

2 ) +1.29 ...

Inelastic scattering (mD = ± 3
2 ) +1.46 ...

Off-resonant Raman coupling < −0.001 ...
Zeeman states discrepancy ... ±0.56

Total shifts and errors +1.70 ±0.63

beam intensity and polarization:

AP3/2→S1/2 + AP3/2→D3/2 = �

2π

�

�E/h
. (3)

Equations (1) and (2) are approximations for the ac-Stark
shift and scattering rate calculated from a second-order per-
turbation theory. The first approximation, � � �, neglects
the line shape near resonance (e.g, the Lorentzian scattering
profile; see Appendix A 1 for more details). The second,
� � ω0, with ω0 the transition’s angular frequency, neglects
corotating terms when performing the rotating-wave approxi-
mation (Appendix A 2). The third neglects contributions from
transitions other than the P3/2 ← D5/2 (Appendix A 3). The
last neglects the finite lifetime of the D5/2 state (Appendix
A 4). All above approximations were treated as systematic
shifts which are listed in Table I and discussed in more
details in Appendix A. For the chosen probe-beam detuning
and intensity, these approximations hold to a high degree of
accuracy compared to the measurement uncertainty and other
systematic shifts such that they can be neglected. Further
shifts and errors of the measurement will be discussed later
in the text.

Our experimental apparatus consists of a linear Paul
trap for trapping single Ca+ ions at mK temperatures us-
ing Doppler cooling [18]. A narrow-linewidth laser on the
D5/2 ← S1/2 transition at 729 nm was used to prepare the ion
in one of the metastable Zeeman states (m = ± 5

2 ,± 3
2 ) of the

D5/2 electronic state and to perform precision spectroscopy
on the D5/2 ← S1/2 transition (see Fig. 1). A probe beam at
854 nm detuned from the P3/2 ← D5/2 transition was used
to induce scattering from and light shifts of the D5/2 state.
The probe beam was linearly polarized perpendicular to the
external magnetic field such that it excited mostly �m = ±1
transitions. Detection beams at 397 and 866 nm which are
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FIG. 2. (a) Measurement results of the transition rates AP3/2→S1/2 + AP3/2→D3/2 prior to systematic shift corrections. Initial Zeeman states
of the D5/2 state are marked with different colors and symbols (see legend). Dashed lines indicate the remeasurement of the P3/2 ← D5/2

resonance wavelength and the change of probe-beam detuning and intensity settings. The first data set (17/5) was taken with less repetitions
per data point as compared to the other data sets. Typical error bars representing 1-σ confidence intervals of the fits of the scattering rate,
ac-Stark shift, and detuning measurements are given. The gray area represents the theoretical value and their uncertainty [4]. (b) Averaged
results of the different Zeeman states (triangles), laser settings (green squares), and all data (light blue circle). All results up to this point are
prior to systematic shift corrections. The error bars are a combination of statistical standard errors and measurement fitting errors. For the result
represented by the black diamond, systematic shifts and additional uncertainties were included (see Table I).

in resonance with the D3/2 ↔ P1/2 ↔ S1/2 cycling transitions
were used to distinguish between “bright” and “dark” states.

The scattering rate � was measured by recording the
“dark” population PD as a function of the probe time t854 [see
Fig. 1(b)]. The ion was prepared in the D5/2 state using a
π pulse of the spectroscopy laser followed by a projection
pulse of the detection beams which enables postselection of
experiments starting in the D5/2 state only. The probe beam
was then turned on using an acousto-optic modulator (AOM)
5 μs before starting to measure the D-state population decay
in order to avoid any AOM latency (typically less than 1 μs).
Experimental data were fitted with an exponential function
exp [−�(t854 − t0)] to extract the scattering rate. Here, t854 is
the experiment time and t0 accounts for the fact that the AOM
was turned on before the experiment began.

The ac-Stark shift �E was measured by performing Rabi
spectroscopy on the D5/2 ← S1/2 transition using the narrow-
linewidth spectroscopy laser [see Fig. 1(c)]. The probe beam
was switched on 5 μs before initiating the spectroscopy
pulse to avoid latency effects. The experimental cycles were
interlaced with the probe beam on and off in order to can-
cel errors induced by slow magnetic-field drifts affecting
the transition frequency. The energy shift between the tran-
sitions with the probe beam on and off was determined
by comparing the centers of Gaussian fits for each of the
observed lines. Gaussian fits were used since the observed
spectroscopic line shapes were not transform limited due to
decoherence.

The probe-beam wavelength λ was monitored by and
locked to a wavemeter (HighFinesse WS-U 30) and scanned
by changing the locking set point. The center wavelength of
the P3/2 ← D5/2 transition, λ0, was found by scanning the
probe-beam wavelength across resonance using a weak probe-
beam power below saturation intensity while measuring the
scattering rate from “dark” to “bright” states [see Fig. 1(d)].
The central wavelength of the transition was determined by fit-
ting the inverse scattering rate to a second-order polynomial.
The resonance frequency starting from both D5/2(m = ± 5

2 )
Zeeman states was measured to account for Zeeman splittings
in a magnetic field of 4.609(2) G. The magnetic field was

also measured with high precision on the D5/2 ← S1/2 tran-
sition using the narrow spectroscopy laser. The probe-beam
detuning �(m) = 2πc[1/λ − 1/λ0(m)] was determined for
each of the Zeeman states.

