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Abstract
All-order extensions of relativistic atomic many-body perturbation theory are de-
scribed and applied to predict properties of heavy atoms. Limitations of relativistic
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many-body perturbation theory are first discussed and the need for all-order calcu-
lations is established. An account is then given of relativistic all-order calculations
based on a linearized version of the coupled-cluster expansion. This account is
followed by a review of applications to energies, transition matrix elements, and hy-
perfine constants. The need for extensions of the linearized coupled-cluster method
is discussed in light of accuracy limits, the availability of new computational re-
sources, and precise modern experiments. For monovalent atoms, calculations that
include non-linear terms and triple excitations in the coupled-cluster expansion
are described. For divalent atoms, results from second- and third-order perturba-
tion theory calculations are given, along with results from configuration-interaction
calculations and mixed configuration interaction–many-body perturbation theory
calculations. Finally, applications of all-order methods to atomic parity nonconser-
vation, polarizabilities, C3 and C6 coefficients, and isotope shifts are given.

1. Introduction and Overview

The nonperturbative treatment of relativity in atomic many-body calculations
can be traced back to the formulation of relativistic self-consistent field (SCF)
equations with exchange by Swirles (1935). The SCF equations, also referred to
as Dirac–Hartree–Fock (DHF) equations, are based on a many-electron Hamil-
tonian in which the electron kinetic and rest energies are from the Dirac equation
and the electron–electron interaction is approximated by the Coulomb poten-
tial. Numerical solutions of the DHF equations without exchange were obtained
during the years 1940–1960 by Williams Jr. (1940), Mayers (1957), and Cohen
(1960). The formulation of relativistic SCF theory by Swirles was reexamined
by Grant (1961) and the DHF equations were brought into a compact and eas-
ily used form. Numerical solutions to the DHF equations with exchange were
published by Coulthard (1967), Kim (1967), and Smith and Johnson (1967).
The Breit interaction was included in the latter two calculations (Kim, 1967;
Smith and Johnson, 1967). Desclaux (1973) published complete DHF studies of
atoms with Z = 1–120 and Mann and Waber (1973) published DHF studies of the
lanthanides, including effects of the Breit interaction. The DHF equations remain
as the starting point for relativistic many-body studies of atoms; versatile multi-
configuration DHF codes are available publically, notably the codes of Desclaux
(1975) and Grant et al. (1980).

Extensions of the DHF approximation have been developed over the past three
decades, driven by advances in several areas of experimental atomic physics.
Of particular importance in this regard are the precise measurements of energy
levels and transition moments for highly-charged ions produced in beam–foil ex-
periments, electron beam ion trap (EBIT) experiments, tokamak plasmas, and
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astrophysical plasmas (Beiersdorfer, 2003). These measurements have reached
such a high level of precision that it has become possible to detect two-loop Lamb-
shift corrections to levels in lithium-like U (Beiersdorfer et al., 2005), putting very
tight constraints on the accuracy of the underlying atomic structure calculations.
An equally important motivating factor in the development of extensions of the
DHF approximation are measurements of parity nonconserving (PNC) amplitudes
in heavy atoms, especially those designed to test the standard model of the elec-
troweak interaction and to set limits on its possible extensions (Johnson, 2003).
For the case of cesium, measurements of PNC amplitudes have reached an ac-
curacy of 0.4% (Wood et al., 1997). To make meaningful tests of the standard
model, calculations of the amplitudes must be carried out for heavy neutral atoms
to a similar level of accuracy.

One systematic extension of the DHF approximation is relativistic many-body
perturbation theory (MBPT). Relativistic MBPT studies of atomic structure start
from a lowest-order approximation in which the electron–electron interaction is
the “frozen core” DHF potential and include an order-by-order perturbation ex-
pansion (in powers of the residual interaction) of energies and wave functions.
Relativistic MBPT was used to predict properties of alkali-metal atoms from Li
to Cs in Johnson et al. (1987), where energy levels for the ground state and the
first few excited states were calculated to second order. In Johnson et al. (1987),
electric-dipole matrix elements for the principal transitions and hyperfine con-
stants were calculated through second order and included dominant third-order
corrections. Although accurate values for energies, transition matrix elements,
and hyperfine constants were obtained for Li, results for heavier alkali-metal
atoms were significantly less accurate. The ground-state energy for Cs was accu-
rate to 1.5%, while the Cs transition and hyperfine matrix elements were accurate
to about 5% as determined by comparisons with precise experimental data. Later,
complete third-order calculations of electric-dipole matrix elements, including all
third-order terms were carried out in Johnson et al. (1996) for alkali-metal atoms
and for Li-like and Na-like ions. The agreement with available experiments was
very good for lighter atoms (within experimental precision for Li and Na), but
decreased significantly for Cs and Fr.

To achieve the accuracy required for tests of the standard model in heavy atoms,
it is imperative to include contributions beyond third order in MBPT. Although
extensions to fourth order represent one possibility, the resulting calculations are
formidable; for each first-order matrix element there are four terms in second
order, 60 terms in third order, and 3072 terms in fourth order (Cannon and Dere-
vianko, 2004). Owing to this very rapid increase in computational effort with
MBPT order, one seeks alternatives to MBPT beyond third order.

One such alternative is the coupled-cluster singles–doubles (CCSD) method in
which single and double excitations of the DHF ground state are included to all
orders of perturbation theory. A nonrelativistic version of this method was used
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to calculate precise values of energies and hyperfine constants of 2s and 2p states
of Li by Lindgren (1985). A linearized, but relativistic, version of the coupled-
cluster method was later used to obtain energy levels, fine-structure intervals, and
dipole matrix elements in Li and Be+ in Blundell et al. (1989). These all-order
calculations substantially improved the accuracy of energies and matrix elements
compared to older MBPT results (Johnson et al., 1987). A nonrelativistic CCSD
calculation for Na was reported in Salomonson and Ynnerman (1991), where en-
ergies and hyperfine constants of 3s and 3p states and the 3s − 3p electric-dipole
matrix elements were calculated. Partial contributions to the 3s energy and hy-
perfine constant from triple excitations were also included in Salomonson and
Ynnerman (1991); the resulting 3s energy was accurate to 0.01% and the 3s hy-
perfine constant to 0.2%. A relativistic version of the CCSD method was applied
to calculate energy levels of alkali-metal atoms in Eliav et al. (1994) and excellent
agreement with experiment was found. A linearized version of the coupled-cluster
formalism, including single, double, and partial triple excitations (SDpT) was
used to determine atomic properties of Cs in Blundell et al. (1991), where re-
moval energies agreed with experiment to 0.5% and matrix elements agreed with
measurements to better than 1%. Properties of Na-like ions (Z = 11–16), such as
energies, transition matrix elements, and hyperfine constants were studied using
the linearized CCSD method in Safronova et al. (1998), and similar studies of
alkali-metal atoms including polarizabilities were reported in M.S. Safronova et
al. (1999).

Although we concentrate on relativistic all-order coupled-cluster methods in
this review, it should be noted that perturbation theory in the screened Coulomb
interaction (PTSI) developed by Dzuba et al. (1989a, 1989b), in which important
classes of MBPT corrections are summed to all orders, is an alternative method
that has been successfully applied to atomic structure calculations for heavy neu-
tral atoms. Moreover, for atoms with more than one valence electron, relativistic
configuration-interaction (CI) calculations in an effective Hamiltonian extracted
from the linearized SD theory, which has been developed and applied to small
systems by Kozlov (2004), is a promising alternative to CCSD methods for large
systems.

2. Relativistic Many-Body Perturbation Theory

In the simplest picture of a relativistic many-electron atom, each electron moves
independently in a central potential U(r) produced by the remaining electrons.
The one-electron orbitals φa(r) describing the motion of an electron with quan-
tum numbers a = (na, κa,ma) satisfy the one-electron Dirac equation

(1)h(r)φa(r) = εaφa(r),
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where

(2)h(r) = cα · p + βmc2 − Z

r
+ U(r).

The quantities α and β in Eq. (2) are 4 × 4 Dirac matrices. The Dirac eigenvalues
εa range through values: εa > mc2 for electron scattering states, mc2 > εa > 0
for electron bound states, and −mc2 > εa for positron states.

The point of departure for our discussions of many-electron atoms is the no-
pair Hamiltonian obtained from QED by Brown and Ravenhall (1951) and illu-
minated in Mittleman (1971, 1972, 1981), Sucher (1980). In this Hamiltonian,
the electron kinetic and rest energies are from the Dirac equation and the po-
tential energy is the sum of Coulomb and Breit interactions. Contributions from
negative-energy (positron) states are projected out of this Hamiltonian. The no-
pair Hamiltonian can be written in second-quantized form as H = H0 +V , where

(3)H0 =
∑

i

εi

[
a

†
i ai

]
,

(4)

V = 1

2

∑
ijkl

(gijkl + bijkl)
[
a

†
i a

†
j alak

]

+
∑
ij

(VHF + BHF − U)ij
[
a

†
i aj

] + 1

2

∑
a

(VHF + BHF − 2U)aa.

In Eqs. (3)–(4), a
†
i and ai are creation and annihilation operators for an electron

state i, and the summation indices range over electron bound and scattering states
only, since, as mentioned above, contributions from negative energy states are
absent in the no-pair Hamiltonian. Products of operators enclosed in brackets,
such as [a†

i a
†
j alak], designate normal products with respect to a closed core. The

summation index a in the last term in (4) ranges over states in the closed core. The
quantity εi in Eq. (3) is the eigenvalue of the Dirac equation (1). The quantities
gijkl and bijkl in Eq. (4) are two-electron Coulomb and Breit matrix elements,
respectively

(5)gijkl =
〈
ij

∣∣∣∣ 1

r12

∣∣∣∣kl

〉
,

(6)bijkl = −
〈
ij

∣∣∣∣α1 · α2 + (α1 · r̂12)(α2 · r̂12)

2r12

∣∣∣∣kl

〉
.

In Eq. (4), the core DHF potential is designated by VHF and its Breit counterpart
is designated by BHF; thus,

(7)(VHF)ij =
∑

b

[gibjb − gibbj ],
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(8)(BHF)ij =
∑

b

[bibjb − bibbj ],

where b ranges over core states. For neutral atoms, the Breit interaction is often
a small perturbation that can be ignored compared to the Coulomb interaction. In
such cases, it is particularly convenient to choose the starting potential U(r) to
be the core DHF potential U = VHF, since with this choice, the second term in
Eq. (4) vanishes. The third term in (4) is, of course, a c-number and provides an
additive constant to the energy of the atom.

It should be noted that, although the no-pair Hamiltonian is a useful start-
ing point for relativistic many-body calculations, certain small contributions to
wave functions and energies, including frequency-dependent corrections to the
Breit interaction, self-energy and vacuum-polarization corrections, and correc-
tions from crossed-ladder diagrams, are omitted in this approach. Perturbation
theory based directly on the Furry representation of QED includes all such omit-
ted effects (Sapirstein, 1998). In calculations based on the no-pair Hamiltonian,
contributions from these omitted terms are usually estimated and added as an af-
terthought. Recently, however, an energy-dependent formulation of MBPT that
includes QED corrections completely has been developed by Lindgren et al.
(2006) and applied to helium-like ions.

