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Calculation of energies and hyperfine-structure constants of 233U+ and 233U
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We carried out calculations of the energies and magnetic dipole hyperfine-structure constants of the low-lying
states of 233U+ and 233U using two different approaches. With six valence electrons and a very heavy core,
uranium represents a major challenge for precision atomic theory even using large-scale computational resources.
The first approach combines configuration interaction (CI) with a method allowing us to include core-valence
correlations to all orders of the perturbation theory over residual Coulomb interaction. The second approach is
a pure CI method which allows the use of different initial approximations. We present a detailed analysis of
all calculated properties and discuss the advantages and disadvantages of each of these methods. We report a
preliminary value of the U nuclear magnetic moment and outline the need for further experiments.
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I. INTRODUCTION

Experimental measurements of hyperfine structure (hfs)
together with theoretical calculations can be used to determine
nuclear moments. Recently, we calculated the hfs constants
A and B for a heavy ion, 229Th3+ [1]. Combining these val-
ues with the experimental results, we extracted the magnetic
dipole and electric quadrupole nuclear moments with high
accuracy. The electronic structure of Th3+, which has a single
valence electron, allowed for the most precise calculation
for an actinide ion. The 229 isotope of Th has a very small
transition energy (≈8 eV) between the ground and first excited
nuclear states. Due to such a unique feature, this nuclear
transition was proposed for the design of a new type of optical
clock (see review [2] and references therein).

The Th ions were successfully trapped, and further pre-
cision laser spectroscopic investigation of the hyperfine
structure is planned [2]. Thorium isomer energy can be mea-
sured using the decay of the isomer state in neutral Th via
internal conversion [3]. In these experiments, 229Th isomer
is produced from the α decay of 233U. As a result, one can
investigate the hyperfine-structure constants of 233U+ in the
same set of experiments. Such an experimental study was
carried out in Ref. [4] and the hfs constant A of the first excited
state 5 f 36d7s 6L11/2 was found with about 2% uncertainty to
be −301(6) MHz. Therefore, an accurate calculation of this
constant can potentially lead to improving the current value
of the nuclear magnetic moment μ = 0.59(5) μN [5] (where
μN is the nuclear magneton), known with only 8.5% accuracy.
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Motivated by these and future experiments, we carried out
calculations of the energies and magnetic dipole hfs constants
A of the low-lying states of 233U+ and 233U. The U+ ions and
neutral U are very challenging systems for precision atomic
calculations. First, these are heavy atomic systems with the
nuclear charge Z = 90. Second, the main configurations of
the ground states of U+ and U are 5 f 3 6d7s and 5 f 3 6d7s2,
respectively. These five or six electrons can be considered as
the valence electrons, while all the rest can be treated as the
core. Numerous problems that occur in calculating the hfs
constants for neutral uranium were discussed in the recent
paper [6].

An accurate treatment of both valence-valence and core-
valence correlations in actinides with many valence electrons
is a very challenging task that is currently unsolved. In this
paper, we explore its possible solutions, using two different
methods. The first one is a combination of the configuration-
interaction (CI) method with a method allowing us to include
core-valence correlations in the second order or all orders
of the perturbation theory over residual Coulomb interaction
[7,8]. This method proved to be very efficient for calculating
energies of the low-lying levels of both the singly charged and
neutral uranium. The transition energies were reproduced with
an accuracy of several tens of cm−1. This is the most accurate
calculation carried out so far in such a system to the best of our
knowledge. However, we found unexpected difficulties when
computing hfs constants of the excited states of U+: unusually
large core-valence correlation corrections to the expectation
values of the magnetic dipole hyperfine operator. Perform-
ing a full-scale calculation in the framework of the pure CI
method with a different initial approximation allowed us to
circumvent this problem. In this method, we consider only
valence-valence correlations, while core-valence correlations
are not taken into account explicitly. The latter can be consid-
ered as a drawback of this method, but on the other hand we
have the freedom to choose an optimal initial approximation,
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obtained from the Dirac-Hartree-Fock (DHF) self-consistency
procedure. The advantages and disadvantages of these meth-
ods and the results obtained within each of them will be
discussed in detail in the following sections.

