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Frequency shifts due to Stark effects on a rubidium two-photon transition
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The 5S1/2 → 5D5/2 two-photon transition in Rb is of interest for the development of a compact optical atomic
clock. Here we present a rigorous calculation of the 778.1-nm ac Stark shift [2.30(4) × 10−13(mW/mm2)−1]
that is in good agreement with our measured value of 2.5(2) × 10−13(mW/mm2)−1. We include a calculation
of the temperature-dependent blackbody radiation (BBR) shift, and we predict that the clock could be operated
either with zero net BBR shift [T = 495.9(27) K] or with zero first-order sensitivity [T = 368.1(14) K]. Also
described is the calculation of the dc Stark shift of 5.5(1) × 10−15/(V/cm2) as well as clock sensitivities to
optical alignment variations in both a cat’s eye and a flat mirror retroreflector. Finally, we characterize these
Stark effects, discussing mitigation techniques necessary to reduce final clock instabilities.
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I. INTRODUCTION

Narrow-line transitions can be realized through two-photon
spectroscopy to explore a wide array of scientific phenomena.
Two-photon transitions have been successfully leveraged for
measuring fine and hyperfine structures [1], Zeeman [2] and
Stark [3] splittings, and hot vapor collisional effects [4,5], and
are important in precision hydrogen spectroscopy [6]. A com-
mon technique in two-photon spectroscopy is the degenerate
two-photon method, which uses photons derived from the
same source, resulting in identical frequencies. The advantage

of using degenerate photons in two beams of opposite
−→
k

vectors is that all atoms, regardless of velocity, can contribute
to a Doppler-free signal [1,7–10]. As employed here [11] the
Rb 5S1/2 → 5D5/2 transition can be leveraged to create a high
stability optical clock with a simple vapor cell architecture,
without the need for laser cooling, offering an alternative to
saturated absorption systems such as molecular iodine [12] or
pulsed optically pumped microwave systems [13–15]. Offer-
ing a simpler and more compact approach than more com-
plicated (albeit higher stability) optical lattice clocks [16–21],
Doppler-free degenerate two-photon spectroscopy provides an
appealing architecture on which to build a compact optical
atomic frequency standard [11,22,23] and has already shown
promise for very small packaging [24].

The two-photon transition in Rb can be driven with two
degenerate 778.1-nm photons, which can be generated either
directly with a 778.1-nm laser diode or through second-
harmonic generation of mature telecommunications C-band
lasers at 1556.2 nm [11]. The relatively small virtual state
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detuning (see Fig. 1) results in significant atomic excitation
rates at modest optical intensities [25–27], which allows for
a high signal-to-noise ratio of the 420-nm fluorescence, as
shown in Fig. 1, due to the simple detection scheme with spec-
tral filtering of the incident probe beam from the fluorescence
signal. Fractional frequency instabilities of <4 × 10−13/

√
τ

up to 10 000 s have been measured, and operation with
increased signal-to-noise ratio has shown short-term stability
of 1 × 10−13 at 1 s [11]. This performance is comparable
to other commercially available compact clocks, specifically
laser cooled microwave Rb compact clocks, the fractional
frequency instability of which is <8 × 10−13/

√
τ [28], and

the current global position system rubidium atomic frequency
standard, the instability of which is <2 × 10−12/

√
τ [29] over

the same time frame.
While laboratory based optical lattice systems provide

the highest stability [16–21] and progress towards portable
lattice clocks is ongoing [30], a more compact, transportable
lattice clock has yet to be fully realized. However, the optical
rubidium atomic frequency standard (O-RAFS) has potential
to meet current needs for compact frequency standards the
stabilities of which exceed active hydrogen maser capabilities
[31] and fractional frequency instabilities <1 × 10−13/

√
τ .

Mitigation of the ac Stark shift will be an integral component
in achieving these ambitious instability goals. Unlike their lat-
tice clock counterparts, which leverage well-known “magic”
wavelengths [32,33] to eliminate this light shift, vapor cell
clocks use no common light shift mitigation techniques. Be-
cause the atoms are sensitive to the average intensity across
the vapor, imperfect or unstable optical alignment can also
lead to Stark shift fluctuations and clock instabilities. More-
over, since the atomic vapor is heated to increase signal-
to-noise ratio, the atomic vapor is immersed in blackbody
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FIG. 1. (a) The differential polarizability displayed in atomic
units of the 5S1/2 → 5D5/2 transition as a function of wavelength
as calculated by Eq. (2). (b) Partial energy-level diagram of Rb. The
virtual state, through which the two-photon transition is excited, is
denoted by a horizontal dashed line. In the degenerate case, ω1 = ω2,
the virtual state is 2 nm detuned from the 5P3/2 state. The cascade
decay path 5D5/2 → 6P3/2 → 5S1/2 results in the emission of a
420-nm photon, which we detect to observe the two-photon
resonance.

radiation (BBR) [34–36]. Normally BBR is treated as a dc
shift as the blackbody spectrum is far off resonance from the
atomic transitions. However, the 5D5/2 state in Rb has reso-
nant transitions that are well within the blackbody spectrum,
requiring calculation as an ac Stark effect. Careful calcula-
tions and measurements of both the ac and dc Stark shifts are
required to make predictions of clock performance to deter-
mine feasible clock instability goals and decide whether more
complicated Stark shift mitigation techniques are required.