Let us return to MBPT and concentrate on the simplest atoms, those with a
single valence electron. For monovalent atoms, we write the lowest-order state
vector as

(9)
∣∣�(0)

v

〉 = a†
v |0c〉,

where |0c〉 = a
†
aa

†
b · · · a†

n|0〉 is the state vector for the closed core, |0〉 being the
vacuum state vector and a†

v being a valence-state creation operator. If we ignore
the Breit interaction and start our calculation using DHF wave functions for one-
electron states (U = VHF), then the lowest-order energy of the atom, obtained
from H0�

(0)
v = E(0)�

(0)
v , is

(10)E(0) = εv +
∑
a

εa,

and the first-order energy is

(11)E(1) = 〈
�(0)

v

∣∣V ∣∣�(0)
v

〉 = −1

2

∑
a

(VHF)aa.
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We see that through first order, the energy separates into a core contribution and
a valence contribution, with

(12)

E(0+1)
core =

∑
a

εa − 1

2

∑
a

(VHF)aa

=
∑
a

(h0)aa + 1

2

∑
ab

(gabab − gabba),

(13)E(0+1)
v = εv.

The summation indices a and b in Eqs. (11) and (12) range over core states. The
quantity (h0)aa is the matrix element in state a of the sum of the kinetic energy
and nuclear potential terms in the Dirac Hamiltonian (2). The sum of zeroth- plus
first-order energies in (12) is precisely the DHF energy of the core.

The energy of a one-electron atom splits order-by-order into core and valence
contributions

E(k) = E(k)
core + E(k)

v .

Since the core contribution is the same for each valence state, it is sufficient to
consider valence contributions only when studying excitation or ionization en-
ergies of one-electron atoms using MBPT. The second-order contribution to the
valence energy is found to be (Blundell et al., 1987)

(14)E(2)
v =

∑
nab

g̃abvngvnab

εv + εn − εa − εb

−
∑
mnb

g̃vbmngmnvb

εm + εn − εv − εb

.

Here and in the following sections, we adopt the convention that letters near the
start of the alphabet (a, b, c, . . .) designate core states, letters in the middle of
the alphabet (m, n, o, . . .) designate virtual states, and letters near the end of the
alphabet (v,w, x, . . .) designate valence states. We let the letters (i, j, k, . . .) des-
ignate either core or virtual (general) states. In Eq. (14), we have also used the
notation g̃ijkl = gijkl − gijlk to designate anti-symmetrized two-particle matrix
elements. The much longer expression for the third-order contribution to the va-
lence energy for a monovalent atom E

(3)
v is given in Blundell et al. (1987) and is

not repeated here.
To evaluate the expressions for second- and third-order energies, we first sum

over magnetic quantum numbers analytically to obtain expressions involving ra-
dial Dirac wave functions and angular momentum coupling coefficients, then we
sum over the remaining principal and angular quantum numbers numerically. To
aid in the numerical work, we replace the spectrum of the radial Dirac equation,
which consists of bound states, a positive-energy continuum of scattering states,
and a negative-energy continuum of positron states, by a finite pseudospectrum.
For the calculations discussed in this review, the pseudospectrum was constructed
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from B-splines confined to a large but finite cavity, as described in Johnson et al.
(1988b).

In Table I, we give a breakdown of the zeroth- or lowest-order (recall that there
is no first-order valence contribution to the energy), second-order, and third-order
MBPT contributions to ionization energies of alkali-metal atoms and compare the
sum with various all-order calculations and with experiment. The row labeled CC
refers to a coupled-cluster calculation (Salomonson and Ynnerman, 1991) that
includes some contributions beyond the single and double states. Differences be-
tween third-order MBPT calculations and experiment range from fractions of 1%
for Li and Na to about 3% for Cs. Moreover, for Cs, including third-order cor-
rections actually worsens the agreement with measured energies found in second
order, emphasizing the need for all-order methods.

3. Relativistic SD All-Order Method

As an introduction to relativistic all-order calculations, we briefly describe the rel-
ativistic singles–doubles (SD) method, a linearized version of coupled-cluster the-
ory; a more detailed description can be found in Blundell et al. (1989), Safronova
et al. (1998). In the coupled-cluster theory, the exact many-body wave function is
represented in the form (Coester and Kümmel, 1960)

(15)|�〉 = exp(S)
∣∣�(0)

〉
,

where |�(0)〉 is the lowest-order atomic state vector. The operator S for an N -
electron atom consists of “cluster” contributions from one-electron, two-electron,
. . . , N -electron excitations of the lowest-order state vector |�(0)〉:

(16)S = S1 + S2 + · · · + SN .

The exponential in Eq. (15), when expanded in terms of the n-body excitations Sn,
becomes

(17)|�〉 =
{

1 + S1 + S2 + S3 + 1

2
S2

1 + S1S2 + 1

2
S2

2 + · · ·
}∣∣�(0)

〉
.

In the linearized coupled-cluster method, all non-linear terms are omitted and the
wave function takes the form

(18)|�〉 = {1 + S1 + S2 + S3 + · · · + SN }∣∣�(0)
〉
.

The SD method is the linearized coupled-cluster method restricted to single
and double excitations only. The all-order singles–doubles–partial triples (SDpT)
method is an extension of the SD method in which the dominant part of S3 is
treated perturbatively. A detailed description of the SDpT method is given in
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Blundell et al. (1991), M.S. Safronova et al. (1999). Inclusion of the non-linear
terms in the relativistic SD formalism and a more complete treatment of the triple
excitations is given in Porsev and Derevianko (2006), Pal et al. (2007) and will be
considered later.

Restricting the sum in Eq. (18) to single and double excitations yields the fol-
lowing expansion for the SD state vector of a monovalent atom in state v:

|�v〉 =
[

1 +
∑
ma

ρmaa
†
maa + 1

2

∑
mnab

ρmnaba
†
ma†

nabaa

(19)+
∑
m �=v

ρmva
†
mav +

∑
mna

ρmnvaa
†
ma†

naaav

]∣∣�(0)
v

〉
,

where |�(0)
v 〉 is the lowest-order atomic state vector given in Eq. (9). In Eq. (19),

the indices m and n range over all possible virtual states while indices a and b

range over all occupied core states. The quantities ρma , ρmv are single-excitation
coefficients for core and valence electrons and ρmnab and ρmnva are double-
excitation coefficients for core and valence electrons, respectively. It should be
noted that the operator products in Eq. (19) are normally ordered as they stand.

To derive equations for the excitation coefficients, the state vector |�v〉 is sub-
stituted into the many-body Schrödinger equation H |�v〉 = E|�v〉, and terms on
the left- and right-hand sides are matched, based on the number and type of op-
erators they contain, leading to the following equations for the single and double
valence excitation coefficients:

(20)

(εv − εm + δEv)ρmv =
∑
bn

g̃mbvnρnb +
∑
bnr

gmbnr ρ̃nrvb

−
∑
bcn

gbcvnρ̃mnbc,

(εvb − εmn + δEv)ρmnvb = gmnvb +
∑
cd

gcdvbρmncd +
∑
rs

gmnrsρrsvb

(21)

+
[∑

r

gmnrbρrv −
∑

c

gcnvbρmc +
∑
rc

g̃cnrbρ̃mrvc

]
+

[
v ↔ b

m ↔ n

]
,

where δEv = Ev − εv , the correlation correction to the energy of the state v, is
given in terms of the excitation coefficients by

(22)δEv =
∑
ma

g̃vavmρma +
∑
mab

gabvmρ̃mvab +
∑
mna

gvbmnρ̃mnvb.

In Eq. (21), we use the abbreviation εij = εi + εj , and in Eq. (22), we use the
notation ρ̃mnvb = ρmnvb − ρnmvb. Equations for core excitation coefficients ρma
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and ρmnab are obtained from the above equations by removing δEv from the left-
hand side of the equations and replacing the valence index v by a core index a.
The core correlation energy is given by

(23)δEc = 1

2

∑
mnab

gabmnρ̃mnab.

After removing the dependence on magnetic quantum numbers, Eqs. (20)
and (21) are solved iteratively. To this end, states a, b, m, and n are represented in
a finite B-spline basis, identical to that used in the MBPT calculations discussed
in Section 2. As a first step, equations for the core single- and double-excitation
coefficients ρma and ρmnab are solved iteratively; the core excitation coefficients
are stored after the core correlation energy has converged to a specified accu-
racy. Thus, the calculation of the core excitation coefficients, which is the most
demanding in terms of the computational time, is done only once for each atom.
As a next step, equations for the valence single- and double-excitation coefficients
ρmv and ρmnva are iterated using the previously stored core excitation coefficients.
The resulting values are stored for each valence electron, ready to be used for the
calculation of the matrix elements.

While the valence correlation energy δEv includes important higher-order
terms in the MBPT expansion, including all second-order corrections, those con-
tributions to the third-order energy associated with triple excitations of the DHF
ground state are missing. This difficulty was remedied by identifying the missing
terms, calculating them separately, and adding them to the SD values (Safronova

Table I
Comparison of the Removal Energies of Li, Na, and Cs Calculated in Different Approximations with

Experiment in cm−1

Li (2s) Na (3s) Cs (6s)

Eth 	 Eth 	 Eth 	

Lowest-order 43087 400 39952 1497 27954 3453
Second-order 43449 38 41245 204 31865 −458
Third-order 43476 11 41325 124 30529 878
All-ordera 43492 −5 41447 2 31262 145
CCSDb 43483 4 41352 97 31443 36
CCc 41452 3
Expt. 43487 41449 31407

	 = Eexpt − Eth. The experimental values are from Moore (1971).
aBlundell et al. (1989), M.S. Safronova et al. (1999).
bEliav et al. (1994).
cSalomonson and Ynnerman (1991).
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et al., 1998). Such extension of the SD method led to accurate energies for the
s and p states of the alkali-metal atoms and ions with one valence electron
(M.S. Safronova et al., 1998, 1999). As an illustration, in Table I we compare
zeroth-, second-, and third-order MBPT calculations, and all-order energies for
Li, Na, and Cs with other all-order calculations and with experiment. The all-
order results are from SD calculations and include the missing third-order terms
perturbatively. For Cs, the difference between theory and measurement is reduced
from 3% in third order to 0.5% in all-order calculations.

3.1. CALCULATION OF TRANSITION MATRIX ELEMENTS

The perturbation expansion for state vectors leads immediately to a perturbation
expansion for matrix elements. Thus, for the one-particle operator,

(24)Z =
∑
ij

zij a
†
i aj ,

perturbation theory leads to an expansion

(25)〈�w|Z|�v〉 = Z(1)
wv + Z(2)

wv + · · · ,
for the matrix element of Z between states v and w of an atom with one valence
electron. One finds

(26)Z(1)
wv = zwv,

(27)Z(2)
wv =

∑
am

zamg̃wmva

εa − εm − ω
+

∑
am

g̃wavmzma

εa − εm + ω
,

where ω = εw − εv .
The expression for the third-order matrix element Z

(3)
wv , which contains 60

terms as mentioned earlier, is given in Blundell et al. (1987), Johnson et al.
(1996), Savukov and Johnson (2002b). These third-order terms can be grouped
into random-phase approximation (RPA), Brueckner orbital (BO), structural ra-
diation (SR), and normalization contributions. The first- and second-order matrix
elements together with the third-order RPA contribution form the first three terms
in the iterative expansion of the RPA matrix element ZRPA

vw , discussed, for exam-
ple, in Johnson et al. (1996). The RPA matrix element for dipole transitions has the
property of being gauge independent; RPA matrix elements evaluated using the
“length-form” z of the transition operator are identical to those evaluated using the
“velocity-form” vz/ω. The third-order BO contributions are those associated with
the second-order energy. It follows from Eq. (14) that the second-order energy is
the diagonal matrix element of the second-order self-energy operator �(2)(ε):

(28)E(2)
v = [

�(2)(εv)
]
vv

,
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where

(29)
[
�(2)(ε)

]
ij

=
∑
nab

g̃abjnginab

ε + εn − εa − εb

−
∑
mnb

g̃ibmngmnjb

εm + εn − ε − εb

.