Equation (3) was used to determine the transition rates
for each experimental instance. Our measurements of the
scattering rate and the ac-Stark shift were repeated 600
times interlacing between different initial Zeeman states m =
± 5

2 ,± 3
2 of the D5/2 state. Every few hours, the probe-beam

detuning and intensity were changed and the transition center
wavelength was remeasured to reduce errors due to drifts in
the probe-beam frequency. The scattering rate and ac-Stark
shift measurements were then continued for a few more hours.
In total, four different combinations of probe-beam detunings
and intensities were measured for a duration of almost 50 h
[see Fig. 2(a)].

III. RESULTS

All measurements were averaged to determine the sum
of the transition rates AP3/2→S1/2 + AP3/2→D3/2 [see Fig. 2(b)].
The total uncertainty of our measurement (0.25%) includes
both the standard error of all individual measurements and the
measurement errors arising from the confidence intervals of
the fits (see Table I). The measurements were also averaged
separately for each Zeeman state and each different detuning
and intensity setting.

Possible systematic shifts for this type of measurement
are listed in Table I (see Appendix A for detailed discussion
and derivation). The most dominant one is the effect of
inelastic Raman scattering [19] that changes the Zeeman state
in the D5/2 manifold before scattering to the “bright” states
(Appendix A 5). This event changes the Rabi frequency
during the scattering rate measurement and thus shifts the
measured value of the scattering rate [see Eq. (2)]. On the
other hand, inelastic Raman scattering events will not shift
the value of the ac-Stark shift due to the Zeeman selectivity of
the narrow spectroscopy laser.

To evaluate this shift, a numerical calculation of the
dynamical optical Bloch equations (DOBE) describing our
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FIG. 3. Comparison of different experimental (blue circles) [8,9,21–24] and theoretical (red squares) [4,20,25–27] values for the P3/2

lifetime in 40Ca+ to this work (black diamond). Some of the theoretical works (red squares with no error bars) did not quote errors. For the
recommended lifetime value of this work (black diamond), an experimental branching value from [15] was used. Calculation of the lifetime
from the AP3/2→D5/2 theoretical value of [4] and [20] is also given (gray diamonds).

system was performed. The “dark” population decay was
determined for different initial Zeeman states of the D man-
ifold and was found to deviate from a single exponential
decay, as expected due to the small leak into different Zeeman
states of the D manifold. Instead, a sum of three exponents
was used to better describe the decay owing to the three
different Rabi couplings in the D manifold. From a fit of
all the scattering data the inelastic Raman scattering shift is
extracted (see Table I). Notably, while the systematic shift
is larger than our measurement uncertainty, it is almost the
same for the ± 5

2 ,± 3
2 Zeeman states. The Raman inelastic

scattering effect was experimentally verified by interlacing
measurements between ± 5

2 states to ± 1
2 states which features

opposite and distinctively measurable systematic shifts.
Even after accounting for the inelastic Raman scattering

systematic shift, a discrepancy of 2-σ between the ± 3
2 and the

± 5
2 measurements still remains. Since this discrepancy cannot

be accounted for, it is added as an uncertainty of 0.56% which
is the dominant contribution to the error of this measurement.

The second-most dominant shift is due to thermal effects
in the probe-beam AOM (Appendix A 7). While the rise time
of the AOM is less than 1 μs, it takes about 15 μs (1/e) for
the AOM to reach stable operation. For the ac-Stark shift mea-
surements, due to a 2-ms D-state repump pulse just before the
measurement starts, the AOM is in steady-state operation and
no systematic shifts were observed experimentally. However,
for the scattering-rate measurements, there is almost a ms
where the probe beam is turned off before the measurement
starts. We experimentally verified and quantified this system-
atic shift by omitting the first data points of the scattering from
the analysis.

In Fig. 2(b), the measured value of the summed transition
rates AP3/2→S1/2 + AP3/2→D3/2 corrected for all systematic effect
is shown and compared to the noncorrected value. Our result

of AP3/2→S1/2 + AP3/2→D3/2 = 1.4178(89) × 108 s−1 agrees well
with a theoretical calculation [1.407(14) × 108 s−1] [4].

The lifetime of an excited atomic state is given by the
inverse of the sum of the transition rates from that excited
state. For the P3/2 state in Ca+ one gets

τP3/2 = 1

AP3/2→S1/2 + AP3/2→D3/2 + AP3/2→D5/2

. (4)

Our measurements determined the sum AP3/2→S1/2 +
AP3/2→D3/2 . The value of AP3/2→D5/2 contributing to the P3/2 state
lifetime can be measured using our technique by switching
to a different probe beam that connects the S1/2 and P3/2

states. Here, however, a high-precision experimental value for
the branching ratio RP3/2→D5/2 = 0.0587(2) [15] was used to
determine the recommended value for the total lifetime τP3/2 =
(1 − RP3/2→D5/2 )/(AP3/2→S1/2 + AP3/2→D3/2 ) = 6.639(42) ns. In
addition, two different theoretical values for the value of
AP3/2→D5/2 [4,20] with their respective uncertainties were used
to verify our experimental value for the lifetime. Since the
value of AP3/2→D5/2 is one order of magnitude smaller than
AP3/2→S1/2 , even though the two theories disagree within a
few standard deviations, all calculated lifetime values agree
within the uncertainty limits (see Fig. 3).