The paper is organized as follows: Sec. II A details a calcu-
lation of the ac Stark shift at 778.1 nm, Sec. II B calculates
misalignment contributions to the ac Stark shift, Sec. II C
describes a measurement of the ac Stark shift at 778.1 nm,
Sec. III investigates a two-photon two-color approach to ex-
citation of the atom, and Sec. IV calculates the blackbody
radiation shift for the two-photon transition.

II. STARK SHIFT AT 778.1 nm

A. Calculation

Although many environmental variables impact the clock
instability of O-RAFS, the inherently large ac Stark shift mo-
tivates the most difficult requirements. Careful calculation and
direct measurement of the ac Stark shift magnitude are pivotal
to understanding the overall impact on clock performance.
The ac Stark shift can be written as [37]

δν(r, z) = �α

2cε0h
I (r, z), (1)

where h is Planck’s constant, c is the speed of light, ε0 is the
permittivity of free space, I (r, z) is the laser intensity, z is the
optical axis of the beam, r completes the cylindrical coordi-
nate system, and �α is the differential atomic polarizability
between the two clock states and will need to be calculated.
Although the atomic vapor will absorb light from the beam
the scattering rate on resonance for the two-photon transition
is small, and the laser intensity along the propagation axis can
be approximated as constant, I (r, z) ≈ I (r).

The rank-2 atomic polarizability tensor can be separated
into three irreducible components: the scalar (trace), the vec-
tor (free symmetric), and the tensor (antisymmetric) polariz-
abilities. The two-photon transition is pumped with linearly
polarized light, yielding zero vector shift, and each hyperfine
state is addressed uniformly, leaving the atom orientation
independent, netting zero tensor shift. The remaining scalar
term is written below in atomic units [38,39]:

α(ω, J ) = − 2

3(2J + 1)

∑
J ′

ωJ ′,J |〈J|d|J ′〉|2
ω2

J ′,J − ω2
. (2)

〈J|d|J ′〉 is the dipole matrix element the resonant frequency of
which is ωJ ′,J ; J and J ′ are the associated angular momentum
quantum numbers.

Final calculation of Eq. (2) uses the finite basis of B-splines
as outlined in [40]. Tables I and II summarize the states and
extra considerations included in the polarizability calculation,
displaying the transition energy difference, the dipole matrix
elements, and the Einstein A coefficients calculated from
(unless stated otherwise) [49–51]

AJ,J ′ = 2ω3(eca0〈J|d|J ′〉)2

3ε0hc3(2J + 1)
, (3)

where ec is the electron charge and a0 is the Bohr radius.
A large number of the parameters listed in Table I originate
from Safronova et al. [41]; however, the 5S1/2 → 5P1/2 and
5S1/2 → 5P3/2 dipole matrix elements are calculated utiliz-
ing measured lifetimes [43–46]. The final matrix elements
were calculated utilizing the method described in [41]; these
elements only account for a small fraction of the overall
differential atomic polarizability. Uncertainties in the matrix
elements were estimated according to [52,53]. A majority
of the energy levels and uncertainties were obtained from
[42]. However, the energy levels for the (9–13)F states were
calculated utilizing quantum defect theory (QDT) with a cor-
rection accounting for slight discrepancies between observed
and predicted energy levels. QDT generalizes that energy
deviations from the Rydberg atom can be written

E = A

(n − d )2
, (4)

where E is the energy, n is the principal quantum number, and
d is the quantum defect. Equation (4) can be used to calculate
the energies and thus the transition frequencies subtracting the
result from the Rb ion limit in [54]. Necessary elements for the
calculation are the Rydberg constant substituted for A from
[55] and the defects for Rb, which are S = 3.13, P = 2.64,
D = 1.35, and F = 0.016 [56]. The uncertainty of the energy
levels is extrapolated from lower states.
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TABLE I. Values for the reduced electric-dipole matrix elements, 〈J|d|J ′〉, taken from [41], are presented in a.u., the transition energies are
taken from [42], and the Einstein A coefficients are calculated utilizing Eq. (3), except as noted. The chosen sign convention yields negative
energies for the 5D5/2 → 5P3/2 and 5D5/2 → 6P3/2 transitions, indicating that 5D5/2 is the higher state.