One can include the self-energy operator along with the DHF potential in the one
electron Dirac equation,

(30)
[
h0 + VHF + �(ε)

]
ψ(r) = εψ(r).

Solutions to this equation are referred to as Brueckner orbitals. The BO contribu-
tions to third-order matrix elements are obtained by replacing each valence orbital
in the first-order matrix element by the corresponding second-order Brueckner or-
bital; the resulting BO terms often dominate the correlation corrections to matrix
elements. The third-order SR contributions are those in which the dipole operator
Z connects to internal lines in the self-energy operator � (Johnson et al., 1996).
Finally, third-order normalization contributions consist of terms arising from nor-
malization of the second-order state vector and to contributions from “backward
diagrams” (Blundell et al., 1987).

In the all-order method, matrix element of the operator Z is given by

(31)Zwv = 〈�w|Z|�v〉√〈�v|�v〉〈�w|�w〉 ,
where |�v〉 and |�w〉 are given by the expansion (19). The resulting expression
for the numerator of Eq. (31) consists of the sum of the DHF matrix element zwv

and twenty other terms that are linear or quadratic functions of the excitation co-
efficients ρmv , ρma , ρmnva , and ρmnab given by Eqs. (20) and (21) and their core
counterparts. The complete expression for the matrix elements can be found in
Blundell et al. (1989). The expression in Eq. (31) does not depend on the nature
of the operator Z, only on its rank and parity. Therefore, electric and magnetic
multipole transition matrix elements, magnetic-dipole, electric-quadrupole, and
magnetic-octupole hyperfine matrix elements, and nuclear spin-dependent and
spin-independent PNC matrix elements, are all calculated using the same general
code. We note that the SD expression for the matrix elements contains third-
order MBPT terms completely. The SD implementation of the all-order method
described above yielded very accurate results for the principal electric-dipole
transitions in alkali-metal atoms (M.S. Safronova et al., 1999), where precise ex-
perimental results are available for comparison.

In Table II, we present results of first-, second- and third-order MBPT cal-
culations, and all-order SD calculations of reduced dipole matrix elements for
ns1/2 − np1/2 transitions in the alkali-metal atoms Na, Rb, Cs, and Fr. Contribu-
tions labeled “RPA 4+” are corrections of fourth and higher order in the RPA se-
quence. Those labeled “BO 4+” are semi-empirical corrections obtained by scal-
ing the �(2)(εv) to give the experimental energy for the state v. The final scaled
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Table II
MBPT and All-Order Calculations of the np1/2 − ns1/2 Reduced Electric-Dipole Matrix Elements,

Where n = 3, 5, 6, 7 for Na, Rb, Cs, and Fr, Respectively

Approximation Reference Na Rb Cs Fr

First-order 3.6906 4.8189 5.2777 5.1437
Second-order Johnson et al. (1996) 3.6521 4.5952 4.9433 4.7301
Third-order Johnson et al. (1996) 3.5446 4.1986 4.4314 4.1969
Third-order RPA 4+
Third-order BO 4+

Johnson et al. (1996) 3.5433 4.1813 4.3868 4.1317
Johnson et al. (1996) 3.5271 4.2047 4.4550 4.2277

All-order SD M.S. Safronova et al. (1999) 3.531 4.221 4.478 4.256
CC Salomonson and

Ynnerman (1991)
3.538

MBPT (PTSI) Dzuba et al. (1989b) 4.494
Expt. 3.5246(23) 4.231(3) 4.4890(65) 4.277(8)

The experimental values for Na and Rb are from Volz and Schmoranzer (1996), for Cs from Rafac et
al. (1999), and those for Fr are from Simsarian et al. (1998).

MBPT matrix elements differ from measured values by about 1%. Dipole ma-
trix elements evaluated in the SD approximation are significantly more accurate,
where differences with measurement range from 0.2 to 0.5%. For comparison, re-
sults from all-order PTSI calculations (Dzuba et al., 1989b) and all-order CCSD
calculations (Salomonson and Ynnerman, 1991) are also shown in the table.

3.2. CALCULATION OF HYPERFINE CONSTANTS AND THE SDPT METHOD

Despite the success of the SD method in predicting accurate ns and np energies
and transition matrix elements, results for the ground state hyperfine constants,
especially for heavier systems, were found to be poor. This poor agreement with
experiment can be traced to the omission of triple excitations in the SD all-order
method. The correlation contribution to the ground state hyperfine constant is
dominated by the single term in the numerator of Eq. (31):

(32)Z(c) =
∑
m

zwmρmv +
∑
m

zmvρ
∗
mw,

where zvm are DHF matrix elements (26) and ρmv are single valence excitation
coefficients (20).

Therefore, the equation for the valence single-excitation coefficients ρmv was
modified to include the dominant part of the valence triple excitations perturba-
tively (Blundell et al., 1991; M.S. Safronova et al., 1999). The valence excitation
term,

(33)
1

6

∑
mnrab

ρmnrvaba
†
ma†

na
†
r abaaav

∣∣�(0)
v

〉
,
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was added to the wave function expansion (19). The resulting triple equation is
(M.S. Safronova et al., 1999)

(εabv − εmnr + δEv)ρmnrvab

(34)

= 1

2

∑
123={mnr}

1′2′3′={vab}

(
−

∑
c

g1c1′2′ρ23c3′ +
∑

s

g23s3′ρ1s1′2′
)

+ [triples].

Terms containing ρmnrvab or ρmnrabc are grouped together as [triples] on the right-
hand side of this equation. In Eq. (34), the notation 123 = {mnr} designates
symbolically that the indices 123 range over all six permutations of the indices
mnr; even permutations contribute with a positive sign while odd permutations
contribute with a negative sign. This equation was solved in the approximation
that all [triples] terms on the right-hand side were omitted. The results were
used to substitute triple contributions from ρmnrvab into the expression for the
valence correlation energy δEv and into ρmv; no modifications were made to the
core equations. This procedure is described in detail in Blundell et al. (1991),
M.S. Safronova et al. (1999). We refer to this extension of the SD method as the
SDpT method. We note that even such a minimal inclusion of triple excitations
significantly increased the number of terms in the equations for ρmv . The ground
state hyperfine constant for Cs calculated using this method is accurate to 1%.
The SDpT extension also automatically includes those third-order terms in the
correlation energy omitted in the SD expansion. The SDpT method is also very
successful for predicting the matrix elements in other cases where the term given
by Eq. (32) is dominant, such as the 3d − 4s electric quadrupole matrix elements
in Ca+ (Kreuter et al., 2005) discussed below.

In Table III, we present first-, second-, and third-order corrections to the mag-
netic hyperfine constants of the 3s1/2 and 3p1/2,3/2 states of 23Na and the 6s1/2
and 6p1/2,3/2 states of 133Cs. The lowest-order hyperfine constant is just the DHF
matrix element of the hyperfine operator and differs from experiment by 40–
50%. The second-order terms listed in the table actually include all third- and
higher-order RPA corrections and bring the theoretical values into slightly bet-
ter agreement with experiments. The residual third-order terms are dominated by
BO contributions for all states considered. Upon inclusion of third-order contri-
butions, differences with experiment are found to be about 5% for the Cs 6s1/2
state. This relatively large difference provides evidence for the need to go beyond
third order. The all-order SD calculation is in relatively good agreement with ex-
periment for the n = 3 states of Na, but deviates from experiment by about 6%
for the 6s1/2 state of Cs. As seen in the table, the difference with experiment is
reduced to about 1% in the SDpT approximation. We also include comparisons
with the CCSD calculations of Salomonson and Ynnerman (1991) and the SDpT
calculations of Blundell et al. (1991), which is labeled “SDpT (dr)” in the table.
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Table III
Comparison of the 23Na and 133Cs Hyperfine Constants A (MHz) Calculated in Different

Approximations with Experiment

Term Reference Na Cs

3s 3p1/2 3p3/2 6s 6p1/2 6p3/2

First-order M.S. Safronova et al.
(1999)

624 63.4 12.6 1424 161 23.9

Second-order 767 82.3 18.0 1716 202 42.8
Third-order 867 92.5 18.8 2404 291 51.2
All-order SD 888 95.0 18.8 2439 311 51.9
All-order SDpT M.S. Safronova et al.

(1999)
888 95.1 18.8 2279 290 48.5

All-order SDpT (dr) Blundell et al. (1991)
Salomonson and
Ynnerman (1991)

2291 293 49.8
CC 884 93.0 18.3

Expt. 886 94.4(1) 18.53(2) 2298 291.89(8) 50.275(3)

The experimental values are from Happer (1974), Tanner and Wieman (1988a), Wijngaarden and Li
(1994), Rafac and Tanner (1997).

In these later calculations, RPA corrections were included to all orders and the
difference with experiment for the 6s1/2 state of Cs is reduced to about 0.3%.

As a second example, we show in Table IV a comparison of various calcu-
lations of lifetimes of the 3d3/2 and 3d5/2 states of Ca+ (Kreuter et al., 2005),
which decays by single-photon E2 emission to the 4s1/2 ground state. The DHF
and third-order MBPT values differ significantly from experiment. As in the case
of the 6s1/2 hyperfine constant discussed above, the results of an SD calcula-
tion are also in significant disagreement with experiment and, as for hyperfine
constants, the term in Eq. (32) dominates the correlation correction. The SDpT
approximation, as expected, is found to be in much better agreement with exper-
iment. We also present scaled results SDsc obtained by multiplying the valence
single-excitation coefficients ρmv by the ratio of the experimental to SD correla-

Table IV
Comparison of the 3d Ca+ Lifetimes τ (µs) Calculated in Different Approximations with Experiment

DHF III All-order Theory Expt.

SD SDpT SDsc SDpTsc Final

τ(3d3/2) 790 1390 1257 1199 1196 1207 1196(11) 1176(11)

τ (3d5/2) 771 1351 1224 1168 1165 1177 1165(11) 1168(9)

The lowest order and third-order values are listed in columns labeled “DHF” and “III”, respectively.
All theoretical and experimental values are from Kreuter et al. (2005).
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tion energy. Also shown in the table, are scaled results with triples SDpTsc, which
are not much different from the scaled SD results, or from ab initio SDpT val-
ues. The theoretical predictions in this case are taken to be the scaled SD values
and differences between the scaled results with and without triples are used to
estimate the errors in theoretical values. The final all-order results agree with the
experimental values within the corresponding uncertainties.

4. Motivation for Further Development of the All-Order
Method

4.1. LIMITATIONS OF SD AND SDPT METHODS

While the SDpT extension was successful in producing accurate results for Cs
hyperfine constants, it has serious flaws. Whereas the SDpT method leads to satis-
factory results for matrix elements in cases where the term in Eq. (32) is dominant,
it leads to poor results when other terms, especially the term

(35)Z(a) =
∑
ma

zamρ̃wmva +
∑
ma

zmaρ̃
∗
vmwa,

are large or have an opposite sign to the term given in (32). Many atomic proper-
ties, including matrix elements for principle transitions in alkali-metal atoms, fall
into this category. In fact, the SDpT method often produces poorer results than the
original SD method in such cases, owing to cancellations between higher-order
terms. Therefore, the usefulness of the SDpT extension is limited to the specific
case where the term given by Eq. (32) is dominant.