The branching ratio RP3/2→S1/2 = 0.9347(3) [15] is fur-
ther used to calculate the transition rate AP3/2→S1/2 =
RP3/2→S1/2/τP3/2 , and the reduced-dipole-matrix element

D2
P3/2→S1/2

= (
2JP3/2 + 1

)
AP3/2→S1/2

3ε0h̄

8π2
λ3

P3/2→S1/2
. (5)

The value of DP3/2→S1/2 = 4.115(13) ea0 is compared to the
value of DP1/2→S1/2 = 2.8928(43) ea0 (Hettrich et al. [14]) us-
ing a high-precision theoretical ratio DP3/2→S1/2/DP1/2→S1/2 =
1.4145(1) [4] yielding 4.092(6) ea0. This way, both the
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TABLE II. Translation of P1/2 experimental values of reduced-
dipole-matrix elements [14] and branching ratios [16] to P3/2 values
and their comparison to the measured experimental values of this
work and Ref. [15] and the theoretical values of Ref. [4]. The
translation is done using high-precision theoretical ratios of reduced-
dipole-matrix elements [4].

P1/2 expt. P3/2 P3/2

converted experiment theory

RP3/2→S1/2 0.93463(9) [4,16] 0.9347(3) [15] 0.9340(9) [4]
RP3/2→D5/2 0.05876(8) [4,16] 0.0587(2) [15] 0.0593(8) [4]
RP3/2→D3/2 0.006602(7) [4,16] 0.00661(4) [15] 0.00667(9) [4]

DP3/2→S1/2 4.092(6) [14] 4.115(13) [15] 4.099(18) [4]
DP3/2→D5/2 3.283(6) [14,16] 3.300(12) [15] 3.306(18) [4]
DP3/2→D3/2 1.092(2) [14,16] 1.097(5) [15] 1.100(6) [4]

experimental values are directly compared without loss of
uncertainty and agree to within 1.6 σ .

The reduced-dipole-matrix-elements ratios
DP3/2→D5/2/DP3/2→D3/2 = 3.0068(13), DP3/2→D5/2/DP1/2→D3/2 =
1.3421(4), and DP3/2→D3/2/DP1/2→D3/2 = 0.44634(6) are
further used to compare the experimental branching ratios
of the P3/2 with those of the P1/2 measured by Ramm et al.
[16] with excellent agreement. The converted P1/2 values
are of better precision than the directly measured P3/2

ones (Table II). The matrix-element ratios are of such high
precision due to common electronic-correlations contributions
for transitions involving different fine-structure components.

The directly measured values of reduced-dipole-matrix
elements and a high-precision measurement of the differen-
tial polarizability α0(3d5/2) − α(4s) = −44.079(13) a.u. by
Huang et al. [28] are used to extract improved recommended
values for the scalar polarizabilities α(4s) = 76.40(32),
α0(3d3/2) = 31.72(22), and α0(3d5/2) = 32.32(32) and ten-
sor polarizabilities α2(3d3/2) = −17.18(8) and α2(3d5/2) =
−24.42(17). All values are in atomic units (see Appendix B
for further details).

IV. OUTLOOK AND SUMMARY

A particularly attractive application of the present method
is the measurement of the lifetimes of quantum states of
molecular ions within the framework of a quantum-logic
experiment [18,29,30]. Consider, e.g, the N+

2 molecular ion
in its electronic (X 2�+

g ) and vibrational (v′′ = 0) ground state
[31,32]. A probe beam consisting of a one-dimensional (1D)
optical lattice modulated at the trap frequency and detuned
closely to an excited state such as the A2+

u (v′ = 2) will in-
duce an optical-dipole force proportional to the ac-Stark shift
experienced by the molecule [18]. The force can be detected
by a cotrapped atomic ion using quantum logic protocols
[18,33,34]. Upon scattering, the molecule will decay to a vi-
brational level of the X 2�+

g state according to Franck-Condon
factors. Scattering into vibrational states other than the ground
state (v′′ = 0) will diminish the optical-dipole force due to
the increased detuning, thus signaling the time of scattering.
The ratio of the scattering rate and the ac-Stark shift gives the
sum of all transitions rates

∑
v′′ �=0 A2→v′′ except one, A2→0,

which can be extracted from the ac-Stark shift measurement.

The inverse of the sum of all vibronic transitions rates gives
the vibronic lifetime τv′=2 = 1/

∑
v′′ A2→v′′ . This discussion

only includes vibronic states. Rotational, fine, and hyperfine
structure can be considered in a similar fashion.

To summarize, measurements of transition rates and
branching ratios were combined together with relativistic
theory for a more accurate determination of the lifetime
of the (4p)2P3/2 excited state of Ca+, which was obtained
to be τP3/2 = 6.639(42) ns. The transition rates AP3/2→S1/2 +
AP3/2→D3/2 = 1.4178(89) × 108 s−1 were measured using a
combination of dispersive and absorptive interactions between
light and a single atom and are in good agreement with recent
relativistic theoretical calculations [4]. A detailed analysis
of the systematic shifts affecting this type of measurement
is given in the Appendices. Highly precise theoretical ratios
of reduced dipole matrix elements were used in combina-
tion with recent experimental results to obtain recommended
values for radiative branching ratios, reduced dipole matrix
elements, and polarizabilities in Ca+. The present method
can be used to measure transition rates and lifetimes in many
types of ionic, atomic, and molecular systems both for single
particles and ensembles.

The experimental data sets are available at Zenodo [35].
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APPENDIX A: SYSTEMATIC SHIFTS

According to Eq. (3), the ratio of three experimentally
measured parameters (�, �E , �) equals to the sum of the
transitions rates AP3/2→S1/2 + AP3/2→D5/2 which we will de-
note as A from now on for brevity. This equality holds for
the approximate equations of the ac-Stark shift [Eq. (1)] and
the scattering rate [Eq. (2)]. The experimentally measured val-
ues, however, follow the exact formulas for these parameters
and hence the ratio given in Eq. (3) does not equate exactly to
A, but it differs by a small amount:

xi ≡ �i

2π

�i

�Ei/h
= Ai(1 − εi ).