Transition 〈J|d|J ′〉 Energy (cm−1) Aki (Mc/s) Transition 〈J|d|J ′〉 Energy (cm−1) Aki (Mc/s)

5S1/2 → 5P1/2 4.233(6) 12578.950(2) 36.129(52)a 5D5/2 → 6F5/2 1.373(22)e 4924.48(2) 0.076(2)
5S1/2 → 5P3/2 5.979(9) 12816.545(2) 38.12(13)b 5D5/2 → 7F5/2 0.871(38)e 5738.23(2) 0.048(4)
5S1/2 → 6P1/2 0.3235(9)c 23715.081(10) 1.498(8) 5D5/2 → 8F5/2 0.641(24)e 6266.12(2) 0.034(3)
5S1/2 → 6P3/2 0.5239(8)c 23792.591(10) 1.873(6) 5D5/2 → 9F5/2 0.513(26)e 6629(3) 0.026(3)
5S1/2 → 7P1/2 0.101(5)d 27835.02(1) 0.223(22) 5D5/2 → 10F5/2 0.440(22)e 6889(3) 0.021(2)
5S1/2 → 7P3/2 0.202(10)d 27870.11(1) 0.447(44) 5D5/2 → 11F5/2 0.450(23)e 7080(3) 0.024(2)
5S1/2 → 8P1/2 0.059(3)d 29834.94(1) 0.094(10) 5D5/2 → 12F5/2 0.472(71)e 7225(3) 0.028(8)
5S1/2 → 8P3/2 0.111(6)d 29853.79(1) 0.166(18) 5D5/2 → 13F5/2 0.478(72)e 7338(3) 0.030(9)
5D5/2 → 5P3/2 1.999(70)d −12886.95(5) 2.89(20) 5D5/2 → 4F7/2 30.316(64)e 1088.59(2) 0.300(1)
5D5/2 → 6P3/2 24.621(79)d −1910.907(52) 1.428(8) 5D5/2 → 5F7/2 11.24(32)e 3574.27(2) 1.461(83)
5D5/2 → 7P3/2 13.82(33)d 2166.61(2) 0.984(47) 5D5/2 → 6F7/2 6.140(97)e 4924.46(2) 1.140(36)
5D5/2 → 8P3/2 3.292(11)d 4150.29(2) 0.392(3) 5D5/2 → 7F7/2 3.90(17)e 5738.22(2) 0.726(63)
5D5/2 → 9P3/2 1.691(85)e 5266.69(2) 0.212(21) 5D5/2 → 8F7/2 2.87(11)e 6266.12(2) 0.512(39)
5D5/2 → 10P3/2 1.099(55)e 5957.66(2) 0.129(13) 5D5/2 → 9F7/2 2.29(12)e 6629(3) 0.388(41)
5D5/2 → 11P3/2 0.799(40)e 6415.02(2) 0.085(8) 5D5/2 → 10F7/2 1.968(98)e 6889(3) 0.321(32)
5D5/2 → 12P3/2 0.627(94)e 6733.54(6) 0.061(18) 5D5/2 → 11F7/2 2.01(10)e 7080(3) 0.365(4)
5D5/2 → 13P3/2 0.578(87)e 6964.13(6) 0.057(17) 5D5/2 → 12F7/2 2.11(32)e 7225(3) 0.425(129)
5D5/2 → 4F5/2 6.779(14)e 1088.62(2) 0.020(1) 5D5/2 → 13F7/2 2.14(32)e 7338(3) 0.429(128)
5D5/2 → 5F5/2 2.513(72)e 3574.29(2) 0.097(6)

aLifetime measured in [43–45].
bLifetime measured in [43–46].
cMatrix elements measured in [47].
dMatrix element calculated in [41].
eMatrix elements derived using the method described in [41].

The differential polarizability was calculated for a range of
incident wavelengths shown in Fig. 1. Calculation of the ac
Stark shift at 385.284 THz yields a fractional frequency shift
of 2.30(4) × 10−13/(mW/mm2).

TABLE II. Contribution to the atomic polarizability from the
atomic core and continuum in atomic units. These numbers were
included in the final calculation of ac and dc Stark shift.

Contribution Static scalar polarizabilitya

α5S1/2 (c) 9.1
α5S1/2 (tail) 1.24
α5D5/2 (c) 9.0
α5D5/2 (>7P3/2) 88(0)
α5D5/2 (>6F5/2) 13(0)
α5D5/2 (>13F7/2) 100(0)

Contribution Dynamic scalar polarizability
at λ = 778.1 nm

α5S1/2 (c) 8.7
α5S1/2 (tail) 0.5
α5D5/2 (c) 9.0
α5D5/2 (>13P3/2) −4(74)
α5D5/2 (>13F5/2) −1.8(5)
α5D5/2 (>13F7/2) −33(110)

aPolarizability numbers are taken from [48].

Equation (1) shows an ac Stark shift dependence on lo-
cal intensity of the laser electric field. The atomic vapor
effectively samples the laser intensity distribution, and the
fluorescence spectrum is shifted on average by

δν = �α

2cε0h
Itot, (5)

where Itot is the spatial weighted average intensity,

Itot =
∫

ItotI1I2dV∫
I1I2dV

, (6)

with the total intensity as the sum of the two beam profiles
Itot = I1 + I2. The weighting function I1I2 is utilized as a
measure of the intensity in the two-photon region, i.e., the
beam overlap in the vapor cell, which is the main contributor
to the ac Stark shift. Equation (5) details that variations in laser
intensity will cause a clock shift, and these can arise from
laser power fluctuations as well as slight optical alignment
variations.