II. CI + MBPT AND CI+ ALL-ORDER METHODS
OF CALCULATION

We consider U+ and U as the atomic systems with a
[1s2, . . . , 6p6] core and five and six valence electrons above
it, respectively. The initial DHF self-consistency procedure
included the Breit interaction and was done for the core
electrons; such potential is usually denoted V N−M , where
N is the total number of electrons and M is the number
of valence electrons. The advantage of such potential is the
easiest formulation of the perturbation theory and coupled-
cluster (all-order) approaches without the appearance of the
large so-called subtraction diagrams (see detailed discussion
in Ref. [9]).

The only successful attempt to use a different starting
potential with a CI+ all-order method, when the initial ap-
proximation did not correspond to the self-consistent field
of the core, was for Pb, where the V N−M starting potential
was used to treat the system with four valence electrons [9].
However, Pb had a special case of a closed 6s2 shell, and no
such analog potential can be constructed for U and U+.

In U+ and U, the only potential with which we can use
the CI+ all-order method is V N−5(6) for U+ and U, respec-
tively. However, increasing M leads to degrading quality of
the one-electron orbitals and a much larger number of config-
urations that have to be included in CI. The 5 f , 7s, 6d , and
7p orbitals were constructed in such a frozen-core potential.
The remaining virtual orbitals were formed using 40 basis
set B-spline orbitals. The basis set included partial waves
with the orbital quantum number up to l = 6. Quantum elec-
trodynamic (QED) corrections were also included following
Refs. [10,11].

In an approach combining CI and a method allowing us
to include core-valence correlations [7,8], the wave functions
and energy levels of the valence electrons were found by
solving the multiparticle relativistic equation [7]:

Heff (En)�n = En�n, (1)

where the effective Hamiltonian is defined as

Heff (E ) = HFC + �(E ), (2)

with HFC being the Hamiltonian in the frozen-core approx-
imation. The energy-dependent operator �(E ) accounts for
virtual excitations of the core electrons. We constructed it in
two ways: using (i) the second-order many-body perturbation
theory (MBPT) over residual Coulomb interaction [7] and
(ii) the linearized coupled-cluster single-double method
[8,12]. In the following, we refer to these approaches as the
CI + MBPT and CI+ all-order methods.

To check the convergence of the CI, we have performed
several calculations, sequentially increasing the size of the
configuration space. For U+, the smallest set of the config-
urations was constructed by including the single and double
excitations from the main configurations of the low-lying
states to the shells up to 13s, 13p, 13d, 13 f , and 13g (we

designate it as [13spdf g]). We have identified seven config-
urations the weight (in probability) of which exceeded 3%
for all states of interest to be 5 f 37s26d , 5 f 37s6d , 5 f 37s8s,
5 f 36d8s, 5 f 37s7d , 5 f 27s6d6 f , and 5 f 27s26 f . All subse-
quent (larger) sets of configurations were constructed by
allowing single and double excitations from these seven con-
figurations. The largest set of configurations, for which the
saturation was practically reached, included the single and
double excitations to [20spd17 f 13g] orbitals.

The same approach was used for constructing sets of
configurations for neutral U. The single and double exci-
tations were allowed from the configurations the weight of
which exceeded 3%. For U, the largest set of configurations
[20spd17 f 13g] included 131 × 106 determinants.

A. Energy levels

The excitation energies of the lowest-lying states of U+ and
U obtained in different approximations are listed (in cm−1) in
Table I. The assignments of the U+ and U levels are from
Ref. [13] and the NIST database [14], respectively.

In the third column, we present the CI + MBPT values.
They were obtained only for the [13spdf g] set of configura-
tions to demonstrate the size of the higher-order core-valence
corrections. In columns 4–7, we present the CI+ all-order
values for different sets of configurations. We find that the
transition energies are not very sensitive to the size of the
configuration space. They change only slightly (by several
tens of cm−1) when the set of configurations is increased
from [13spdf g] to [20spd17 f 13g]. Following Ref. [11], we
calculated the QED corrections to the energy levels. They are
listed in the column labeled “QED.” The final values, given in
the column labeled “Final,” are the sum of the CI+ all-order
values obtained for the [20spd17 f 13g] configuration set and
the QED correction. We see excellent agreement between
the theoretical and experimental values. Even for the small
transition energy between the ground state of U+ and the
first excited state 6L11/2, which is 289 cm−1, the difference
between the theory and experiment is only at the level of 5%.
We also note that the main configuration of the ground state
is 5 f 37s2 while the main configuration of the excited states is
5 f 36d7s. Thus, we reproduce equally well the energies of the
states belonging to the different configurations.