Here, xi is the value calculated from the measurements in
the experimental instance i and εi is the systematic shift of
that experimental instance. Positive εi > 0 means that our
measured value of xi should be increased by εi since Ai ≈
xi(1 + εi ) for |εi| � 1.

In our experiment, we performed measurements with dif-
ferent laser powers and detunings while interlacing between
different Zeeman states. For each instance of the experiment
i, we calculated a systematic shift εi. Our best estimation for

012509-5



MEIR, SINHAL, SAFRONOVA, AND WILLITSCH PHYSICAL REVIEW A 101, 012509 (2020)

A is given by the mean of all our measurements:

A = 〈xi(1 + εi )〉 = 〈xi〉 + 〈xiεi〉 ≡ 〈xi〉(1 + ε).

Here, 〈xi〉 is the mean of all measured values of the transition
rates without correction and

ε = 〈xiεi〉
〈xi〉

is the weighted mean of the systematic shifts of each experi-
mental instance. The value of ε calculated for different types
of systematic shifts is given in Table I.

1. Line shape

The solution of a two-level system interacting with the
classical electric field of an electromagnetic wave in the
rotating-wave approximation gives rise to the well-known
Lorentzian profile for the excited-state population [36]:

pe = �2/4

�2/2 + �2 + (1/τP3/2 )2/4
.

The scattering rate to “bright” states which decouple from the
two-level system is given by

� = peA.

For large enough detuning, � � �, τ−1
P3/2

, these equations
approximate to Eq. (2) and give rise to a systematic shift:

εi ≈ �2
i /2 + (1/τP3/2 )2/4

�2
i

.

We determine the Rabi frequency using Eq. (1). We take the
value of τP3/2 from Ref. [4], τP3/2 = 6.69 ns. The mean sys-
tematic shift of all experimental instances is ε < 7.7 × 10−5

which is negligible compared to the measurement uncertainty.
This shift is an upper bound since as the exact scattering rate
decreases as compared to the approximated value [Eq. (2)]
when approaching the resonance, the exact ac-Stark shift also
decreases as compared to the approximated value [Eq. (1)].
These two effects effectively cancel leading to a much smaller
shift. Nevertheless, the upper bound is small enough such that
it is not necessary to account for this effect in the present case.

2. Rotating-wave approximation

Outside the rotating-wave approximation, the ac-Stark shift
takes the form [37,38]

�E/h = 1

2π

�2

4

(
1

ω − ω0
− 1

ω + ω0

)
.

Here, ω is the laser frequency and ω0 is the transition fre-
quency such that � = ω − ω0. The scattering rate outside the
rotating-wave approximation is given by [37]

� = A
�2

4

(
ω

ω0

)3( 1

ω0 − ω
+ 1

ω0 + ω

)2

.

For � � ω0 both equations approximate to Eqs. (1) and (2)
and give rise to a systematic shift

εi = �i

(
3

ω0,i
+ 1

ω0,i + ω

)
.

Note that this systematic shift depends on the sign of the
detuning, and in our experiment we used both red and blue
detuned probe lasers such that the systematic shifts partially
cancel giving rise to ε = 5.1 × 10−7. Nevertheless, the max-
imum absolute value of this systematic shift is |εi| < 3.4 ×
10−5 which is negligible with respect to our measurement
uncertainty.

3. Other lines

The probe beam mainly interacts with the P3/2 ← D5/2

transition near 854.4 nm and shifts both the D5/2 and the
P3/2 levels. We monitored this ac-Stark shift by performing
precision spectroscopy on the D5/2 ← S1/2 transition using a
narrow-linewidth laser beam at 729 nm as discussed in the
main text. The probe beam interacts with all other allowed
transitions from both the S1/2 and the D5/2 states. These
interactions induce a systematic shift of the measured ac-Stark
shift value. Due to the �−2 dependence of the scattering rate
and the large detuning for any other transition, the scattering
effect is negligible.

The dominant interaction of the probe beam other than
with the P3/2 ← D5/2 transition is with the P1/2 ← S1/2 and
the P3/2 ← S1/2 transitions. The probe beam at 854.4 nm was
highly red detuned from these transitions at 397 and 393
nm, respectively. The S1/2 level was shifted by −1 to −3 Hz
depending on the laser parameters. Our measured value of the
ac-Stark shift is then composed of two contributions:

�E = �EPD − �EPS.

The systematic shift of every experimental instance is given
by

εi = − �EPS,i

�EPD,i
.

Note that, as in the case of the shift due to the rotating-
wave approximation, we have cancellation of systematic shifts
from blue and red detuned experiments. When we change
the detuning from red to blue in the experiment, �EPD

either assumes positive or negative values while �EPS is
always negative resulting in ε = −3.4 × 10−6. Nevertheless,
the maximal value of the systematic shift is |εi| < 6.5 × 10−5

which is negligible compared to our experimental uncertainty.

4. Finite D5/2 state lifetime

Due to finite lifetime of the D5/2 state, Eq. (2) changes to

� = A
�2

4�2
+ (

AD5/2→S1/2 + AD5/2→D3/2

)
.

Here, (AD5/2→S1/2 + AD5/2→D3/2 ) = τ−1
D5/2

are the two transition
rates connecting the D5/2 “dark” state to the S1/2 and D3/2

“bright” states which give rise to a finite lifetime τD5/2 =
1.1649(44) s [39] of this state. We experimentally verified this
lifetime (with less precision) in our experiment to overrule
spurious optical pumping effects.