B. Alignment shift

Typical optic mounts allow slight tip/tilt adjustments
which are required for control of the beam. In the O-RAFS
system, variations in alignment affect the total intensity of the
two-photon excitation, causing an ac Stark instability. This
section examines slight angular variations of the laser light
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FIG. 2. Simple geometric alignment diagram for a flat mirror
(a) and a cat’s eye (b). In each case all distances were written in terms
of the focal length of the lens utilized in the cat’s eye: N1, N2, �d ,
and � f �Xi are unitless parameters. �Xi f , displacement of the initial
Gaussian beam from the optical axis; θ , angular misalignment of the
initial beam; ξ , angular misalignment of the retroreflecting optic; β,
angular misalignment of the mirror and lens in the cat’s eye optic;
f �d , displacement from optimal placement of the mirror in the cat’s
eye optic; N1 f , distance from the fiber launcher to the rear of the
vapor cell; N2 f , distance from the vapor cell to the retroreflector; a,
vapor cell length; f � f , absolute deviation of the cat’s eye mirror
from optimal radius of curvature.

emitted from the fiber launcher, as well as slight variation of
the retroreflector, and calculates the variation of ¯Itot. Figure 2
presents what a small angular misalignment would look like
for both a flat mirror [Fig. 2(a)] and a cat’s eye retroreflec-
tor [Fig. 2(b)]. These two separate retroreflectors have been
successfully employed in the experimental apparatus. The
optimal retroreflector can be determined through calculation
of Eq. (6).

Normally, the intensity of a Gaussian beam after interac-
tion with a series of optical components can be calculated us-
ing the ABCD or M matrices and the complex beam parameter
q [39,57]. However, the M matrices require that the optical
elements are placed normal to the optical axis, which is not
true for a general case. Instead, we use the extended ray trace

TABLE III. The extended ray trace matrices used to calculate
misalignment effects from the cat’s eye optic.

Description M Matrices

Free-space propagation of
distance N

⎛
⎝1 N 0

0 1 0
0 0 1

⎞
⎠

Thin lens with focal length f
at angle ξ

⎛
⎝ 1 0 0

−1/ f 1 ξ

0 1

⎞
⎠

Concave mirror, radius
f (1 + � f ), at angle ξ + β

⎛
⎝ 1 0 0

2/ f (1 + � f ) 1 ξ + β

0 0 1

⎞
⎠

Flat mirror, at angle ξ

⎛
⎝1 0 0

0 1 ξ

0 0 1

⎞
⎠

matrices [57] (see Table III):⎛
⎜⎝

A B δ

C D γ

0 0 1

⎞
⎟⎠, (7)

where δ is a displacement from the optical axis, γ is a rotation
of the optic from normal incidence, and the ABCD elements
are unchanged.

In the flat mirror case, the Gaussian beam originating from
the fiber launcher can be written as

Iincident = I0e−2(x2+y2 )/w2
0 , (8)

with w0 the 1/e2 intensity radius. The extended M matrix for
the beam as it reenters the vapor cell after reflection off the
mirror is

M =

⎛
⎜⎝

1 2N2 f N2 f ξ

0 1 ξ

0 0 1

⎞
⎟⎠. (9)

The complex beam parameter q [39,57],

q = q1 + iq2 = Aw2
0π i/λ + B

Cw2
0π i/λ + D

, (10)

can be used to to determine the retroreflected beam profile as
it reenters the cell. Substituting the parameters from Eq. (9)
yields

q = w2
0π i/λ + 2N2 f , (11)

where λ is the wavelength. Calculating the retroreflected beam
from these q parameters and using the approximation that
the free-space propagation lengths are less than the Rayleigh
length and thus (q1/q2) � 1 yields

Iretro = I0e−2(x2+y2+2x(N2 f +z)(ξ−θ )+(N2 f +z)2 (ξ−θ )2 )/w2
0 (12)

for the retroreflected beam. Equation (6) is calculated and the
normalized weighted average, I , is given by

I = Itot

Itot(ξ = θ/2)

=
√

3

2

erf[2(y1 + y2)/
√

3] − erf (2y2/
√

3)

erf (y1 + y2) − erf (y2)
, (13)

where y1 = a(ξ − θ )/ω0 and y2 = M f (ξ − θ )/ω0. This re-
sult is plotted in Fig. 3 for the experimental setup described
in [11]. The M matrix formulation leverages the small angle
approximation where ξ, θ � 1. If the higher-order terms are
ignored, the weighted average becomes

I ≈ 1 −
(
a2 + 3aN2 f + 3N2

2 f 2
)
(ξ − θ )2

9ω2
0

, (14)

which has been expanded to second order in θ , ξ , and their
cross terms.