Both SD and SDpT methods fail to produce accurate results when the correla-
tion corrections are particularly large. For example, we list a comparison of the
SD all-order results with the experimental values for the nd3/2 and nd5/2 hyper-
fine constants in Cs in Table V (Auzinsh et al., 2007). The lowest-order values
are also presented to demonstrate the size of correlation corrections. Correlation
contributes on the order of 50% to the hyperfine values for nd3/2 states, and the
difference between the theory and experiment is on the order of 7–10%. Dis-
agreement for nd5/2 states is even more severe, since correlation corrections are
larger than the lowest-order values and contribute with an opposite sign. As a re-
sult, the difference between all-order results for the 5d5/2 hyperfine constant in
Cs and experiment is 23%. No precise experimental values are available for other
nd5/2 hyperfine constants, but we still observe significant systematic discrepan-
cies between all-order results and experimental values. The problem described
above is not limited to hyperfine constants. The electric-dipole matrix elements
for np − nd transitions were also reported (Safronova et al., 2004) to have ex-
tremely large correlation corrections. In these cases, no experimental data are
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Table V
Hyperfine Constants A (MHz) for nd3/2 and nd5/2 States in Cesium

State DHF All-order Expt. State DHF All-order Expt.

5d3/2 18.2 52.3 48.78(7) 5d5/2 7.47 −16.4 −21.24(8)

6d3/2 9.27 17.8 16.30(15) 6d5/2 3.73 −3.89 −3.6(10)

8d3/2 2.65 4.20 3.94(8) 8d5/2 1.06 −0.684 −0.85(20)

10d3/2 1.07 1.62 1.51(2) 10d5/2 0.428 −0.238 −0.35(10)

The lowest-order and all-order values are compared with experiment. The experimental data are taken
from Arimondo et al. (1977).

available for comparison. Neither is it possible to provide very accurate data with
the SD all-order method in these cases, nor is it possible to assign recommended
values for these transitions since the accuracy of the all-order method cannot be
determined when correlation corrections are very large.

4.2. ESTIMATES OF THEORETICAL UNCERTAINTIES

Another important motivation for further development of the all-order method is
a need for a mechanism to estimate uncertainties of theoretical data. Firstly, the
evaluation of the theoretical uncertainty is necessary for the analysis of the PNC
experiments. Secondly, recommended values that are produced with the all-order
methods have more value when they contain uncertainty estimates. Uncertainty
bounds of recommended values are important for use by both experimentalists
and other theorists in their research and for making benchmark comparisons. Fi-
nally, accurate evaluation of the uncertainty of theoretical values may allow one
to cross-check experimental values obtained by different methods and may aid in
the evaluation of new experimental data. Accuracy estimates of theoretical data
are particular important when significant discrepancies exist between results from
different experiments.

Evaluation of theoretical uncertainties is a very difficult problem since it essen-
tially involves evaluation of the quantity that it is not known beforehand. Several
strategies can be used in evaluating the uncertainties of the all-order results, such
as approximate evaluation of the size of the correlation correction, evaluation
of the size of the higher-order corrections, study of the order-by-order conver-
gence of perturbation theory, study of the breakdown of the various all-order
contributions, identification of the most important terms, and semi-empirical de-
termination of missing important contributions. In certain cases, a comparison
with a large body of reliable and confirmed experiments may be used to aid the
purely theoretical procedures listed above. A detailed knowledge of the more im-
portant correlation corrections is crucial in developing procedures for estimating
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uncertainties in theoretical data, especially in cases where one wishes to provide
recommended values. Further development of the all-order method will provide
additional information on contributions which presently cannot be estimated.

4.3. AVAILABILITY OF NEW COMPUTATIONAL RESOURCES

The development of the all-order method was limited, until recently, by insuffi-
cient readily available computational resources, both in speed and memory. For
example, the triple valence excitations ρmnrvab involve three excited state indices
and two core indices for each valence electron, and must be calculated iteratively
for all possible combinations of m, n, r , a, and b. The B-spline basis sets that
are employed in the all-order calculations described to this point utilize approxi-
mately 35 orbitals for each partial wave. Since the present method is intrinsically
relativistic, each index m contains 35 × (2 × lmax + 1) orbitals, where lmax is the
maximum number of the partial waves taken into account. Therefore, a number
of the valence triple excitation coefficients for Cs, which has 17 core shells, with
lmax = 4 can be roughly estimated to be (35 × 9)3 × (17)2 = 9 × 109 coefficients
for each angular momentum channel. (Three extra indices appear after angular
reduction. We refer to a single combination of such indices as a channel.) As a re-
sult, the memory requirement for the triple excitations easily can exceed 100 GB
using the above estimate. This number can be reduced significantly if the symme-
try of the excitation coefficients is used, data types are defined as single precision,
core shells are partially omitted, and so forth. [See Porsev and Derevianko (2006),
Derevianko and Porsev (2006) for more detailed description of this issue.] Never-
theless, the memory requirements are still significant even after all simplifications
are made. Note further that each simplification has to be carefully investigated
for possible numerical errors. Another major problem is that the triple equations
themselves are rather complicated and contain an additional sum over the excited
states. The case of the core excitations ρmnrabc is even more complicated owing to
the addition of the extra core index c beyond the already large number of valence
excitations. Significant improvement of computational resources in recent years
finally permits iteration of the triple equations (Porsev and Derevianko, 2006;
Derevianko and Porsev, 2006).

4.4. BENCHMARK COMPARISONS OF THEORY AND EXPERIMENTS

Recent developments in experimental methodologies led to new high-precision
measurements of various atomic properties (for example, Kreuter et al., 2005;
Letchumanan et al., 2005; Sherman et al., 2005; Gomez et al., 2005). Experimen-
tal developments of atomic clocks and quantum information research with atoms
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and ions both stimulated the need for precise atomic data such as ac polarizabil-
ities, quadrupole shifts, and blackbody radiation shifts, and have produced many
new experimental results. Further development of the high-precision theoretical
methodologies allows one to provide data needed for the analysis of specific
experiments as well as provide data for benchmark comparisons and critical eval-
uation of the experimental data. One of the main problems of the all-order method
is that it is currently developed only for monovalent systems while many interest-
ing experiments are conducted for divalent systems to which the all-order method
can be extended.

Accurate theoretical calculations accompanied by corresponding uncertainty
estimates may be used to cross-check different types of experiments. For exam-
ple, the experimental values of the Stark shift of the 6s−6p1/2 and 6s−6p3/2 lines
and lifetimes of the 5dj states in Cs were checked for consistency in Safronova
andClark (2004). From the standpoint of experiment, these are unrelated data pro-
duced by entirely different techniques. From the standpoint of theory, both Stark
shifts and lifetimes under consideration depend on the values of the 5dj − 6pj ′
matrix elements. In the case of the lifetimes, there are no other significant con-
tributions since the 5dj − 6s transitions are too weak. The dc Stark shifts, i.e.
static atomic polarizabilities, can be calculated from the relevant values of ma-
trix elements and energies using a sum-over-states approach (see Section 7.2).
The 5d − 6p transition matrix elements dominate the 6pj polarizabilities and
the remaining small terms can be calculated accurately using the all-order matrix
elements and experimental energies (Moore, 1971). Therefore, it is possible to
cross-check these two experiments with minimal (and well-understood) theoret-
ical input by deriving 5d − 6p matrix elements from lifetime data, substituting
them into the polarizability calculations, and comparing the results with experi-
mental Stark shift values. This procedure was used in Safronova andClark (2004)
to demonstrate that the Stark shift and lifetime data differed by 3–4σ .

It is also possible to use experimental dc and ac polarizability values to ac-
curately determine specific matrix elements that dominant contributions to these
polarizabilities, provided an accurate calculation of the remaining contributions
can be carried out and its uncertainty is known. For example, the Stark-shift value
for the 6s − 7s transition in Cs was used in M.S. Safronova et al. (1999) to de-
rive the values of the 7p1/2 − 7s and 7p3/2 − 7s electric-dipole reduced matrix
elements with 0.1% accuracy.

5. Recent Developments in the Calculations of Monovalent
Systems: Non-Linear Terms and Triple Excitations

In the linearized SD coupled-cluster approach, the wave function given by
Eq. (17) reduces to
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(36)|�〉 = {1 + S1 + S2}
∣∣�(0)

〉
,

where single and double excitations are separated into the core and valence parts:

(37)S1 = S1c + S1v =
∑
ma

ρmaa
†
maa +

∑
m �=v

ρmva
†
mav,

(38)S2 = S2c + S2v = 1

2

∑
mnab

ρmnaba
†
ma†

nabaa +
∑
mnb

ρmnvba
†
ma†

nabav.

The complete SD coupled-cluster wave function contains six more non-linear
terms:

|�〉 =
{

1 + S1 + S2 + 1

2
S2

1 + S1S2 + 1

6
S3

1 + 1

2
S2

2

(39)+ 1

2
S2

1S2 + 1

24
S4

1

}∣∣�(0)
〉
.

No other non-linear terms contribute to the SD equations given by Eqs. (20)–
(22). Separating core and valence parts of the operators S1 and S2, we find that
the non-linear terms contributing to the core single and double equations are 1

2S2
1c,

S1cS2c, 1
6S3

1c, 1
2S2

2c, 1
2S2

1cS2c, and 1
24S4

1c, and the non-linear terms contributing to
the valence single and double equations are S1cS1v , {S1vS2c, S1cS2v}, 1

2S2
1cS1v ,

S2cS2v , {S1vS1cS2c, 1
2S2

1cS2v}, and 1
6S3

1cS1v . Quadratic valence non-linear (NL)
terms were included in the calculation of atomic properties of Na and Cs in Porsev
and Derevianko (2006), Derevianko and Porsev (2006), respectively. A com-
plete treatment of all six non-linear terms is given in Pal et al. (2007), where
the properties of alkali-metal atoms from Li to Cs are calculated using the com-
plete coupled-cluster SD wave function given in Eq. (39), and where the relative
importance of various non-linear terms is investigated.

The addition of the non-linear terms in the all-order wave function significantly
complicates the all-order equations for the single and double valence excitation
coefficients (20)–(21) and their core counterparts. For example, the single valence
excitation coefficient equation has six additional terms:

(εv − εm + δEv)ρmv = (SD) +
∑
drs

g̃mdrsρrvρsd −
∑
cds

g̃cdvsρmcρsd

−
∑
cdrs

(g̃cdsrρsrvdρmc + g̃cdsrρsmcdρrv

(40)− g̃cdrs ρ̃mrvcρsd + g̃cdsrρmcρrdρsv),

where (SD) contains linearized SD terms given by Eq. (20). The equation for the
core excitation coefficients ρma is obtained from the valence equation above by
replacing the index v by the index a. We note that only three NL terms in the
wave function, 1

2S2
1 , S1S2, and 1

6S3
1 contribute to the single excitation coefficient
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equations. All six NL terms contribute to the equations for the double valence ex-
citation coefficients ρmnab and ρmnva . The resulting double core equations must
be symmetrized in order to preserve the symmetry relation ρmnab = ρnmba .
Again, the core and valence double equations are identical with the replacement
of the valence index v by a core index a. While there are six distinct NL terms
contributing to the single equations, together with three linear single terms, there
are 35 distinct NL terms contributing to the double equation together with the
nine linear terms given by Eq. (21). We count direct + exchange terms as a single
term. Therefore, the complete coupled-cluster calculation is far more complicated
than the original linearized one. Complete SD coupled-cluster equations contain-
ing all terms are given in Pal et al. (2007). The complete SD core energy equation
contains only one NL term:

(41)δEc = (SD) +
∑
abmn

1

2
g̃abmnρmaρnb,

whereas the complete valence coupled-cluster SD energy equation contains six
NL terms:

δEv = (SD) −
∑
cdt

g̃cdvtρtdρvc +
∑
dtu

g̃vdtuρtvρud

−
∑
cdtu

(g̃cdutρvcρutvd + g̃cdutρtvρuvcd

(42)− g̃cdtuρ̃vtvcρud + g̃cdutρtdρuvρvc).