The systematic shift for each experimental instance is
given by

εi = −
τ−1

D5/2

�i
,
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FIG. 4. (a) Schematic of inelastic Raman scattering from the
initial D5/2(mD = − 5

2 ) state. A probe-beam (solid purple arrow)
couples the D5/2(mD = − 5

2 ) state to the P3/2(mP = − 3
2 ) excited state.

From this excited state, the ion can decay either to the S1/2 or D3/2

“bright” states or back to the D5/2 “dark” state. The latter breaks
into elastic scattering to the mD = − 5

2 state or inelastic scattering
to the mD = − 3

2 , − 1
2 states (dotted blue arrows). The branching

ratios for these events are 10:4:1 respectively. After an inelastic
scattering event occurs, the probe beam couples the ion to different
excited Zeeman states of the P3/2 level (dashed purple arrows).
(b) Experimental verification of the inelastic process. Transition rates
for an ion prepared in the D5/2(mD = ± 5

2 ) (blue) and the D5/2(mD =
± 1

2 ) (red) states. Circles (diamonds) represent values before (after)
the correction of the systematic shift for inelastic scattering. The
black diamond is the corrected value given in the main text. The
gray-shaded area is the theoretical value of Safronova et al. [4].

and the mean systematic shift is ε = −3.7 × 10−4 which is
small compared to our measurement uncertainty.

5. Inelastic Raman scattering

In the formula of the scattering rate given in Eq. (2), we
assumed that either the ion decays to “bright” states or it
decays back to its initial Zeeman “dark” state (also known
as elastic Rayleigh scattering). This assumption neglects the
inelastic Raman scattering in which the ion can decay to
different Zeeman states of the D5/2 manifold [see Fig. 4(a)].
Inelastic scattering results in the change of the Rabi frequency
during the measurement instance due to different angular
factors in the transition moment.

As an example [see Fig. 4(a)], we consider the case
of an ion prepared in the D5/2(m = − 5

2 ) state. A probe

beam with linear horizontal polarization couples this
state to the P3/2(m = − 3

2 ) state. From this excited state, there
is a probability pb = (AP3/2→S1/2 + AP3/2→D3/2 )/(AP3/2→S1/2 +
AP3/2→D3/2 + AP3/2→D5/2 ) = 0.941, to decay to the “bright”
states and pd = (1 − pb) = 0.059 probability to decay back
to the D5/2 state. In the case of decaying back to the D5/2 state,
the probability to decay to the different Zeeman states is given
by

p[P3/2(mP ) → D5/2(mD)]

= (2 × 3/2 + 1)

(
3/2 1 5/2
−mP mP − mD mD

)2

.

Here, the big brackets stand for the Wigner 3 j symbol. In our
example, there is a 2

3 chance to decay back to the initial m =
− 5

2 and 4
15 ( 1

15 ) chance to decay to the m = − 3
2 (m = − 1

2 )
state. The total probability for the inelastic scattering event
is then given by pd × 1

3 = 0.02. Note that for the electronic
ground state S1/2, Raman scattering is known to vanish due to
destructive interference from the P1/2 and P3/2 states [19]. In
our case, due to the single transition involved, there is no such
destructive interference. When the ion decays to a different
Zeeman state, the Rabi frequency changes accordingly and
thus the rate in which a second scattering event occurs. The
Rabi frequencies for the different Zeeman states of the D5/2

level are proportional to

�2(mD) ∝
(

3/2 1 5/2
−1 − mD 1 mD

)2

+
(

3/2 1 5/2
1 − mD −1 mD

)2

.

In our example, �2(−3/2)/�2(−5/2) = 3/5 and
�2(−1/2)/�2(−5/2) = 2/5.

Including the inelastic process, the decay of the “dark”
state changes from a single exponential decay to the following
expression:

p(dark) = pbe−�(mD )t

+ pd

∑
m′

D

p[P3/2(mP ) → D5/2(m′
D)]e−�(m′

D )t ,

with �(m′
D) = �(mD)�2(m′

D)/�2(mD). For the initial Zee-
man state mD = ± 1

2 , the expression becomes more compli-
cated since the probe beam initially populates two Zeeman
states in the excited P3/2 level (mP = ± 3

2 ,∓ 1
2 ). The probabil-

ity to populate each of these states is given by

p(m±
P ) =

(
3/2 1 5/2

∓1 − mD ±1 mD

)2

(
3/2 1 5/2

−1 − mD 1 mD

)2

+
(

3/2 1 5/2
1 − mD −1 mD

)2

,

and the expression for the decay of the “dark” state changes
accordingly,

p(dark) = pbe−�(mD )t + pd

∑
m±

P

∑
m′

D

p(m±
P )p[P3/2(m±

P )

→ D5/2(m′
D)]e−�(m′

D )t .
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TABLE III. Probabilities p|m| of the Zeeman state before scat-
tering from “dark” to “bright” derived from DOBE and single-
scattering analytic calculations for all initial Zeeman states of the
D5/2 manifold. “No correction” stands for the limiting case of no
inelastic Raman scattering shift described by Eq. (2) of the main text.