The final desired quantity is the sensitivity of the average
weighted total intensity to angular misalignment in each optic,
or the derivative of the intensity with respect to the angular
variable. Taking the derivative of Eq. (14) with respect to
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FIG. 3. (a) Simplified case where �d = 0. Clearly, the fiber
launcher angle is more sensitive than the other misalignment vari-
ables in the cat’s eye case and either angular misalignment in the
flat mirror case. (b) Numerically calculated average intensity as a
function of �d for incident angular misalignment of θ = 0 and 0.001
for �d 	= 0 as well as the simplified case derived in the Appendix.
The numerical result with θ = 0 and the simplified case in Eq. (A4)
agree over a 0.5% change in cat’s eye optic displacement (the dotted
blue line is obscured by the solid black line).

either θ or ξ yields the same result:

dI

dθ
≈ −2

(
a2 + 3aN2 f + 3N2

2 f 2
)
θ

9ω2
0

. (15)

The cat’s eye calculation is more challenging. A cat’s eye
retroreflector consists of a convex lens with a focal length f ,
and a concave mirror with a radius of curvature f , placed at
the focus of the lens. An ideal cat’s eye provides an antipar-
allel retroreflected beam [58], whereas misalignment in the
fiber launcher will yield nonparallel beams in the case of a flat
mirror reflector. Although the incident beam can be recycled
and the q-parameter formulation is the same, the M matrix
becomes more complex. Various misalignment mechanisms in
the cat’s eye optic calculation, shown in Fig. 2, include small
deviations of the location of the mirror [now located at f (1 +
�d )], the radius of curvature of the mirror [ f (1 + � f )], and
also allowing the lens and mirror to have a misalignment angle
β between them. The following assumptions are enforced:
ξ � 1, θ � 1, �d � 1, � f � 1, �Xi � 1, β � 1, and the
initial beam is collimated. Three special cases were examined,
and details on each special case can be found in the Appendix:
(1) analytic derivation with �d = 0; (2) one specific numeric
case with �d 	= 0; and (3) analytic derivation with �d 	= 0,
�Xi = 0, β = 0, and � f = 0.

Figure 3 shows the variation in average intensity as a
function of �Xi, β, ξ , and θ with all other misalignment
variables set explicitly to zero. The fiber launcher angular
sensitivity dominates in this simple case. As in the flat mirror
case the sensitivity of the average intensity with respect to
angular misalignments of the fiber launcher and retroreflector

is the desired quantity. In the cat’s eye case these solutions
differ:

dI

dθ
≈ −2 f 2(N1 + N2)[ξ + (N1 + N2)θ ]

3ω2
0

, (16)

dI

dξ
≈ −2 f 2[ξ + (N1 + N2)θ ]

3ω2
0

, (17)

where � f = 0, β = 0, and �Xi = 0. It is apparent that
Eq. (16) is larger than Eq. (17) by a factor of N1 + N2.
By design, the cat’s eye suppresses angular motion of the
retroreflector optic over the flat mirror, but at the expense of
sensitivity to angular misalignment of the fiber launcher.

The choice of retroreflector will depend on environmental
conditions. For a fully dynamic environment, the flat mirror
case might be the best choice; however, if the collimator
can be rigidly mounted, the cat’s eye retroreflector is ideal
for reducing alignment variations. Moreover, reduction of
alignment sensitivity can be achieved by reducing the laser
intensity or increasing the beam waist.

C. Measurement

Measuring the ac Stark shift is important to confirm the ac-
curacy of the theoretical result. An experiment was designed
specifically to measure the effects of the ac Stark shift on the
output clock frequency. Two lasers were utilized in the Stark
shift measurement (Fig. 4): a Ti:sapphire laser tuned slightly
away from the two-photon resonance to 385 287.8 GHz,
which is far enough from the resonant two-photon excitation
frequency to introduce no measurable vapor excitation, and
the clock laser tuned to be on resonance with the two-photon
transition, described in [11]. After amplification and subse-
quent second-harmonic generation of 778.1 nm, the clock
laser and the Ti:sapphire laser separately pass through a half
wave plate followed by a quarter wave plate. The remaining
light in each beam is subsequently sent through a variable
optical attenuator (VOA), which is used for laser power sta-
bilization. Each beam then passes through another half wave
plate and polarizer, properly aligning the polarization to fiber
couple each beam into two separate arms of a polarization
maintaining (PM) 2 × 2 50:50 fiber splitter. A portion of the
Ti:sapphire light is sampled before fiber coupling. This signal
is used to feed back to the Ti:sapphire VOA and stabilize
the optical power coupled into the beam splitter. One arm of
the splitter is sent to a detector used for independent power
measurements. The second arm of the splitter is sent to the
vapor cell assembly through a 2 × 2 99:1 PM fiber splitter.
Up to 30 mW of Ti:sapphire light and 30 mW of clock laser
light were delivered to the vapor cell assembly.

The vapor cell assembly is enclosed in a 5-mm-thick
single-layer μ-metal magnetic shield to reduce Zeeman shifts
and broadening. The atomic vapor is regulated to a constant
temperature, ideally 100 ◦C. The final vapor cell operational
temperature is achieved though use of a dual stage temper-
ature apparatus. The first temperature state is regulated to
60 ◦C, “Temp Stage 1” in Fig. 4, providing a stable reference
for the final stage regulated to 100 ◦C, “Temp Stage 2” in
Fig. 4. The vapor cell, which is a rectangular prism with
dimensions 5 × 5 × 25 mm, containing >99% isotopically
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FIG. 4. An optical and simplified electrical schematic of the Rb two-photon frequency standard as described in the text. Also shown is
a computer animated drawing of the rubidium atomic reference. EOM, electro-optic modulator; PMT, photomultiplier tube; VOA, variable
optical attenuator; ISO, optical isolator; EDFA, erbium doped fiber amplifier; SHG, second harmonic generator; PID, proportional integral
differential lock mechanism.

enriched 87Rb, is placed such that it has a 1-K thermal gradient
along its length, forcing the cell’s cold spot on the pinched-off
fill tube of the borosilicate glass cell. The vapor cell is oriented
at Brewster’s angle with respect to the incident laser beam
to reduce stray reflections. The vapor cell assembly is further
described in [11].