B. Magnetic dipole hyperfine-structure constants

The hfs coupling due to nuclear multipole moments may
be represented as a scalar product of two tensors of rank k:

Hhfs =
∑

k

(N(k) · T(k) ),

where N(k) and T(k) act in the nuclear and electronic coordi-
nate space, respectively. In the following, we restrict ourselves
to the first term in the sum over k, considering only the
interaction of the magnetic dipole nuclear moment with the
electrons, i.e.,

Hhfs ≈ N(1) · T(1) ≡ N · T.
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TABLE I. The excitation energies (in cm−1), calculated in the CI+MBPT and CI+all-order approximations, are presented. The CI+all-
order values are listed for different sets of configurations. The QED corrections are given in the column labeled “QED.” The final values, given
in the column labeled “Final,” are found as the sum of the CI+all-order values obtained for the [20spd17 f 13g] configuration set and the QED
corrections. The experimental values are given in the last two columns.

CI+MBPT CI+all-order Expt.

Level [13spdf g] [13spdf g] [15spdf 13g] [17spdf 13g] [20spd17 f 13g] QED Final Ref. [13] Ref. [14]

U+ 5 f 37s2 4I9/2 0 0 0 0 0 0 0 0
5 f 36d7s 6L11/2 1411 497 498 409 450 −175 274 289
5 f 36d7s 6K9/2 1896 1088 1088 1003 1033 −170 862 915
5 f 36d7s 6L13/2 3008 2006 2005 1907 1934 −188 1746 1749
5 f 36d7s 6K11/2 3382 2471 2470 2377 2396 −180 2215 2295

U 5 f 36d7s2 5L6 0 0 0 0 0 0 0 0
5 f 36d7s2 5L7 4420 3772 3779 3775 3784 8 3792 3801
5 f 36d7s2 5K6 4757 4221 4231 4225 4225 10 4235 4276

We define N in a dimensionless form, expressing it through
the nuclear magnetic dipole moment μ as

N = μ/μN .

The operator T is the sum of the one-particle operators:

T =
N∑

i=1

Ti.

Assuming the nucleus to be a charged ball of uniform
magnetization with radius R, the expression for one-particle
electronic tensor Ti is given (in atomic units h̄ = |e| = m =
1, c ≈ 137) by

Ti = ri × αi

c r3
i >

μN ,

where αi is the Dirac matrix, ri is the radial position of the ith
electron, ri × αi is the vector product of ri and αi, and

ri > ≡
{

ri, if ri � R,

R, if R > ri.
(3)

The formula connecting the hfs constant A of an atomic
state |γ J〉 with the reduced matrix element 〈γ J||T ||γ J〉 of the
electronic tensor T is

A = gN√
J (J + 1)(2J + 1)

〈γ J||T ||γ J〉,

where γ encapsulates all other quantum numbers, gN =
μ/(μN I ), and I is the nuclear spin.

We determine the hfs constants A for the low-lying states of
the neutral and singly ionized uranium. For these calculations,
we use the value of the nuclear magnetic moment of 233U,
μ = 0.59(5) μN [5] (I = 5/2). We note that its uncertainty,
8.5%, is large.

The results of several computations demonstrating the
size of various contributions are summarized in Table II.
In the third column, we present the results obtained at the
CI + MBPT stage, when the core-valence correlations are
included in the second order of the perturbation theory. The
CI+ all-order results that include higher-order core-valence
correlations are obtained for the largest [20spd17 f 13g] set of
configurations. These values are given in the fourth column.