Initial state p| 5
2 | p| 3

2 | p| 1
2 | Method

m = ±5/2 1 0 0 No correction
m = ±5/2 0.9896 0 0.0104 DOBE
m = ±5/2 0.9802 0.0158 0.0040 Single scattering

m = ±3/2 0 1 0 No correction
m = ±3/2 0.0160 0.9407 0.0430 DOBE
m = ±3/2 0 0.9644 0.0356 Single scattering

m = ±1/2 0 0 1 No correction
m = ±1/2 0 0.0278 0.9722 DOBE
m = ±1/2 0.0099 0.0218 0.9684 Single scattering

Here, m±
P stands for exciting a state with Zeeman quantum

number mP = mD ± 1.
The dark state population can be written in general form

p(“dark”)

= p 5
2
e−�( 5

2 )(t−t0 ) + p 3
2
e−�( 3

2 )(t−t0 ) + p 1
2
e−�( 1

2 )(t−t0 ).

Here, we used the symmetry of the Zeeman states �(mD) =
�(−mD), and introduced back t0, which accounts for the fact
that the AOM was turned on before the experiment began.
The probabilities p|m| indicate from which Zeeman state the
ion scatters from “dark” to “bright.” In the previous para-
graph, we showed how to derive the probabilities within the
approximation of a single inelastic Raman scattering event.
To check our calculations and to derive more accurate prob-
abilities, we solved the dynamical optical Bloch equations
(DOBE) of our system (using similar treatment as performed
in Refs. [40,41]). The treatment considers the 12 Zeeman
levels of the S1/2, P3/2, and D5/2 states (for simplicity we
omitted the D3/2 levels), a probe beam that couples the D5/2

and the P3/2 states with horizontal linear polarization and all
spontaneous decay channels. We initialized the density matrix
in a single Zeeman state of the D5/2 manifold and numerically
calculated the density matrix evolution in time during the
decay to the S1/2 levels. We then fitted the probabilities to the
DOBE numerical solution. The results of the probabilities for
different initial Zeeman states using the DOBE and the single
Raman scattering analytic derivation are given in Table III.

For the mD = ± 5
2 ,± 3

2 states, the inelastic Raman scat-
tering tends to decrease the scattering rate due to pumping
to states with lower Rabi frequency. The mD = ± 1

2 states,
however, show an increase in the scattering rate since they
possess the lowest Rabi frequency. To verify the inelastic
Raman effect experimentally, we performed an experiment
in which the ion is prepared in the mD = ± 5

2 and mD = ± 1
2

states. In that experiment, we used a spectroscopy laser with
different orientation with respect to the trap axis and different
polarization with respect to the magnetic field axis than the
one used in the original experiments to allow preparation of
the ion in both the ± 1

2 ,± 5
2 Zeeman states. The results are

shown in Fig. 4(b) and are in agreement with our calculations.

6. Off-resonant Raman coupling

Since we used a linear-horizontal polarized laser beam in
the experiment, we allowed for off-resonant Raman coupling
between Zeeman states in the D5/2 level which satisfy �mD =
±2. This off-resonant coherent coupling dresses our initial
Zeeman state with Zeeman states of �mD = ±2 and thus
changes the coupling to the excited P3/2 level.

We estimate the mixing by considering the bare-Raman
coupling

�Raman = �(mD)�(mD ± 2)

�
.

Here, �(mD) is the Rabi frequency of the probe beam that
couples the D5/2(mD) state with the excited P3/2 state and �

is the detuning of the probe beam from the excited state. We
estimate an upper bound for the mixing due to this coupling by
considering an off-resonant Rabi flop. The average population
in the coupled Zeeman state is then given by

pmix = 1

2

�2
Raman

�2
Raman + �2

Raman

.

Here, �Raman is the detuning between the two Zeeman states
due to the external magnetic field of 4.609 G. We now can
calculate the upper bound for this systematic shift

ε = pmix

(
�2(mD + 2)

�2(mD)
− 1

)
� −1.4 × 10−5.

We consider this calculated shift as an upper bound since we
only included the effect on the scattering rate measurements.
Similar considerations can be made for the ac-Stark shift
measurements which will result in reduction of this systematic
effect.

7. Thermal effect in AOM power stabilization

We used an acousto-optic modulator (AOM) to control the
duration of the probe-beam pulse during the experiment. The
AOM rise time is very short, typically less than a μs, however,
to reach a steady-state power it takes the AOM about 15 μs
(1/e). This effect is due to thermalization of the AOM crystal
with the incident probe beam. In Fig. 5(a) we show a typical
snapshot of the probe-beam power measured on a fast detector
during a scattering rate measurement.

Even though the Rabi frequency cancels in the calculation
of the transition rates, different effective powers between
the ac shift and the scattering rate measurements will lead
to systematic errors. In the case of the ac-Stark shift mea-
surements, we applied a 2-ms D-state repump pulse using
the probe-beam just before the ac-Stark shift measurement
began. This pulse eliminated the AOM thermal effect. We
experimentally verified that there are no systematic shifts in
the ac-Stark shift measurement by adding a 150-μs pulse prior
to the ac-Stark shift measurement and comparing the resulting
ac shift with an experiment with no such pulse. The relative
difference between the two measurements was 0.08(18)%,
which is consistent with no shift.

On the other hand, in the case of the scattering rate mea-
surements, there is almost a ms delay between the D-state
repump pulse and the measurement pulse due to D-shelving
and state-purification pulses. For that, the AOM thermal effect
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FIG. 5. (a) Typical snapshot of the probe-beam power measured
on a fast photodetector (blue) during a scattering rate measurement.
Red line is an exponential fit with a characteristic time of about
15 μs. (b) Transition rates AP3/2→S1/2 + AP3/2→D3/2 , in which we
excluded from 0 to 7 of the first data points of the scattering rate
decay curve. The results before correction reported in the main text
are given in light blue circle. The values used for extracting the
systematic shift are given in red diamonds where the corrected value
for this systematic shift is given in black diamond. The gray-shaded
area is the theoretical value of Safronova et al. [4].

is present in the scattering rate measurement and it induced a
systematic shift.