The non-linear terms give no additional contributions to the matrix element
formula (31). However, the values of the matrix elements change when NL terms
are added owing to modified values of the excitation coefficients. Contributions
of the various non-linear terms to the removal energies and electric-dipole ma-
trix elements are summarized in Table VI. We note that these are data from Pal
et al. (2007). The result of the linearized coupled-cluster calculation is listed in
Table VI in row labeled “SD”. All calculations are carried out with lmax = 6.
The contribution of the core terms, listed in the next row, is obtained as the dif-
ference of the results obtained with NL terms added only into the core equations
and SD values. In this case, the valence data change only because of the change
in the core ρma and ρmnab excitation coefficients. Each successive contribution
is obtained by adding NL terms specified at the corresponding row of Table VI
into the valence equations, redoing the valence iterations and subtracting the pre-
vious result from the new one. Firstly, only the S2

2 term is added to the valence
equation and the difference of this new calculation with the previous one is de-
termined. Secondly, other quadratic terms (of S2

1 and S1S2 type) are added to
the equations. Finally, all of the NL terms are added into the valence equations.
While the contribution from S2

2 was dominant, as expected, contributions from
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Table VI
Contribution of the Non-Linear Terms to the ns Ground State Removal Energies and np1/2 − ns

Electric-Dipole Reduced Matrix Elements for Na and Cs

Contributions Na Cs Na Cs
δE3s δE6s 3s − 3p1/2 6s − 6p1/2

SD 1483 3882 3.53099 4.48157
Core NL terms 1 44 0.00005 −0.01057
S2cS2v −44 −224 0.00487 0.04585
S1cS1v , {S1vS2c, S1cS2v} −24 −162 0.00211 0.02762
1
2 S2

1c
S1v , {S1vS1cS2c , 1

2 S2
1c

S2v}, 1
6 S3

1c
S1v 0 1 0.00000 −0.00015

Total 1416 3540 3.53802 4.54432

The SD values are calculated using the linearized SD all-order method. The energies are in cm−1 and
the E1 matrix elements are in atomic units (a0e). Preliminary data from Pal et al. (2007).

other quadratic terms were also found to be significant and approximately half
the size of the S2

2 contribution. Contributions from cubic and fourth-order terms
are negligible (Pal et al., 2007). The contribution of the NL core terms is small for
Na but rather significant for Cs and cannot be neglected in accurate calculations.
The total contribution from the NL terms is remarkably large, especially for the
energies, where the SD result for the ground state correlation energy is modified
by 10%. This finding resolves long-standing differences between linearized SD
coupled-cluster results from M.S. Safronova et al. (1999) and full coupled-cluster
calculation in Eliav et al. (1994). The results of Pal et al. (2007) are in reasonably
good agreement with Eliav et al. (1994). The remaining small differences can be
explained by the different number of partial waves used in the calculations (Pal et
al., 2007).

As demonstrated in Porsev and Derevianko (2006), Derevianko and Porsev
(2006), the non-linear terms are canceled to a large extent by certain triple con-
tributions. Therefore, it is necessary to add both NL terms and complete valence
triples to increase the accuracy of the all-order method. The addition of the triple
contribution ρmnrvab from Eq. (33) is described in Porsev and Derevianko (2006),
where iteration of the valence triple excitation coefficient equation is carried out
and Na results are presented. The inclusion of the complete valence triples still
omits certain core fourth-order contributions to the matrix elements. The com-
plete fourth-order matrix element calculation is presented in Cannon and Dere-
vianko (2004). The most complete Cs all-order calculation, that includes valence
quadratic NL terms, valence triple contributions, and fourth-order core triples,
is carried out in Derevianko and Porsev (2006). The resulting energies, electric-
dipole matrix elements, and hyperfine constants agree with experimental values
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at the 0.1% level, with exception of the 6p1/2 hyperfine constant, which differs
from the experimental value by 1%.

6. Many-Particle Systems

6.1. MBPT FOR ATOMS WITH TWO VALENCE ELECTRONS

For atoms and ions with two valence electrons, the basic single-particle orbitals
are chosen to be solutions to the Dirac equation in the N−2 electron Hartree–Fock
potential V

(N−2)
HF of the closed core. Lowest-order wave functions are constructed

from linear combinations of degenerate or nearly degenerate eigenstates of H0.
This collection of eigenstates is referred to as a model space. As an example,
a model space appropriate to the description of the ground-state of Be is the col-
lection of three nearly degenerate states �1 = |2s1/22s1/2〉, �2 = |2p1/22p1/2〉,
and �3 = |2p3/22p3/2〉, all coupled to give angular momentum 0.

Expanding the lowest-order wave function in terms of model-space wave func-
tions leads to an eigenvalue problem for the first-order energy:

(43)
∑

k

〈�l |H0 + V |�k〉ck = E
(1)
l cl .

The first-order energy here corresponds to the sum of the zeroth- and first-order
energy for systems with one valence electron; there is no well-defined coun-
terpart of the zeroth-order energy in cases where the model space consists of
non-degenerate states. The expansion coefficients are used to construct the lowest
wave function associated with a given energy.

Second-order corrections to energies of two particle states have been worked
out within the framework of relativistic MBPT by Safronova et al. (1996) and
applied to various atomic systems in Johnson et al. (1997). More recently, third-
order relativistic MBPT calculations for Be- and Mg-like ions have been carried
out by Ho et al. (2006). These third-order calculations are complex, requiring
the evaluation of 302 Bethe–Goldstone diagrams. Third-order calculations lead to
energies accurate to better than 1% for neutral and near neutral Be-like and Mg-
like ions, but (based on experience with monovalent atoms) are expected to be
much less precise for heavier systems. As a specific example, we compare third-
order calculations of energies of low-lying odd-parity states of Be-like C (Z = 6)
from Ho et al. (2006) with experiment in Table VII. The row labeled B(2) is the
contribution from the second-order Breit interaction.

For atoms with two electrons beyond a closed core, it is of considerable inter-
est to examine correlation corrections to transition matrix elements. Two distinct
effects can be distinguished: correlation corrections arising from interaction be-
tween the valence electrons and corrections arising from interactions between
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Table VII
Comparison of Third-Order MBPT Calculations of Low-Lying 3P States for

Be-Like C (Z = 6) with Experiment

Term (2s2p) 3P0 (2s2p) 3P1 (2s2p) 3P2

E(0+1) 54204.5 54223.4 54272.9
E(2) −2344.0 −2342.2 −2338.4
B(2) −6.7 −3.3 0.4
E(3) 412.9 412.7 412.3
ELamb −8.4 −8.3 −8.2
Etot 52258.4 52282.3 52339.1
Eexpt 52367.1 52390.8 52447.1

	E% −0.2 −0.2 −0.2

Units: cm−1.

valence electrons and the atomic core. As discussed above, the lowest-order states
are chosen as linear combinations of degenerate or nearly degenerate two electron
states in a model space. These states are coupled to a specific angular momentum.

The first-order matrix element between an uncoupled final state |xy〉 and an
uncoupled initial state |vw〉 is

(44)Z(1) = 〈xy|Z|vw〉 = zxvδyw − zxwδyv + zywδxv − zyvδxw,

and the corresponding second-order correction consists of RPA valence–core
corrections and second-order valence–valence corrections. Derivative terms also
occur in second-order accounting for the correlation correction to the transition
energy. Gauge-independent second-order relativistic MBPT calculations of ma-
trix elements for Be-like and Mg-like ions were carried out in U.I. Safronova et
al. (1999, 2000), respectively.

6.2. MIXED CONFIGURATION INTERACTION—MBPT CALCULATIONS

Relativistic configuration-interaction (CI) calculations, based on the no-pair
Hamiltonian provide an important alternative to relativistic coupled-cluster calcu-
lations, especially for atoms with two or more valence electrons. Such calculations
have been carried out for low-lying states in He-like ions in Chen et al. (1993),
Cheng and Chen (2000), for states in Be-like ions in Chen and Cheng (1997a),
and for states in Mg-like ions in Chen and Cheng (1997b). Formulation of CI
calculations is relatively simple. For example, in the case of a helium-like ion,
one expands the two-electron wave function as a linear combination of all distinct
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Table VIII
The First and Second Eigenvalues of the Hamiltonian Matrix for

the J = 0 Even-Parity State of Helium are Tabulated with
Respect to the Maximum Value lmax of l Included in the Basis

lmax First Second 2 3S0

0 −0.879005 −0.144198 −0.734807
1 −0.900506 −0.145768 −0.754738
2 −0.902758 −0.145916 −0.756842
3 −0.903313 −0.145951 −0.757362
4 −0.903511 −0.145963 −0.757548
5 −0.903598 −0.145968 −0.757630
∞ −0.757702
RM 0.000104

CI −0.757598
NIST −0.757616

The difference, which is the energy of the 2 3S0 state, is extrap-
olated to lmax = ∞. Reduced-mass (RM) corrections are added
and the resulting theoretical energy is compared with the NIST
tabulation. The residual difference is accounted for primarily by
the ground-state Lamb shift.

two-electron states of a given angular symmetry

(45)�J =
∑
k�l

ckl�J (kl),

where

(46)�J (kl) = ηkl

∑
mk,ml

〈jkmk, jlml |JM〉a†
ka

†
l |0〉.

In this equation, 〈j1m1, j2m2|JM〉 is a Clebsch–Gordan coefficient and ηkl is a
normalization factor. The expansion coefficients ckl are obtained from the matrix
eigenvalue equation:

(47)
∑
i�j

[
(εi + εj )δikδjl + 〈

�J (kl)
∣∣V ∣∣�J (ij)

〉]
cij = Eckl.

Configuration-interaction calculations require substantial computing facilities
even in the simplest cases. For example, in calculating odd-parity J = 1 states
of helium-like ions, including orbitals with l � 5 using a basis having 40 basis
functions for each single-particle state, one is led to matrices having dimension
greater than 10,000. One seeks the lowest few eigenvalues of these large matrices.
In Table VIII, the first and second eigenvalues for the J = 0 even-parity state
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of helium are tabulated with respect to the maximum value of l included in the
basis. The difference, which is the energy of the 2 3S0 state, is extrapolated to ∞.
Reduced-mass (RM) corrections are added and the resulting theoretical energy is
compared with the NIST tabulation. The residual difference between experiment
and theory seen in the table is accounted for primarily by the ground-state Lamb
shift.

A variant of the CI method that has been applied successfully to study en-
ergies and transition amplitudes in two-electron atoms is the CI-MBPT method
(Dzuba et al., 1996; Kozlov and Porsev, 1997; Dzuba and Johnson, 1998;
Porsev et al., 2000; Kozlov et al., 2001a; Savukov and Johnson, 2002a). There
are several versions of the CI-MBPT method that utilize an effective Hamiltonian
derived from second-order MBPT. Here we concentrate on the version devel-
oped in Savukov and Johnson (2002a). For atoms with two valence electrons,
second-order correlation corrections divide into one-particle and two-particle
parts. The second-order one-particle contributions to the energy can be obtained,
as explained earlier, from one-particle Brueckner orbitals. The second-order two-
particle part consists of valence–valence (VV), valence–core (VC), and (numeri-
cally much smaller) core–core (CC) terms,

(48)VVxy,vw =
∑
mn

gxymng̃mnvw

εv + εw − εm − εn

,

(49)VCxy,vw =
∑
ma

g̃xmvag̃yawm

εv + εa − εx − εm

× [
1 − P(vw)

][
1 − P(xy)

]
,

(50)CCxy,vw =
∑
ab

gxyabg̃abvw

εa + εb − εx − εy

.