The two witness photodiodes, a Thorlabs SM05PD1A, la-
beled “Witness 1” in Fig. 4, and a Thorlabs PDA36A, labeled
by the total power detector in Fig. 4, were independently
calibrated to both a Thorlabs PM160 and an Ophir PD300-TP
handheld silicon power meter at the “X” marked in Fig. 4.
Differences in the calibrations are included in the combined
statistical and systematic error bars of Fig. 5.

After the clock laser is stabilized to be on resonance, the
Ti:sapphire laser power is varied using the VOA in its optical
train. The frequency shifts are measured and averaged over
100 s and are reported in Fig. 5. The data were fit with an
orthogonal distance regression algorithm which weights the
error bars in both the x and y coordinates, yielding a fractional
frequency fit of −2.5(2) × 10−13 (mW/mm2)−1 with a re-
duced χ2 of 1.57. A gray shaded region shows associated error
with the fit. The theoretical value is plotted on the same curve
and shows good agreement with the experimentally measured
values.

III. TWO-COLOR APPROACH

Reduction of the ac Stark shift would be a powerful tool to
reach the final long-term instability goal of 1 × 10−15 at one
day. Alternative to the outlined approach in [11], two lasers
of different frequencies could be utilized to excite the atom
in a two-color approach described in [22,59,60]. However,

this approach leads to residual Doppler broadening, because

in the atomic frame the
−→
k vectors of the excitation photons

no longer match. The increased spectral width requires a

FIG. 5. Experimentally measured 778-nm ac Stark shift for
a (0.66 ± 0.05)-mm beam plotted in terms of peak intensity.
An orthogonal distance regression considering error bars in both
x and y coordinates determined a frequency shift of −2.5(2) ×
10−13 (mW/mm2)−1 with a reduced χ 2 of 1.57. The calculated ac
Stark shift is also shown in blue.
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FIG. 6. Shown above is the calculated Doppler broadened peak
(red solid line) and the normalized excitation rate (blue dashed line)
for a two-photon transition where the second photon is constrained to
keep the total transition on resonance. The gray shaded region shows
a choice of photon pair that will not lead to ac Stark cancellation.

higher excitation rate to achieve similar clock performance
motivating the choice to operate this two-color scheme near
resonance (see Fig. 6). Short-term stability has been shown to
remain unchanged in this design. However, clock stability on
timescales exceeding a few hours has not yet been measured.
Instabilities on longer timescales can often be driven by tech-
nical noise, i.e., lock-point errors, reference voltage drifts, de-
tector responsivity drift, etc. Broadening the transition could
make control of these noise sources more difficult.

An alternative two-color approach introduces a second
laser (off resonance from the virtual and intermediate states)
to the degenerate two-photon Doppler-free experiment. The
wavelength of this mitigation laser would be chosen such
that the differential polarizability sign is opposite that of a
778.1-nm photon. Normally, the clock laser intensity is mea-
sured and stabilized to a voltage reference. This scheme is sen-
sitive to stabilities of the detector and voltage reference as well
as drift in each device. The two-color approach would allow
for the laser intensities to be stabilized with respect to each
other, reducing requirements on detector sensitivities and drift
as well as eliminating a need for a precise voltage reference.
Unfortunately, frequency drifts in the mitigation laser would
cause variations in the ideal ratio, imposing requirements
on the frequency stability. Volumetric Bragg grating stabi-
lized lasers developed for Raman spectroscopy experiments
[61–64] offer potential options for mitigation lasers. Table IV
displays three possible mitigating wavelengths, the clock laser
and calculated shifts. For a system the purpose of which is to
minimize the required operational power while maintaining
high short-term clock stability, the mitigation laser at 785 nm
is the preferred choice.

Use of a mitigation laser could ease the challenge of power
stabilizing the probe laser. O-RAFS has already demonstrated
that clock laser power can be stabilized to 0.1% [11]. Current
requirements on laser stability, however, require absolute laser
stabilization to 0.01%. If the cancellation can be maintained
at a 0.1% level, stabilization of the ac Stark shift can be

TABLE IV. Proposed wavelengths, associated shifts, and re-
quired power (mW) per mW of 778 nm for an ac Stark mitigation
laser.

Wavelength ac Stark shift Power multiplier
(nm) [Hz/(mW/mm2)] ×P778

1556.2 −16.5 10.8
808 −30.9 5.7
785 −62.5 2.9
778 178.5

maintained at 0.01%, allowing for final clock stability of
1 × 10−15 to be achieved.