To test the magnitude of this systematic shift, we analyzed
the scattering rate data excluding between 0 to 7 of the first
data points of the decay curve, thus, effectively starting the
scattering measurement after a time period which the AOM
could reach its steady-state power. On average, each point of
data we excluded amounts for roughly 25 μs of pre-AOM
time.

The results of the transition rates for this analysis are given
in Fig. 5(b). As expected, the transition rate value increases
when excluding the first point due to the increase in the
effective Rabi frequency in the measurement. The value of

the transition rates remains constant when excluding from one
up to three of the first data points. These values are used to
calculate a systematic shift of ε = +0.0041. The use of less
data points in the fit analysis increase the statistical error of
our measurement. We quantify this as an additional error of
0.0014 to the noncorrected value.

We note that excluding data points from the analysis is
equivalent to simulating bad D-state preparation. Thus, this
analysis can also be used to assess the effect of bad D-state
preparation, which in our case is negligible.

8. Motion-induced Doppler shifts

Mechanical effects of the ion motion affect the instan-
taneous detuning �inst of the probe-beam light through the
Doppler shift,

�inst = � + kxω cos (ωt ) ≡ �[1 + β cos (ωt )].

Here, k = 2π/λ is the projection of the k vector of the probe
beam onto the direction of motion x with oscillation frequency
ω. The motion of the ion is composed of both thermal motion
and micromotion with two different frequencies (700 kHz and
16.8 MHz, respectively). The modulation index β = kxω/�

quantifies the modulation amplitude.
The duration of the scattering rate and ac-Stark-shift mea-

surements is much longer than one cycle of modulation.
Hence, we can consider the average scattering rate and ac-
Stark-shift values

� = 〈�inst〉 = �0

〈
1

(1 + β cos(ωt ))2

〉

= �0

(
1 + 3

2
β2

)
,

�E = 〈�Einst〉 = �E0

〈
1

1 + β cos(ωt )

〉

= �E0

(
1 + 1

2
β2

)
.

Here, �E0 and �0 are the values of the ac-Stark shift and
scattering rate without the mechanical effect as given in
Eqs. (1) and (2). The effect of mechanical motion on the
transition rates is given by

A

A0
= 1 + 3

2β2

1 + 1
2β2

≈ 1 + β2,

thus the systematic shift due to mechanical motion is ε =
−β2.

For the case of thermal motion, the ion is Doppler cooled
to ∼0.5 mK such that amplitude of the thermal motion is less
than 100 nm. The resulting modulation index is β < 5 × 10−4

and the systematic shift is |ε| < 3 × 10−7 which is negligible
compared to our measurement uncertainty.

For the case of excess micromotion, its amplitude was
compensated below our detection limit. For that, it is safe to
estimate the micromotion amplitude to be smaller than 10 nm.
In this case, the modulation index is β < 1 × 10−3 and the
systematic shift is |ε| < 1 × 10−6 which is also negligible
compared to our measurement uncertainty.
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FIG. 6. (a) Photon-number counts (blue) for an experiment (19/5, 10 h) with 0.5-ms detection time. The black line is the photon threshold
used in the analysis. (b) Histogram (blue) of the photon-number count in (a). The values of the transition rates determined for different
thresholds around the one used in the experiment (black symbol) are given as red symbols. A linear fit of the transition rates in an interval of
±3 photons around the threshold value is shown in black. The dashed gray area represents the theoretical value and uncertainty from Ref. [4].
(c) Same as (a) for an experiment (4/6, 7 h) with 0.75-ms detection time. Here, the detection laser fell out of lock after 1.75 h. (d) Same as
(b) for the photon-number count in (c).

9. Detection threshold

We determined whether the ion was in a “dark” or “bright”
state by counting photons (n) over 0.5 ms in the first ex-
periments (17/5/19-19/5/19) and over 0.75 ms in the later
ones (27/5/19-4/6/19) and setting a photon threshold (t)
such that for n � t the ion was considered dark while for
n > t the ion was considered bright. Photon counting traces
for two experiments with two different detection times and
their thresholds are shown in Figs. 6(a) and 6(c). In the latter
experiment, the 397 nm laser fell out of lock such that the
mean bright photon number drifted during the experiment.
Nevertheless, even with unlocked detection and cooling laser,
no detectable systematic shifts were observed within the mea-
surement errors.

We determined the threshold value to minimize both dark
and bright counting errors by choosing the point of lowest
counting probability between the dark and bright histograms
[see Figs. 6(b) and 6(d) blue trace]. To quantify the effect of
this threshold value on the experimental results, we calculated
the dependence of the transition rate on the threshold A(t ).
The results are shown in Figs. 6(b) and 6(d) for the two differ-
ent detection times. We observe that the experimental value
A(t ) is almost independent of t around the chosen threshold
value. There is a small linear slope of −0.0002 × 108 s−1/�t
from which we estimate an uncertainty of 4 × 10−4 due to
possible error of ±3 photons in the determination of the

photon-count threshold. This uncertainty is small compared
to our measurement uncertainty.

10. Finite detection time

In the previous section, we considered the case of the
counting error due to photon statistics. This error can be
reduced by increasing the detection time. However, increasing
the detection time will increase the probability of a decay
of the dark state into the bright state during the course of
detection due to the finite lifetime of the dark state τD5/2 .

We calculated the effective decay time teff up to which
a dark state is considered bright, by linearizing the photon
accumulation rate

teff = tdet
b̄ − t

b̄ − d̄
.