The correlation corrections to the hfs expectation values
arise from the correlation corrections to the wave functions
and the corrections to the hfs operator. The most important
and (often) the largest one is the random-phase approxima-
tion (RPA) correction, which is calculated in all orders of
the perturbation theory and given separately in the table in
the column labeled “RPA.” We also took into account other
corrections to the hfs operator: the two-particle (2P) and core
Brueckner (σ ) [17], and the structural radiation (SR) [18,19],
QED, and normalization (Norm.) corrections. They are listed
in the respective columns. Representative diagrams for the 2P,
σ , and SR corrections are shown in Fig. 1.

Thus, the 2P correction appears already in the first order of
the perturbation theory, while the σ and SR corrections appear
in the second order of MBPT. As illustrated in Table II, the 2P
corrections are very large for all excited states for U+. For
instance, this correction is more than 100% of the “CI+All”
value for the 6L11/2 and 6K9/2 states, which is very unusual. We
had not observed it earlier for any other system. On the other
hand, the CI+ all-order method has not been applied before to
compute hfs for such a complicated system. The calculations
of the U+ properties were practically not carried out before,
and specific features of these particular states are little studied.
Our finding raises the question of the applicability of the
perturbation theory for calculating this correction. We can
expect that higher-order corrections will play an essential role
and can significantly change the hfs constants values for the
excited states. Therefore, the current results obtained for these
states have low accuracy, estimated to be about 50%.

(a) (b) (c)

FIG. 1. Representative diagrams for (a) the two-particle cor-
rection, (b) the core Brueckner correction, and (c) the structural
radiation correction. A filled circle stands for the hfs operator and
a dotted line stands for the Coulomb interaction.
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TABLE II. Contributions to the magnetic dipole hfs constants A (in MHz), calculated with μ = 0.59 μN , are presented. The CI+MBPT
and CI+all-order values are listed in the columns labeled “CI+MBPT” and “CI+All,” respectively. The RPA corrections to the hfs operator
are listed in the column labeled “RPA.” The core Brueckner (σ ), structural radiation (SR), two-particle (2P), QED, and normalization (Norm.)
corrections are given in respective columns and summarized in the column labeled “Tot. corr.” The values in the column labeled “Final” are
obtained as the sum of the “CI+All” + “RPA” + “Tot. corr.” values. Uncertainties are given in parentheses.

CI+MBPT CI+All RPA σ SR 2P QED Norm. Tot. corr. Final Expt.

U+ A(5 f 3 7s2 4I9/2) 150 140 −2 3 31 −4 −3 −29 −1 137(10)
A(5 f 3 6d7s 6L11/2) −128 −120 −26 27 37 −162 6 43 −50 −196 −301(6)a

A(5 f 3 6d7s 6K9/2) −173 −157 −7 30 26 −193 11 52 −73 −237
A(5 f 3 6d7s 6L13/2) 369 344 33 −16 34 135 −2 −95 56 432
A(5 f 3 6d7s 6K11/2) 399 369 46 −19 27 145 −3 −102 48 463

U A(5 f 3 6d7s2 5L6) 125 121 5 4 37 −3 0.9 −30 8 134 131.56(10)b

A(5 f 3 6d7s2 5L7) 127 122 −18 1 28 3 0.4 −24 9 113 122c

A(5 f 3 6d7s2 5K6) 129 124 −10 1 23 3 0.4 −25 2 116 128c

aReference [4].
bReference [15].
cObtained using the results of Ref. [16] and the ratio A(233U)/A(235U) ≈ −2.1722 [see Eq. (4) and the discussion after it].

For the ground state 5 f 3 7s2 4I9/2, in contrast, the situation
is much better. The 2P correction is small. We assume that
it can be due to the 7s shell being closed and that it does
not contribute to the hfs constant. Besides that, all corrections
beyond RPA tend to cancel each other. As a result, the total
correction, labeled in Table II as “Tot. corr.,” and found as
the sum of σ , SR, 2P, QED, and normalization corrections, is
small (≈0.7%). Estimating the uncertainty of A(4I9/2) as the
difference between the “CI+All” and “CI + MBPT” values,
we arrive at A(4I9/2) = 137(10) MHz.