IV. BLACKBODY RADIATION SHIFT

Plank’s law describes the electromagnetic radiation ema-
nating from an object at temperature T . The time averaged
intensity of the radiated field can be expressed [16] as

〈E (ω)〉2 = h̄

π2ε0c3

ω3

eh̄ω/kBT − 1
. (18)

An atom in a bath of electromagnetic radiation will experience
an ac Stark shift. Equation (18) describes an electromagnetic
field the intensity of which is dependent on the source tem-
perature. Thus, fluctuating temperatures of a source that is
radiatively coupled to the atoms can cause a clock shift via
temperature driven ac Stark interactions. The shift arising
from BBR can be calculated by

δν = 1

2h

∫ ∞

0
�α(ω)E (ω)2dω, (19)

where �α(ω) = αe − αg. Oftentimes, the resonance frequen-
cies between atomic states connected to the ground and ex-
cited states involved in the clock transition are far from the
blackbody spectrum. In this case the blackbody spectrum can
be treated as a static polarizability field and Eq. (19) can be
simplified to be

δν = �α

2h

∫ ∞

0
E (ω)2dω ≈ �α

2h

(
8.3

V

cm

)2

(T/300 K )4.

(20)

Systems that require higher precision include a small dynamic
contribution, η, to account for frequency dependence [34–36].
However, for the Rb two-photon transition the wide-band
BBR spectrum has significant overlap with the 5D5/2 →
4F7/2,5/2 transitions at operational temperatures, making it
necessary to fully integrate Eq. (19).

This integral was calculated numerically in two separate
ways. First, the polarizability was calculated using Eq. (2) and
the integral was performed using Cauchy’s principle value.
The second method [39] introduced the decay rate, � j , of each
transition found in [48,65]:

α(ω, J ) = − 2

3(2J + 1)h̄

∑
J ′

ωJ ′,J |〈J|d|J ′〉|2(ω2
J ′,J − ω2

)
(
ω2

J ′,J − ω2
)2 + �2

J ω
2

.

(21)
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FIG. 7. (a) Blackbody radiation intensity (blue) as a function of
angular frequency for and environment at 300 K (dash-dotted line),
400 K (dotted line), and 500 K (dashed line). Also shown in (a) is the
differential polarizability (black solid line) as a function of angular
frequency. Along the top of (a) are labeled the intermediate states
that connect to 5D5/2 and the spectrum of which overlaps that of
a blackbody at operational temperature. (b) The state shifts and the
total BBR shift for the two-photon transition are plotted as a function
of temperature.

When the polarizability is written this way the function
no longer diverges in the resonant cases. Equation (19) was
then calculated with a deterministic adaptive integration tech-
nique. BBR shifts were examined under nominal operational
conditions, specifically looking at the shifts produced in the
temperature range of 300 to 500 K. The fractional differences
for each of these calculations for both the excited state and
ground state were less than 1 × 10−5.

The resultant BBR shift of the 5S1/2 ground state,
−2.68(2) Hz, the polarizabilities of which are far off res-
onance for the examined temperature range, yields a result
that is consistent with the Farley and Wing [66] calcula-
tions of −2.789 Hz at 300 K. The shift also is consistent
with a T 4 temperature dependence and a static polarizabil-
ity approximation. More interesting were the results from
integration over the excited-state polarizabilities. At 300 K
our value of −158.4(12) Hz differed from the Farley and
Wing calculation of −181.4 Hz, likely due to differences
in polarizability values. Regardless of this difference, the
5D5/2 state has resonant polarizabilities in the temperature
range of interest. Not only was the calculated ac Stark shift
no longer monotonic, the differential polarizability changed
sign (see Fig. 7). This result is not consistent with either a
T 4 behavior or the static polarizability approximation. The
calculation yields two interesting magic temperatures. Around
495.9(27) K, δν = 0, and around 368.1(14) K the BBR
shift is insensitive to changes in environmental temperature.
Clock operation hoping to achieve greater stability could
operate around 368 K to suppress environmental temperature

dependence. However, to benefit from this reduced tempera-
ture sensitivity, the more significant temperature shift arising
from Rb collisional effects would also require mitigation
[5,11].

V. dc STARK SHIFT

The presence of unknown electric charges on dielectric
surfaces in the vicinity of the atomic sample causes a dc Stark
shift and could, at least in principle, cause a clock instability
if the charge was to slowly migrate. In fact, the buildup of
stray charge inside of a vacuum chamber on a mirror with
a piezoelectric transducer was shown to be detrimental to
the overall performance in an optical lattice clock [67]. We
calculate the dc polarizability for the Rb two-photon transi-
tion from Eqs. (1) and (2), setting ω = 0. The polarizability
of the 5D5/2 state dominates due to the presence of low-
lying resonances, and we find the induced Stark shift to be
4.27(4) Hz/(V/cm)2 by summing over the matrix elements
in Table I and inclusion of the core and continuum polar-
izabilities found in Table II. When probed with a 778-nm
laser, the two-photon frequency standard displays a fractional
sensitivity of 5.55(5) × 10−15 /(V/cm)2.