The operator P(vw) in Eq. (49) indicates that the indices v and w in the sum to
the left are to be interchanged.

In the CI-MBPT method, second-order one-particle corrections are included by
replacing the HF orbitals and energies in the basis set by second-order Brueck-
ner orbitals and energies. Two-particle VV correlation corrections are accounted
for automatically in the CI calculation. The two-particle VC contributions are ac-
counted for by modifying the Hamiltonian matrix to include the VC matrix given
in Eq. (49). Core–core contributions are ignored. Thus, in CI-MBPT calculations
for atoms with two valence electrons, we use second-order Brueckner orbitals in-
stead of HF orbitals as basis functions and modify the interaction Hamiltonian to
include corrections from the second-order VC interaction.

As an example, energies, hyperfine constants, and dipole matrix elements for
the isotope 25Mg, obtained from CI-MBPT calculations, are shown in Table IX.
We see that the energies agree with measured values at the level of 0.1%. The-
oretical hyperfine constants for the accurately measured (3s3p) 3P states agree
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Table IX
CI-MBPT Energies ECI (cm−1), Hyperfine Constants ACI (MHz), and (Length, Velocity) Form

Reduced Dipole Matrix Elements D(L, V ) (a.u.) for 25Mg Obtained From CI-MBPT Calculations

State ECI Eexp 	E ACI Aexp D(L) D(V )

(3s4s) 1S0 43451 43503 52
(3s5s) 1S0 52526 52556 23
(3s4s) 1S1 41148 41197 49 −324.4
(3s5s) 1S1 51837 51872 35 −309.29
(3s3p) 3P0 21812 21850 38 1.530 1.531
(3s3p) 3P1 21830 21870 40 −143.83 −144.945(5) 2.652 2.654
(3s3p) 3P2 21886 21911 25 −128.05 −128.440(5) 3.431 3.434
(3s3p) 1P1 35056 35051 −5 −8.86 −7.7(5) 4.027 4.017
(3s4p) 3P0 47800 47848 48 4.661 4.650
(3s4p) 3P1 47804 47848 44 −152.58 8.072 8.054
(3s4p) 3P2 47812 47851 39 −148.29 10.417 10.393
(3s4p) 1P1 49314 49347 33 −3.04 0.845 0.841

The nuclear magnetic moment is μ = −0.85545μN and the nuclear spin is I = 5/2. The initial states
for the dipole matrix elements are listed on the left; the final state for transitions from triplet states is
(3s4s) 3S1 and from singlet states is (3s)2 1S0.

with experiment at the level of 0.3%. Length- and velocity-form reduced matrix
elements agree with each other at a level of 0.5% or better. It should be mentioned
that RPA corrections were included in the evaluation of matrix elements.

From the point of view of future development, a more interesting version of the
CI-MBPT method has been discussed recently by Kozlov (2004) and applied to a
“toy” atom. In this variant, core–core interactions and valence–core interactions
are accounted for using the all-order SD approximation while the strong valence–
valence interactions are accounted for by a CI calculation.

6.3. ALL-ORDER CALCULATIONS

All-order SD calculation of excitation energies, hyperfine constants, E1, E2, M1
transitions rates, and lifetimes of 6s2nl states in Tl and Pb II were carried out
in Safronova et al. (2005). While Tl and Pb II are systems with three valence
electrons, the 6s2nl states in those systems can be described within the frame-
work of the all-order method for monovalent systems described in Section 3,
[Nd]5s25p65d106s2 being taken as the closed core. The resulting values were
found to be in remarkably good agreement with experiment for most of the atomic
properties considered. The values were also compared with theoretical results cal-
culated using other methods, where data were available. Neutral thallium is of
particular interest owing to studies of parity nonconservation. Third-order MBPT
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Table X
Comparison of the Ground State Removal Energies of Ga, Ga-Like Ge (Z = 32), Ga-Like Se

(Z = 34), and Tl Calculated Using Third-Order MBPT and All-Order SD Methods with Experiment
in cm−1

Ga Ga-like Ge Ga-like Se Tl

Eth 	 Eth 	 Eth 	 Eth 	

Lowest-order 43033 5355 121728 6793 338575 8000 43824 5440
Third-order 48687 −299 128738 −217 346928 −353 49205 59
All-order 48575 −187 128545 −34 346747 −172 49266 −2

	 = Eexpt −Eth. The theoretical data are from U.I. Safronova et al. (2006b, 2005). The experimental
values are from Moore (1971).

Table XI
Comparison of the SD All-Order Values of Lifetimes (ns) and Hyperfine Constants (MHz) in Tl with

Experimental Values

τ(7s) τ (7p1/2) τ (7p3/2) A(6p1/2) A(6p3/2) A(7s)

Theory 7.43 61.8 47.3 21390 353 12596
Experiment 7.45(2) 63.1(1.7) 48.6(1.3) 21311 265 12297(2)

The theoretical values are from Safronova et al. (2005). The experimental data are taken from the
compilation carried out in the same work.

calculations were also carried out in Safronova et al. (2005), in an attempt to
analyze the importance of the higher-order contributions. In M.S. Safronova et
al. (2006b), the Stark-induced amplitude for the 6P1/2 − 7P1/2 transition and
the Stark shifts in the 6P1/2 − 7P1/2 and 6P1/2 − 7S1/2 transitions in Tl I were
calculated using the relativistic SD all-order method and again good agreement
with experimental values was found. This calculation is discussed in Section 7.2.
A comprehensive all-order study of atomic properties of the 4s2nl states of neu-
tral gallium and 4s24p states of Ga-like ions was conducted in U.I. Safronova et
al. (2006a, 2006b). A comparison of the third-order and all-order SD results for
the ground state energies of Ga, Ga-like ions, and Tl with experiment is given
in Table X. We note that third-order energies are also in remarkably good agree-
ment with experiment, unlike the third-order values for heavy alkali-metal atoms
(see Cs data in Table I). The examples of the SD all-order calculations of the Tl
lifetimes and hyperfine constants (Safronova et al., 2005) are given in Table XI.

Energies of many of two-particle systems were calculated using the coupled-
cluster method in Landau et al. (2000) and references therein. We note that the
implementation of the coupled-cluster method in Landau et al. (2000) is very
different from the all-order method described here and is limited to the calcula-
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tions of the energies. A very promising method for the calculation of properties of
many-particle systems, involving a combination of the CI and all-order techniques
(Kozlov, 2004) was mentioned in the previous subsection.

7. Applications of High-Precision Calculations

7.1. PARITY NONCONSERVATION IN HEAVY ATOMS

As mentioned earlier, one important motivation for developing relativistic many-
body methods has been the desire to calculate parity nonconserving (PNC) ampli-
tudes in heavy atoms with high accuracy. The dominant part of the PNC interac-
tion between the bound electrons in the atom and the nucleus, which is mediated
by exchange of a neutral Z boson, is described by the interaction Hamiltonian
(Johnson, 2003)

(51)H(1) = G

2
√

2
QWγ5ρ(r).

In this equation, G is the universal weak coupling constant and γ5 is the 4×4 Dirac
matrix element associated with pseudoscalar interactions. The quantity QW is the
weak charge defined by

(52)QW = −N + Z
(
1 − 4 sin2 θ

)
,

where N is the neutron number, Z is the proton number, and θ is the Weinberg
angle. Since sin2 θ ≈ 1/4, it follows that QW ≈ −N . The factor ρ(r), which
describes the interaction density, is a weighted sum of the neutron and proton
densities; approximately the neutron density.

Electric-dipole transitions between states of the same nominal parity, such as
the 6s1/2 → 7s1/2 transition in Cs, which are forbidden by parity conservation,
become allowed in the presence of the pseudoscalar interaction H(1). By com-
paring measurements of the amplitude Z6s7s = 〈6s1/2|z|7s1/2〉 with calculations
based on Eq. (51), one can extract an experimental value of QW and compare
with predictions of the Standard Model. The PNC amplitude is found to be very
sensitive to correlation corrections. In lowest-order MBPT, one first solves the
perturbed Dirac equation

(53)(h0 + VHF − εv)φ̃v = −H(1)φv

to determine the PNC correction φ̃v to the valence orbital φv , then evaluates the
forbidden dipole matrix element as

(54)Z(1)
vw = 〈φv|z|φ̃w〉 + 〈φ̃v|z|φw〉.



220 M.S. Safronova and W.R. Johnson [7

For the case of 133Cs, this leads to Z
(1)
6s7s = −0.739 in units ieQW/(−N). Inas-

much as the weak interaction modifies core orbitals as well as the valence orbital,
a proper lowest-order treatment requires one to modify the perturbed equation
above to include ṼHF, the perturbation of the DHF potential induced by the weak
interaction:

(55)(h0 + VHF − εv)φ̃v = −(
H(1) + ṼHF

)
φv.

The perturbed core orbitals φ̃a satisfy similar equations. The system of perturbed
core and valence equations is solved self-consistently leading to a modified value
of the first order PNC amplitude in Cs:

Z
(1)
6s7s = −0.927 ieQW/(−N).

The correction to the first-order amplitude from weakly perturbed core orbitals is
similar to the RPA correction to an allowed transition amplitude; it is referred to
as the “weak” RPA correction. Starting from the weak RPA amplitude in lowest
order, one evaluates the corrections in second and third orders, using the weakly
perturbed orbitals appearing in expressions for the second- and third-order dipole
matrix elements. The second-order matrix element in Cs plus all higher-order
RPA corrections gives

Z
(2)
6s7s = 0.037 ieQW /(−N)

(Dzuba et al., 1987; Mårtensson-Pendrill, 1985; Johnson et al., 1987). This leads
to a value −0.890 ieQW/(−N) through second order. The third-order Brueckner-
orbital correction, which is expected to dominate the residual third-order terms is

Z
(3)
6s7s = −0.061 ieQW/(−N)

(Johnson et al., 1988a). Combining second and third orders, one obtains
−0.951 ieQW/(−N). The fluctuations in the value of the PNC amplitude from
order to order are large, leading one to seek all-order methods to evaluate PNC
amplitudes.

An alternative expression for the PNC amplitude is

Zvw =
∑
n

〈�v|H(1)|�n〉〈�n|Z|�w〉
En − Ev

(56)+
∑
n

〈�v|Z|�n〉〈�n|H(1)|�w〉
En − Ew

.

For the 6s1/2 → 7s1/2 transition in Cs, the intermediate states range over all np1/2
states. We start from this alternative expression in our all-order SD evaluation of
the PNC amplitude. In particular, we evaluate the energies and matrix elements
for the terms n = 6, 7, 8, 9 in the sum using all-order SD wave functions. The
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Table XII
Contributions to EPNC from All-Order SD Calculations of Energies and Matrix

Elements

n 〈7s|Z|np〉 〈np|H(1)|6s〉 E6s − Enp Contrib.

6 1.7291 −0.0562 −0.05093 1.908
7 4.2003 0.0319 −0.09917 −1.352
8 0.3815 0.0215 −0.11714 −0.070
9 0.1532 0.0162 −0.12592 −0.020

n 〈7s|H(1)|np〉 〈np|Z|6s〉 E7s − Enp Contrib.