For the neutral uranium, there is good agreement (about
2%) for the hfs constant of the ground state A(5L6), while for
the excited states 5L7 and 5K6 the agreement is at the level of
10%. Same as for the ground state of U+, the corrections to the
hfs constants are not very large and tend to cancel each other.
The 2P corrections are small, which again can be explained
by the presence of the closed 7s shell.

We note that the experimental values A(5L7) =
−56.31(12) MHz and A(5K6) = −59.13(45) MHz are
known with high accuracy for 235U [16], but they were
not measured for 233U. In Ref. [15] the magnetic dipole
hfs constants of the ground state (5 f 3 6d7s2 5L6) and two
even-parity states (5 f 3 6d7s7p 7M7, E = 16 900 cm−1) and
(5 f 3 6d7s7p 7L6, E = 17 362 cm−1) were measured for both
233U and 235U.

Their ratios were found in Ref. [15] to be

A5L7
(233U)/A5L7

(235U) = −2.1656(16),

A7M7
(233U)/A7M7

(235U) = −2.1790(10), (4)

A7L6
(233U)/A7L6

(235U) = −2.172(14).

As seen, the values of these ratios are very close to each
other; the largest difference between −2.1790 and −2.1656 is
only about 0.6%. This is not surprising because the electronic
matrix elements 〈γ J||T ||γ J〉 are practically the same for both
233U and 235U. A small difference in nuclear radii affects the
ratio of these matrix elements very little.

Using the average of the three ratios given in Eq. (4),
−2.1722, and assuming that this is about the same also for
the hfs constants of the 6L11/2 and 6K9/2 states, we found the

respective values A(6L11/2) and A(6K9/2), presented in the last
column of Table II.

III. PURE CI CALCULATIONS

One of the reasons for the low accuracy of the hfs constants
of the excited states of U+ is a poor initial approximation.
Indeed, the initial DHF self-consistency procedure was done
for the core [1s2, . . . , 6s2, 6p6] electrons. Then the valence
orbitals were constructed in the frozen-core approximation,
i.e., in the field of the sixfold ionized neutral atom, whereas
we would be interested in constructing orbitals for the neutral
atom. In this section, we discuss another (pure CI) method
of calculation that allows us to use a much better initial ap-
proximation. The role of the core-valence correlations can be
estimated by successively adding the core shells (6p, 6s, etc.)
to the valence field and by calculating the hfs constants for
these extended CI spaces. Such a method is similar to the
multiconfiguration Dirac-Hartree-Fock (MCDHF) variational
approach [20]. In particular, in this review paper the authors
discuss an optimization strategy for choosing orbitals that
should be involved in the MCDHF process.

Again, at first U+ and U were considered as the atomic sys-
tems with five and six valence electrons, respectively, above
the closed core [1s2, . . . , 6p6]. But this time, we solved the
DHF equations in the V N approximation for both atomic sys-
tems, i.e., the initial self-consistency procedure was carried
out for the [1s2, . . . , 6p6, 5 f 3 6d 7s] configuration for U+ and
for the [1s2, . . . , 6p6, 5 f 3 6d 7s2] configuration for U. For
U+, all electrons were frozen, the electron from the 6d shell
was moved to the 7p shell, and the 7p1/2,3/2 orbitals were
constructed in the frozen-core potential. The remaining virtual
orbitals were formed using a recurrent procedure described
in Refs. [21,22]. The newly constructed orbitals were then
orthonormalized with respect to the orbitals of the same sym-
metry.

For both atomic systems, the basis sets included in total
five partial waves (lmax = 4) and the orbitals with the principal
quantum number n up to 20. We included the Breit interaction
on the same footing as the Coulomb interaction when con-
structing the basis set.
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TABLE III. Magnetic dipole hfs constants A (in MHz) of the 5 f 3 6d7s 6L11/2 state of U+, obtained in different approximations with
μ = 0.59 μN , are presented. The experimental value is given in the last column. The final theoretical value is given in the row labeled “Final.”
Uncertainties are given in parentheses.