Thus, in principle, a small electric field on the order of
1 V/cm with a slow time wander could cause a significant
long-term stability for this frequency standard. However, since
the glass vapor cell is embedded in a block of copper for
thermal control, we expect this effect to be minimal. The
inclusion of a UV LED to remove the charge [67] is one
simple way to rule out this possibility in future investigations
of long-term instabilities.

VI. CONCLUSIONS

We presented a calculated ac Stark shift of 2.30(4) ×
10−13 (mW/mm2)−1 in good agreement with the measured
value of 2.5(2) × 10−13 (mW/mm2)−1. Careful examination
of alignment shows that the cat’s eye retroreflector helps
reduce sensitivity of the average intensity to variations in the
retroreflecting optic over the flat mirror reflector. However, the
cat’s eye retroreflector increases the sensitivity of the average
intensity to angular misalignments of the fiber launcher and
introduces another very sensitive misalignment variable, the
distance between the lens and mirror in the cat’s eye optic.
While effort can be made to reduce the dynamic response of
the displacement �d , care must be taken to ensure that the
average intensity signal is maximized during initial alignment.
For a dynamic system, however, the flat mirror retroreflector
might be the best choice to reduce complexity and sensitivity
to motion. Ultimately, any effort to further reduce the overall
ac Stark shift will also reduce Stark shift related alignment
sensitivities.

Two separate Stark shift mitigation techniques were dis-
cussed. Practical limitations of available power in a portable
system make the two-color, two-photon technique less appeal-
ing. However, introduction of a Stark shift canceling laser
could help reduce overall ac Stark effects and allow for system
fractional frequency instabilities as low 1 × 10−15.

The calculated BBR shift differs from extrapolated values.
The calculation results in two interesting temperatures: the
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magic tune-out temperature, where the BBR polarizability is zero, and the temperature where the sensitivity to temperature
variations is zero, effectively removing the BBR driven clock instability.
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APPENDIX: CAT’S EYE ALIGNMENT CALCULATION

Calculation of the intensity weighted average for the cat’s eye case requires the Gaussian beam profile of the retroreflected
beam. After retroreflecting off of the cat’s eye the beam reenters the vapor cell with the following M matrix parameters:⎛

⎜⎝
Xf

Yf

1

⎞
⎟⎠ = 1

1 + � f

⎛
⎜⎝

A B E

C D F

0 0 1 + � f

⎞
⎟⎠

⎛
⎜⎝

f �Xi

θ

1

⎞
⎟⎠, (A1)

where

A = −{1 + � f − 2�d[N2 + �d − N2�d + (N2 − 1)� f ]},
B = f (2[�d − N2(�d − 1)][(N2 − 1)�d − 1] + [2�d (N2 + �d − N2�d ) − 1]N1 + {2(N2 − 1)[(N2 − 1)�d − 1]

+ [2(N2 − 1)�d − 1]N2}� f ),

C = −[−1 + (N2 − 1)�d] f [(2�d − 3� f − 1)ξ − β(1 + � f )],

D = 2�d (1 − �d + � f )

f
,

E = −{1 + � f − 2�d[N2 + �d − N2�d + N1 − �dN1 + � f (N1 + N2 − 1)]},
F = �d (ξ − 2�dξ + 3� f ξ + β + � f β ). (A2)

Here we utilize the same approximations as the flat mirror case, namely, that all distances are much shorter than the incident-beam
Rayleigh length. Even leveraging this approximation yields a complicated Gaussian function. In order to simplify the analytical
solution a few special cases were examined.

(1) Setting �d = 0 yields

I = Itot

Itot(0)
= e

− f 2[2xi (1+� f )+ξ+3� f ξ+β+� f β+(N1+N2 )θ−� f θ+(N1+N2 )� f θ ]2

3(1+� f )2w2
0 . (A3)

This expression is shown in Fig. 3 and is utilized to calculate Eqs. (16) and (17).
(2) A numerical integral was performed using a quadrature method. The numerical result is displayed in Fig. 3(b).
(3) The final case studied simplified the geometry to reduce the number of free parameters. � f is known to have small

impacts on the retroreflected beam profile [58]. Changes in �Xi and θ have similar effects on the beam propagation; a similar
relationship exists between β and �d . With this in mind another analytical case was examined where �Xi = 0, � f = 0, and
β = 0. It was also necessary to expand the integrand in a Taylor series and ignore the higher-order terms before final integration,
yielding an average intensity of

I ≈ 1 − f 2ξ 2 + 2 f 2ξθ (N1 + N2) + θ2 f 2
(
N2

2 + 2N2N1 + N2
1

)
3ω2

0

+ �d

(
4N2 + a

f
+ 2N1

)

+�d2

(
4 − 4N2 + 88N2

2

9
+ 37a2

27 f 2
− a

f
+ 40aN2

9 f
− 2N1 + 32N2N1

3
+ 4aN1

3 f
+ 4N2

1
2π2ω4

0

f 2λ2

)
. (A4)

Taking the derivative of the above equation with respect to either θ or ξ yields the same result as the �d = 0 case. Figure 3(b)
shows the average intensity given above plotted with the geometry presented in [11] along with the numerical results for the
same geometry.
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