6 −1.8411 0.0272 0.03352 −1.493
7 0.1143 −0.0154 −0.01472 0.120
8 0.0319 −0.0104 −0.03269 0.010
9 0.0171 −0.0078 −0.04147 0.003
n = 6–9 −0.894(4)

Tail −0.015(1)

Total −0.909(4)

We designate the sum of contributions from n = 2–5 and n = 10–∞, which were calcu-
lated in the weak RPA approximation by “tail”. Energies and dipole matrix elements are
in a.u., and PNC matrix elements and contributions to EPNC are in −i|e|10−11a0QW /N .

theoretical error in these calculations is estimated by replacing ab initio theoret-
ical data in the sums by precisely known experimental data or modified theory
values, that include semi-empirical estimates of the omitted correlation effects,
and noting the changes in the partial sum (Blundell et al., 1992). Contributions
from terms with n = 2–5 and n = 10–∞ are evaluated in the weak RPA ap-
proximation. Values of all-order matrix elements and experimental energies used
in the evaluation of Eq. (56) (Blundell et al., 1992), together with the residual
weak RPA contributions to the sum over states are listed in Table XII. The re-
sulting all-order value for the PNC amplitude in Cs in the table, estimated to be
accurate to about 0.5% (Bennett and Wieman, 1999), is in close agreement with
theoretical results from PTSI calculations (Dzuba et al., 2002), relativistic CI cal-
culations (Kozlov et al., 2001b), multiconfiguration DHF calculations (Shabaev
et al., 2005), and with preliminary values from CCSD calculations (Das et al.,
2006). There are small residual corrections to the theoretical PNC amplitude in
Table XII from the Breit interaction, vacuum polarization, and the nuclear skin
effect. These corrections are enumerated, for example, in Derevianko and Porsev
(2006). Combining the corrected theoretical amplitude with the measurements of
Wood et al. (1997), one infers the “experimental” value [QW ]exp = −72.73(46),
which differs from the Standard Model prediction QW = −73.09(3) by less than
1 standard deviation.
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7.2. POLARIZABILITY CALCULATIONS AND THEIR APPLICATIONS.
BLACKBODY RADIATION SHIFT

An application of MBPT that is closely related to atomic PNC is the evaluation
of atomic polarizabilities. All-order calculations of polarizabilities can be carried
out using a sum-over-states approach similar to that used in the PNC calculations
[Eq. (56)]. Neglecting hyperfine structure, the energy shift of an atom subjected
to an electric field E in z direction is 	E = −αe2E2/2, where α is the atomic
polarizability given by Angel and Sandars (1968):

(57)α = α0 + α2
3m2

v − jv(jv + 1)

jv(2jv − 1)

for the monovalent atom in a state v. The valence state contribution to the scalar
frequency-dependent polarizability α0 is given by

(58)αv
0 = 2

3(2jv + 1)

∑
k

〈v‖D‖k〉2(Ek − Ev)

(Ek − Ev)2 − ω2
,

where 〈v‖D‖k〉 is a reduced matrix element of the dipole operator. Intermediate
states k in this case are restricted to single valence electron states. The total scalar
polarizability is given by the sum of the valence contribution (58), the polarizabil-
ity of the ionic core αc

0, and small αvc
0 term compensating for violation of the Pauli

principle by the core term (M.S. Safronova et al., 1999). The tensor polarizability
α2 is given by

α2 = −4C
∑

k

(−1)jv+jk+1
{

jv 1 jk

1 jv 2

} 〈v‖D‖k〉2(Ek − Ev)

(Ek − Ev)2 − ω2
,

(59)C =
(

5jv(2jv − 1)

6(jv + 1)(2jv + 1)(2jv + 3)

)1/2

,

where {: : :} is a 6 − j symbol. It is important to note that α2 is non-zero only for
the states with |mv| � 1.

Static polarizabilities are given by the above formulas with ω = 0. Calculations
of the sums over k in Eqs. (58) and (59) follow the pattern of the PNC sum-over-
state calculation described earlier (M.S. Safronova et al., 1999, 2006a). Briefly,
the sums are separated into a “main” term and a remainder “tail” term. Such a di-
vision is based on the relatively rapid convergence of the sums over k. The speed
of the convergence depends on a particular state and frequency ω. The main term
contains the dominant contribution, and is generally limited to the sum over the
four lowest principal quantum numbers nk for each value of κk allowed by se-
lection rules. All electric-dipole matrix elements in the main term are calculated
using the all-order method (SD, SDpT, or their scaled versions) or taken from
experiment in cases where high-precision values are available. The tail term is
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Table XIII
Polarizabilities of the Noble-Gas Atoms Calculated in the RPA (Kolb et al., 1982)

Compared with Recommended Values (Miller and Bederson, 1977)

He Ne Ar Kr Xe

RPA 1.32 2.38 10.8 16.5 27.0
Rec 1.38 2.67 11.1 16.7 27.3
	% 5 12 3 1 1

generally very small and is calculated in either DHF or RPA approximations. The
core contribution to the scalar polarizability αc

0 is small but significant in some
cases and is generally calculated in RPA approximation (Kolb et al., 1982). The
core term contributes 0.5, 2, 3, and 4% to the scalar static ground state polariz-
abilities of Na, K, Rb, and Cs, respectively. In precise calculations, it is important
to evaluate the uncertainty in the RPA calculation. For this purpose, we com-
pare in Table XIII RPA calculations of the polarizabilities of noble gas atoms
(Kolb et al., 1982) with the recommended values compiled in Miller and Beder-
son (1977).

If we approximate the accuracy of the ionic core polarizability by that of the
neighboring closed-shell atom, then we expect that calculating αc

0 in the RPA will
induce an error of about 0.06% in the polarizability of Na and K, and an error of
0.03% in the polarizability of Rb and Cs. Given that theoretical results for ions
are expected to be even more accurate than those for neutral atoms, one expects
that using the RPA values for αc

0 should induce errors smaller than 0.1% in ground
state static polarizabilities of alkali-metal atoms. The term αvc

0 is very small and
is calculated in either DHF or RPA approximation. As a result, the accuracy of the
polarizability calculations is generally limited by the accuracy of the calculation
of the electric-dipole matrix elements in the main term, as the energy levels are
generally experimentally known.

Below, we list some of the all-order polarizability calculations carried out
using the method described above. In some of the Ground state static and
frequency-dependent polarizabilities of the alkali-metal atoms were calculated in
M.S. Safronova et al. (1999, 2004, 2006a), Derevianko et al. (1999). All-order
calculations of excited state np1/2 and np3/2 polarizabilities of alkali-metal atoms
are being prepared for publication (Arora et al., in preparation). In Arora et al. (in
preparation), polarizabilities between hyperfine levels are calculated. The static
scalar polarizabilities of the 6pj states and tensor polarizability of 6p3/2 state in
Cs were calculated in Safronova andClark (2004), and the scalar and tensor polar-
izabilities of the 7d3/2, 7d5/2, 9d3/2, 9d5/2, 10d3/2, and 10d5/2 states of Cs were
reported in Auzinsh et al. (2007). Scalar and tensor polarizabilities of the Fr-like
Th IV in it ground state (5f5/2) were calculated in U.I. Safronova et al. (2006c).
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Table XIV
Comparison of the All-Order Polarizability Results with Experiment

Cs Cs Tl

α0(6p1/2)

− α0(6s)

Reference α2(10D5/2) Reference α0(6p1/2)

− α0(7s)

Reference

All-order 1248 Safronova and
Clark (2004)

6867(32) Auzinsh et
al. (2007)

−830 M.S. Safronova
et al. (2006b)

Expt. 1240.2(24) Tanner and
Wieman (1988b)

6815(20) Xia et al.
(1997)

−829.7(3.1) Doret et al.
(2002)

Units: a3
0 .

While Tl is an atom with three valence electrons, it can be approximated
as a system with one valence electron above the closed [1s2 . . . 6s2] core. In
this approximation, the Tl polarizabilities for the 6s2nl states may be deter-
mined using the approach described above. Such calculations were carried out
in M.S. Safronova et al. (2006b) for the 6s26p1/2, 6s27s1/2, and 6s27p1/2 states.
The resulting all-order values were found to be in excellent agreement with ex-
periment. We present a few examples of the all-order polarizability calculations
in Table XIV.

Scalar and vector transitions polarizabilities αS and βS defined, for example, in
M.S. Safronova et al. (1999, 2006b) can be calculated using the sum-over-states
approach described above. These atomic parameters were calculated for alkali-
metal atoms and Tl in M.S. Safronova et al. (1999, 2006b). The vector transition
polarizability βS is needed for the analysis of some of the PNC experiments, in-
cluding the PNC experiment in Cs (Wood et al., 1997) discussed earlier in this
paper.

Polarizability calculations have useful applications beyond high-precision tests
of the atomic methodology, providing benchmark data for comparison with exper-
iment, and studies of parity nonconservation. As we mentioned previously, the Cs
6s and 6pj polarizability calculations were used to cross-check the Stark-shift and
lifetime experiments, and significant discrepancies were found (Safronova and
Clark, 2004). A proposal to minimize heating in a quantum logic gate (Safronova
et al., 2003) relied on calculations of the polarizability of Rb in its ground and
an excited Rydberg state. In M.S. Safronova et al. (2006a), the calculation of
frequency-dependent polarizabilities in alkali-metal atoms was used to predict
the oscillation frequencies of optically trapped alkali-metal atoms, and particu-
larly the ratios of frequencies of different species held in the same trap. In the
same work, which was motivated by recent experiments involving simultaneous
optical trapping of two different alkali-metal species, wavelengths at which two
different alkali-metal atoms have the same oscillation frequency were identified.
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In Arora et al. (in preparation), the frequency-dependent polarizabilities between
the hyperfine states of alkali-metal atoms were used to identify “magic” wave-
lengths for which ns and np1/2,3/2 atomic levels have the same ac-Stark shifts,
enabling state-insensitive optical cooling and trapping (McKeever et al., 2003).
The magic wavelength is determined as the wavelength at which the Stark shifts
of the upper and lower level for a specific transition are the same. In Porsev et al.
(2004), polarizability calculation were conducted to assess the possibility of an
optical clock using the 6 1S0 → 6 3P o

0 transition in Yb atoms held in an optical
lattice. In that work, the magic wavelength was identified at which the shift in this
proposed clock transition due to the trapping laser light is zero.

Another application of polarizability calculations to the development of the
ultra-precise atomic clocks is the evaluation of the blackbody radiation (BBR)
shift in the 133Cs primary frequency standard (Beloy et al., 2006; Angstmann et
al., 2006). The BBR shift of the energy level is proportional to the static scalar
electric-dipole polarizability of the hyperfine level F . Therefore, the calculation
of the BBR shift for the Cs microwave clock transition reduces to the calculation
of the difference of the scalar polarizabilities of the 6s F = 4 and 6s F = 3
levels. To lowest order in the interaction potential, these polarizabilities are the
same. Therefore, the BBR shift calculation involves calculation of the third-order
F -dependent scalar polarizability α

(3)
0 . This calculation can also be done using

the sum-over-state approach, with the sums containing two electric-dipole matrix
elements and one hyperfine matrix element. The complete formulas are given in
Beloy et al. (2006). The calculation of Beloy et al. (2006), Angstmann et al. (2006)
resolved the discrepancy between the previous theoretical calculations and precise
experimental measurements.

7.3. C3 AND C6 COEFFICIENTS

Parameters closely related to the polarizabilities are the Lennard-Jones C3 co-
efficient that describes the long-range potential between an atom and a wall,
−C3/R

3, and the van der Waals C6 coefficient that describes the long-range
potential between two atoms through the interaction between induced dipoles,
−C6/R

6. Both of these coefficients can be described in terms of the frequency-
dependent polarizability α(iω)

(60)α(iω) = 2

3

∑
n

(En − Ev)|〈�v|R|�n〉|2
(En − Ev)2 + ω2

,

where n ranges over all possible states. The frequency-dependent polarizability
can itself be evaluated using the all-order methods described in the previous sub-



226 M.S. Safronova and W.R. Johnson [7

section. One finds:

(61)C3 = 1

4π

∞∫
0

α(iω) dω,

(62)C6 = 3

π

∞∫
0

[
α(iω)

]2
dω.