[7spdf ] [8spdf ] [8spdf 6g] [9spdf ] [10spdf ] [11spdf ] [12spdf ] [13spdf ] Expt. [4]

5e CI −234 −264 −272 −264 −263 −263 −263 −263 −301(6)
11e CI −237 −283 −283 −289 −286 −285 −286 −287
13e CI −242 −297 −292 −315 −310 −301 −296 −296
23e CI −249.6 −291 −288 −313 −311
29e CI −250.9 −294 −295 −323
31e CI −250.6 −284
Final −298(10)

We note that with such a construction of the basis set
the number of electrons included in the DHF self-consistent
procedure differs from the number of the core electrons. As
discussed earlier, we cannot use the CI+ all-order method
with such a starting potential. So, we apply the pure CI
method, accounting for explicitly only the valence-valence
correlations but considering more and more electrons as the
valence electrons in successive approximations.

A. The hfs constant A of the (5 f 3 6d7s 6L11/2 ) state for U+

Our goal is to calculate the hfs constant A of the first
excited state (5 f 3 6d7s 6L11/2) (for which the experimental
value is known) in the framework of the pure CI method. At
first, we consider U+ as the ion with five valence electrons
and, respectively, we do five-electron CI (in the following, we
designate it as 5e CI).

We construct the sets of configurations by allowing single
and double excitations of electrons from the two main con-
figurations 5 f 3 7s2 and 5 f 3 7s6d to higher-lying orbitals. We
successively increased the configuration space, following the
change of the constant A, until it stops changing. The largest
set of configurations was constructed by single and double
excitations to [13spdf ]. The results obtained for 5e CI for
different sets of configurations are given in the first row of
Table III. As seen, practically the same values were found for
the [10, 11, 12, 13spdf ] sets of configurations.

As a next step, we estimated the role of the core-valence
correlations by successively including the 6p, 6s, and 5d
shells in the valence field and carrying out calculations in
the framework of 11-, 13-, and 23-electron CI, respectively.
The results obtained for different sets of configurations are
presented in rows 2–4 in Table III.

Finally, we included the 5p and 5s shells in the valence
field and carried calculations in the framework of 29e CI
and 31e CI. The largest set of configurations for 29e CI
was [9spdf ] while for 31e CI it was [8spdf ]. Due to a very
large number of determinants we are unable to carry out
calculation for [9spdf ] in the framework of 31e CI, but we
can do the following estimate. The contribution from the
excitations to the 9spdf shells for 29e CI can be determined
as A([9spdf ]) − A([8spdf ]) = −29 MHz. Assuming that the
contribution from the excitations to the 9spdf shells for 31e
CI is comparable, we would obtain for 31e CI the value of the
constant A[9spdf ] � −313 MHz which is close to the value

obtained for 23e CI. Thus, when we include the 5p and 5s
shells in the CI space, their contributions to the constant A
tend to cancel each other.

To find out the role of excitations to the g shells we com-
pared the results for [8spdf ] and [8spdf 6g]. They are given
in Table III in columns 3 and 4. For different sets of configu-
rations we observe that the excitations to the 5g and 6g shells
change the hfs constant at the level of few MHz. For the 29e
CI the difference A([8spdf 6g]) − A([8spdf ]) = −1 MHz. We
also checked that the excitations to the 7g–10g shells, prac-
tically, do not play any role. They lead to a change of the
constant A by less than 1 MHz.

As we observed for 11e and 13e CIs, the CI spaces were
saturated for the [13spdf ] set of configurations. We consider
the value −296 MHz, obtained for 13e CI for the [13spdf ] set
of configuration, as closest to the final result. To estimate cor-
rections to this value due to contributions of the deeper-lying
core shells, we added the difference A(23e CI) − A(13e CI) =
−1 MHz, found for the [10spdf ] set of configurations, and
also the difference A([8spdf 6g]) − A([8spdf ]) = −1 MHz
found for 29e CI, to −296 MHz, arriving at −298 MHz. As we
already mentioned, the excitations from the 5p and 5s shells
give contributions to the constant A tending to cancel each
other.

We were unable to include into consideration the exci-
tations from the 1s, . . . , 4d core shells. But they are lying
already sufficiently deep (e.g., the DHF energy of the 4d5/2

orbital is −28 a.u.). We believe that the total contribution
from excitations from these shells to the final value of the
hfs constant A does not exceed the difference between the
results, obtained for [9spdf ] for 29e CI and 23e CI, equal
to 10 MHz. We consider this value as the uncertainty of our
calculation.