This equation accounts for the fact that with high photon
threshold dark events that scatter during the detection time
can still be counted correctly as dark events given that the
scatter event occurred at the end of the detection period. Here,
tdet = 0.5, 0.75 ms is the total detection time, d̄ < t < b̄ is
the photon threshold value introduced in the previous section,
and b̄ (d̄) are the mean bright (dark) photons counted in the
experiment.
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TABLE IV. Ca+ static polarizabilities (in a.u.) obtained with
the matrix elements from this work (column A), Ref. [14] (column
B), and combination of the two (column C). The scalar 3d5/2 po-
larizability in columns A, B, and C is extracted by combining the
resulting ground-state polarizability and the differential Ca+ clock
polarizability δα0(3d5/2 − 4s) = −44.079(13) a.u. measured in [28].
Theory values from [4] are listed for comparison.

Theory [4] A B C

4p1/2–4s 24.4(2) 24.58(15) 24.30(7) 24.30(7)
4p3/2–4s 48.4(4) 48.74(31) 48.20(14) 48.74(31)
Other [4] 3.36(5) 3.36(5) 3.36(5) 3.36(5)
Total α(4s) 76.1(5) 76.68(46) 75.86(21) 76.40(32)
Total α0(3d5/2) 31.8(3) 32.60(46) 31.78(21) 32.32(32)

The number of excessively measured bright (dark) photons
�b (�d) is then given by

�b = −�d = d (eteff/τD5/2 − 1).

Here, d is the measured number of dark photons. For the
experiment in Figs. 6(a) and 6(b) we estimated 180 photons
which are falsely detected as bright out of total ∼600 000 dark
counts. For the experiment in Figs. 6(c) and 6(d) we estimated
210 false detected photons out of ∼470 000.

To estimate the systematic shift induced by this effect,
we changed the threshold value such that 180 (210) photons
were transferred from dark to bright for the two experiments.
We found a systemic error of ε = −6 × 10−4 for both ex-
periments. This value is small compared to our measurement
uncertainty.

APPENDIX B: EXTRACTION OF POLARIZABILITIES

The matrix elements that we obtained in this work as well
as extracted from other measurements [14–16] can also be
used to improve knowledge of the 4s and 3d j polarizabili-
ties. These quantities are of particular interest due to their
relevance in the determinations of the black-body radiation
shift in the Ca+ clock [4,28]. The valence static scalar po-
larizability α0(v) of an atom with one valence electron v is

given by

α0(v) = 2

3(2 jv + 1)

∑
k

|〈v||D||k〉|2
Ek − Ev

, (B1)

where |〈v||D||k〉 is a reduced electric-dipole matrix element
and the indices k range over the np states for the 4s electron
and over the np and n f states for the 3d electron. The 4s-4pj

contributions dominate the 4s value so increased precision of
the matrix elements improves the 4s polarizability. Results
obtained with the matrix elements from this work, Ref. [14],
and combination of the two are listed in columns A, B, and C
of Table IV, respectively. Theory values from [4] are listed
for comparison. Relative uncertainties in the polarizability
contributions are twice the uncertainties of the corresponding
matrix elements. When values are correlated such as in the
uncertainties in the 4s-4p1/2 and 4s-4p3/2 matrix elements ex-
tracted from the same work, we linearly add the uncertainties.

The differential scalar polarizability for the 4s-3d5/2 clock
transition was measured in [28] to be −44.079(13) a.u.
We use this value and the ground-state polarizabilities from
Table IV to extract a value of the 3d5/2 scalar polarizability,
listed in the columns A, B, and C last row of Table IV. All
values are in agreement with the theory [4], validating theory
calculations obtained using the same method for similar sys-
tems.

We also used the 4p-3d matrix elements extracted in this
work to evaluate 3dj scalar and tensor polarizabilites, as
well as provide a consistency check of the 3d5/2 static value
obtained from the [28] measurement that was presented in
Table IV. Tensor polarizabilities are given by

α2(v) = (−1) jv

√
40 jv (2 jv − 1)

3( jv + 1)(2 jv + 1)(2 jv + 3)

×
∑

k

(−1) j

{
jv 1 j
1 jv 2

} |〈v||D||k〉|2
Ek − Ev

, (B2)

where the curly brackets stand for the Wigner 6 j symbol. The
results are given in Table V. The scalar 3d5/2 value obtained
using this method is in agreement with the results given in
Table IV.

TABLE V. Ca+ 3d static scalar (α0) and tensor (α2) polarizabilities (in a.u.) obtained with the matrix elements from this work (column A),
Ref. [14] (column B), and combination of the two (column C). The other contributions are taken from [4].

State Contr. α0 α2

A B C A B C

3d3/2 3d3/2 − 4p1/2 19.16(14) 18.97(7) 18.97(7) −19.16(14) −18.97(7) −18.97(7)
3d3/2 − 4p3/2 3.74(3) 3.71(1) 3.74(3) 2.99(3) 2.97(1) 2.99(3)

Other [4] 9.01(21) 9.01(21) 9.01(21) −1.20(4) −1.20(4) −1.20(4)
Total 31.91(27) 31.69(23) 31.72(22) −17.37(16) −17.20(9) −17.18(8)

3d5/2 3d5/2 − 4p3/2 22.69(17) 22.46(8) −22.69(17) −22.46(8)
Other [4] 9.02(17) 9.02(17) −1.73(4) −1.73(4)

Total 31.71(24) 31.48(19) −24.42(17) −24.19(9)
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