Equation (61) reduces to C3 = 〈�v|R2|�v〉/12 on integration.
An MBPT calculations of C3 for alkali-metal atoms based directly on the ex-

pectation value of R2 was carried out by Derevianko et al. (1998) and Johnson et
al. (2004). The operator R2 was decomposed into a single-particle operator S and
a two-particle operator T : R2 = S + 2T , where

S =
∑
j

(
r2)

ij
a

†
i aj ,

T = 1

2

∑
ijkl

〈ij |r1 · r2|kl〉a†
i a

†
j alak.

In Derevianko et al. (1998), MBPT contributions to 〈R2〉 were carried out through
third order for the dominant term S but were limited to second order for T . The
MBPT result for Na, C3 = 1.890a2

0, is in good agreement with the recommended
(SD all-order) value C3 = 1.886a2

0 (Derevianko et al., 1998, 1999). For Cs, the
difference between the MBPT value C3 = 3.863a2

0 and the recommended value
4.143a2

0 (Derevianko et al., 1999) increases to about 7%. Once again, the need
for all-order methods in precise atomic structure calculations for heavy atoms
is apparent. In Johnson et al. (2004) a finite-field method, in which the basic
electron–electron interaction Hamiltonian is modified to include a scaled contri-
bution from R2, was used in connection with an SD calculation of the correlation
energy to obtain all-order values for C3 for heavy atoms.

All-order values of both C3 and C6 for alkali-metal atoms were also obtained
directly from Eqs. (61)–(62) in Derevianko et al. (1999) using all-order values
of frequency-dependent polarizabilities such as those discussed in the previous
subsection.

In the upper panel of Table XV, we compare values of C3 obtained in three
different ways; evaluating 〈�v|R2|�v〉/12 using SD wave functions, evaluating
C3 using the finite-field method in conjunction with the SD method, and, finally,
evaluating the dominant contributions to α(iω) with SD wave functions and en-
ergies and utilizing Eq. (61). The consistence between these three approaches
deteriorates rapidly with increasing nuclear charge indicating the need for further
studies.
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Table XV
Calculations of the Lennard-Jones Atom–Wall Interaction Constant C3 and Comparison of SD

Calculations of the Atom–Atom Interaction Constant C6 with Recommended Values

Method References Na K Rb Cs Fr

C3 coefficient
1
12 〈R2〉 Derevianko et al. (1998,

1999)
1.886 2.860 3.362 4.143 4.281

Finite field Johnson et al. (2004) 1.887 2.966 3.529 4.499 4.711
Eq. (61) Derevianko et al. (1999) 1.875 2.877 3.410 4.247 4.427

C6 coefficient
Eq. (62) Derevianko et al. (1999) 1564 3867 4628 6899 5174
Rec. values Derevianko et al. (1999) 1556(4) 3897(15) 4691(23) 6851(74) 5256(89)

In the lower panel of Table XV, we compare all-order results for the C6
coefficients of alkali-metal atoms with semi-empirical recommended values
(Derevianko et al., 1999). The recommended values are obtained from calcula-
tions making use of experimental energies and electric-dipole matrix elements
for the principal transitions. The all-order values were determined by evaluating
the dominant contributions to α(iω) with SD wave functions and energies, then
utilizing Eq. (61). In this case, values obtained in two different ways show good
consistency.

7.4. ISOTOPE SHIFT

In view of the fact that experimental values of isotope shifts are not available for
many atoms of interest in applications, there is a pressing need for accurate calcu-
lations. By comparing experimental and theoretical isotope shifts one can extract
changes in nuclear charge radii from one isotope to another. These changes are
of intrinsic interest in nuclear physics; they are also important in the analysis of
possible future PNC experiments involving measurements in chains of isotopes.
Accurate values of isotope shifts are also needed for studies of the variation of
the fundamental constant α in the spectra of quasistellar objects (Murphy et al.,
2001), since changes in isotopic ratios in the early universe lead to systematics
that can mask changes in α.

Isotope shifts of energy levels consist of two parts, one associated with changes
in nuclear volume from isotope to isotope, and the other associated with nuclear
recoil. The nuclear size correction, referred to as the field shift (FS) is obtained
from matrix elements of the operator dV/d〈r2〉, where 〈r2〉 is the mean-square
radius of the nucleus. The recoil contribution is subdivided into the normal mass
shift (NMS), which can be accurately determined in terms of the experimental
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energy, and the specific mass shift (SMS), which is obtained from the expectation
value of the two-particle operator p1 · p2:

(63)δENMS = − m

M
Eexpt,

(64)δESMS = 1

M

〈∑
i<j

pi · pj

〉
.

In the above, m and M are masses of the electron and nucleus, respectively. The
FS dominates the isotope shift for heavy atoms such as francium but is relatively
unimportant for lighter atoms such as lithium and sodium.

Evaluation of the specific mass shift using MBPT follows a pattern similar to
that shown above for the C3 coefficient. One expresses the SMS operator P =∑

ij pi · pj in second quantization as P = T + S, where

(65)T =
∑
ijkl

tijkl

[
a

†
i a

†
j alak

]
,

(66)S =
∑
ij

tij
[
a

†
i aj

]
,

with tijkl = 〈ij |p1 · p2|kl〉 and tij = − ∑
b tibbj . As discussed by Bauche and

Champeau (1976), expressions for the expectation value of P can be inferred
easily from corresponding expressions for the energy. The expansion of the energy
is carried out explicitly in the relativistic case through third order in Blundell et
al. (1987). With the aid of this expansion, we find:

(67)P (1) = S(1) = tvv,

(68)

P (2) = S(2) + T (2) =
∑
am

tamg̃vmva + g̃vavmtma

εa − εm

− 2
∑
mab

tmvabg̃mvab

εa + εb − εm − εv

+ 2
∑
amn

tmnvag̃mnva

εv + εa − εm − εn

.

Explicit formulas for the third-order corrections S(3) and T (3) can be found in
Safronova and Johnson (2001).

As an example of the convergence of the MBPT expansion, we present results
from the first three orders of MBPT for the SMS constants for the 3s, 3p1/2,
and 3d3/2 states of Na and 4s, 4p1/2, and 3d3/2 states of K in Table XVI. The
third-order values S(3) include RPA contributions to all orders. These results are
from Safronova and Johnson (2001), but similar results for Na were obtained by
Lindroth and Mårtensson-Pendrill (1983) and by Mårtensson and Salomonson
(1982) for Li and K. The poor convergence of perturbation expansion seen in the
table emphasizes the need for alternative theoretical approaches. A similar slow
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Table XVI
Contributions from First-, Second-, and Third-Order Perturbation Theory to the Specific-Mass Shift
Constants (GHz Amu) of the 3s, 3p1/2 and 3d3/2 States of Na and 4s, 4p1/2 and 3d3/2 States of K

Term Na K

3s1/2 p1/2 3d3/2 4s1/2 4p1/2 3d3/2

S(1) −222.0 −115.6 −4.84 −387.9 −118.7 −113.8
S(2) 167.9 48.4 0.96 192.3 59.1 43.5
S(3) 28.1 1.2 0.95 −2.2 0.1 −46.0
S(SDpT) 205.3 51.6 2.79 202.9 66.3 −26.9
T (2) 95.0 28.2 −0.42 143.2 35.8 19.0
T (3) −24.4 −7.5 −0.48 −32.9 −8.2 −13.3

P
(3)
tot 44.7 −45.4 −3.83 −87.5 −31.9 −110.6

P
(SDpT)
tot 53.9 −43.4 −2.95 −74.4 −24.7 −135.0

All-order S(SDpT) matrix elements of the S are also given. P
(3)
tot = S(1) + S(2) + S(3) + T (2) + T (3).

P
(SDpT)
tot is obtained by replacing S(2)+S(3) by S(SDpT) in the above sum. All data are from Safronova

and Johnson (2001).

convergence of the perturbation expansion of the field shift was also found in
Safronova and Johnson (2001).

Since S is a one-body operator, its matrix elements can be evaluated using the
SD or SDpT all-order approach described earlier. Such SDpT calculations were
carried out in Safronova and Johnson (2001) and the corresponding results are
shown in Table XVI in row labeled S(SDpT). There are no results for SDpT ma-
trix elements of T ; therefore, we include only third-order values in Table XVI.
For comparison, we list two totals, P

(3)
tot and P

(SDpT)
tot , in the last two rows of Ta-

ble XVI. Significant discrepancies between these numbers are attributed to the
severe cancellations between the lowest- and second-order values and signifi-
cant contributions from higher orders, especially for nd states. Comparison of
the selected values of the total isotope shifts for Na, K, and Ca+ (Safronova and
Johnson, 2001) calculated using the method described above with experimental
values is given in Table XVII. Significant discrepancies with experiment exist,
especially for the isotope shifts involving nd states. These differences are not un-
expected, since third-order corrections are particularly large for the nd states as
seen in Table XVI.

A more complete calculation of isotope shifts was reported in Dzuba et al.
(2005), where the isotope shifts of K, Rb, Cs, and Fr were calculated using two
high-precision methods. The calculation of the FS was reduced to a calculation of
the energy using a finite-field approach. The finite-field energy was calculated us-
ing an all-order correlation potential method as well as the all-order SD method.
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Table XVII
Comparison of the Total Isotope Shifts with Experiment for Na (δν22,23), K (δν41,39), and Ca+

(δν43,40)

Na K Ca+

3p1/2 − 3s 4p1/2 − 4s 4d3/2 − 4s 4p1/2 − 4s 3d3/2 − 4p1/2

Theory −733 192 569 592 3843
Expt. −758.5(7) 235.25(75) 585(9) 672(9) 3464(3)

The theoretical results are from Safronova and Johnson (2001); the experimental data are taken from
the compilation carried out in the same work. Units: MHz.

Unfortunately, the same method cannot be used for the calculation of the SMS
for reasons explained in Dzuba et al. (2005). The SMS shift was calculated in
Dzuba et al. (2005) using both the approach described earlier (including T (3))
and by a combination of perturbation theory and the finite-field approach in which
only core polarization diagrams are included to all orders. The FS constants cal-
culated by the two different methods were found to be in good agreement with
each other. However, the SMS constants calculated by the two different MBPT
methods, which included different classes of terms, were found to be in severe
disagreement, demonstrating a pressing need to develop all-order techniques for
calculating the SMS.

8. Conclusion

The relativistic all-order method has been described and applications to calcu-
late properties of various atomic systems have been given. While the all-order SD
method gives accurate results for many properties, further development is clearly
needed for other properties. Recent improvements to the SD method, such as in-
clusion of the non-linear terms and of valence triple excitations, were discussed.
Strong cancellation between such contributions makes it necessary to consider
both effects simultaneously if one is to increase the accuracy of the all-order cal-
culations. Applications of the high-precision atomic calculations, ranging from
studies of parity nonconservation in heavy atoms to the calculation of the black-
body radiation shifts relevant to the development of ultra-precise frequency stan-
dards, were described. It was demonstrated that the improvement of all-order
techniques for the calculation of the C3 coefficients and the specific mass shifts
is needed for accurate calculation of these properties. All-order methods for cal-
culating properties of divalent and trivalent systems were discussed and examples
of the corresponding results were presented.
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