Using the theoretical and experimental values for
A(6L11/2), −298(10), and −301(6) MHz [4], respectively, we
are able to extract the nuclear magnetic moment of 233U+
to be μ/μN ≈ 0.596(24). We note that this value is some-
what inconclusive because we used only one hfs constant.
Further experimental measurements of other hfs constants
of the low-lying states are needed. By performing similar
calculations and analyses for these constants, we would be
able to refine the value of the magnetic moment. Besides that,
it would allow us to investigate the problem of the Bohr-
Weisskopf effect of the finite nuclear magnetization, which
is omitted in the present calculation due to the lack of further
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TABLE IV. Magnetic dipole hfs constants A (in MHz) of the four lowest-lying states of 233U obtained (with μ = 0.59 μN ) in the framework
of 6e CI in different approximations. The experimental values are given in the last column.

[7spdf g] [8spdf g] [10spd8 f g] [11sp10df g] Expt.

6e CI A(5 f 3 6d7s2 5L6) 134 107 114 115 131.56(10)a

A(5 f 3 6d7s2 5L7) 136 125 126 126 122b

A(5 f 3 6d7s2 5K6) 40 123 123 124 128b

A(5 f 3 6d27s 7M6) −39 −135 −144 −144 −147b

aReference [15].
bRecalculated from the results presented in Ref. [16].

experimental values that will allow its extraction (see Ref. [1]
for details). We note that if the nuclear magnetic moment
of 233U is known with good accuracy and also knowing the
highly accurate value of the ratio of the nuclear magnetic
moments μ(233U)/μ(235U) = 1.5604(14) [5,23] we are able
to determine the nuclear magnetic moment of 235U.

B. The hfs constants A of the low-lying states of U

An accurate calculation of different properties of the neu-
tral uranium is generally a more complicated task due to an
extra valence electron in comparison to U+. We consider
U as the atom with six valence electrons and, respectively,
we do the six-electron CI, constructing the configurations by
allowing single and double excitations from the two main con-
figurations 5 f 3 7s2 6d and 5 f 3 7s 6d2 to higher-lying orbitals.
The results are presented in Table IV. As seen from the ta-
ble, the results obtained for the [10spd8 f g] and [11sp10df g]
sets of configurations are very close to each other for all
four considered states. So we can say that the saturation of
6e CI is achieved. The values of the hfs constants are in
reasonable agreement with the experimental data. Unfor-
tunately, a reliable calculation of the hfs constants in the
framework of 12e CI (when the 6p shell was included in the
valence field) proved impossible even with modern computer
capabilities. Even for a rather small [7spdf g] set of configu-
rations, the CI space consisted of 84 × 106 determinants.

IV. CONCLUSION

In summary, we carried out calculations of the energy
levels and hfs constants for a number of the low-lying states of
U+ and U in the framework of the CI+ all-order and pure CI
methods. Using the calculated and experimental results of the

magnetic dipole hfs constant A(6L11/2) of U+, we extracted
the value of the magnetic dipole moment μN of the nucleus of
233U. Further experimental measurements of other magnetic
dipole hfs constants of the low-lying states and accurate the-
oretical calculations are needed to confirm the value of μN

obtained in this paper.
In the framework of the CI+ all-order method, we calcu-

lated the corrections to the hfs operator in the second order of
the perturbation theory. For the hfs constants of the excited
states of U+, these corrections are large, leading to large
uncertainties of these values. To be more certain about these
quantities, their calculation in all orders of the perturbation
theory is required.

In terms of the experiment, a measurement of the magnetic
dipole hfs constant A of the ground state (5 f 3 7s2 4I9/2) of
233U+, as well as a direct measurement of the hfs constants of
low-lying states of the neutral 233U, such as (5 f 3 6d7s2 5L7)
and (5 f 3 6d7s2 5K6), would be very useful. This would con-
tribute to further development of the theory, and a better
understanding of the possibilities of modern methods of high-
precision calculations, and would allow an accurate extraction
of U nuclear moments.
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